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1 Introduction
In this paper we consider the following boundary value problem

—-eApu = f(z,u), z€Q, ®)
u=0, x € 00N

for small € > 0. Here Q is a bounded domain in RY (N > 2) with C**-boundary
00 (0 < w < 1), A, is the p-Laplace operator Ayu = div (|Vul[P~2Vu) (p > 1), and
f is assumed to satisfy the following conditions:

(F1) f(z,u) € C(Q x [0, 00));

(F2) There exist £ > 0 and o > 0 such that f(z,0) = 0, the map u — f(z,u) is
nondecreasing in [0,&] for all z € Q and liminf, 40 f(z,u)/uP~! > o uniformly in

9%
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(F3) There exists a positive function a(z) € C(Q) such that

>0 when 0 < u < a(z),
f(z,u)
<0 when u > a(z);
(F4) There exists a strictly increasing function g(z) € C([0, 00)) such that g(0) =
0 and the map u — f(z,u) + g(u) is nondecreasing in [0, co) for all x € 2.
We shall describe the case where f(z,u) is independent of z, e.g.,' flz,u) =
f(u) = v 1 —u| (1 - u) (p > 1, ¢ > 0), which satisfies (F3) with a(z) = 1. For

€ > 0 small enough, the boundary value problem

—elpu = f(u), = €Q,
u =0, z € 0N

has the unique positive solution u., which converges the value 1 uniformly in any
compact subset of  as € — 0. Guedda and Véron [5] in 1-dimensional case and
Kamin and Véron [7] in N-dimensional case investigated that when ¢ < p —1 and
e is sufficiently small, the coincidence set of u, with the value 1, or the flat core of
ue, defined by |

O = {r € Q| uc(z) =1}

is not empty and that there exists a constant C > 0 such that
{z € Q| dist(z, Q) > Ce'/P} C O..

If ¢ > p—1, then O, is empty for any € because v, is strictly less than 1 by the strong
maximum principle of Vézquez [9]. After their works, Garcia-Melidn and Sabina de
Lis [4] gave the precise speed of expansion of O, as ¢ — 0, namely, the estimate
of width of the boundary layer of u.. In the results above, they all assume that

f(u)/uP~! is decreasing in order to assure the uniqueness of positive solutions. Guo
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[6] eliminated this assumption and showed that the positive solution is nevertheless
unique for small ¢ (cf. Theorem 2 of Dancer [3] for p = 2).

This paper deals with the case where f(z,u) depends on z, particularly, a(z) is
not constant. In the semilinear case p = 2, Angenent [1] describéd that for small
e > 0, the positive solution of (P) is unique and converges to a(z) uniformly in any
compact subset of 2 as € — 0. For the quasilinear case p # 2, however, there is
no preceding study on singular perturbation problems for (P). Our purpose is to
extend the results of Angenent [1] and of Kamin and Véron [7], respectively, to the
z-dependent case: we give the proof that any positive solution of (P) converges to
a(z) uniformly in any compact subset of {2 as € — 0, and we show that for ¢ > 0
small enough, the solutions coincide with a(z) on the domain where a(z) is constant
and f(z,u) tends to zero as u — a(z) with the order less than p — 1.

To state theorems, we give the following notation, which will be in force through

the paper:

A = max{a(z) |z € O},
a = min{a(z) |z € O},
D(£, R) = {z € Q| dist(z,80Q) > R}.
Theorem 1.1. Suppose (F1)—(F4). All nontrivial nonnegative solutions are positive

in Q. Moreover, for sufficiently small € > 0, there exists a positive solution u €

CY2(9) of (P) with some & € (0,1).

Theorem 1.2. Suppose (F1)-(F4). For any § € (0,a), there exist K > 0 and
€« > 0 such that D(2, K exl ) is not empty and that if € € (0,€.) then every positive

solution u, of (P) satisfies

lue(z) — a(z)| < & for all z € D(S, Ke'/P).
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Theorem 1.3. Suppose (F1)~(F4) and
(F5) a(z) = a for some a € [0, A] in a nonempty subdomain o of {1 and there

erist g € (0,p—1) and A > 0 such that

then every positive solution u, of (P) satisfies
ue(z) = a=a(z) for allz € D(Q,n).

Sections 2 and 3 are devoted to proofs of the theorems. In Section 4, we shall
announce that when p = 2, the condition (F5) in Theorem 1.3 can be weaker. In

Section 5, we give a few remark on the theorems.

2 Preliminaries

In this section, we shall define solutions, super- and subsolutions of (P), and show a
weak comparison principle for the p-Laplace operator with monotone perturbation.
We also acquaint the reader with an existence result given by Cafiada-Drabek-Gémez
[2] and the strong maximum principle given by Véazquez [9]. Finally, we prove a

generalization of Serrin’s sweeping principle to the p-Laplace operator.

Definition 2.1. A function u € WyP(Q) N L>(Q) is called a solution of (P) when
E/ |VulP~2Vu - Vodz = / f(z,u)pdzx
Q Q
for any ¢ € W2P().

For any function v, define the positive part v.. of v by v, = max{v,0}. We
say that a function v € W?(Q) is less than or equal to w € W1P(Q) on 0Q if
(v — w)y € WoP(82), which is denoted by v < w on O
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Definition 2.2. A function u € W?(Q) N L>®(R) is called a subsolution of (P)
when u < 0 on 8Q and —eAyu < f(z,u) in Q, ie.,
e [ Va9 Vpds < [ 1@ wpds
for any @ € WaP(Q) with ¢ > 0 a.e. in Q. In the same way, a function @ € W*(Q)N
L>(R) is called a supersolution of (P) when u > 0 on 8Q and —€A,% > f(z,%) in
Q,ie.,
s/ |VuP~2va - Vodz > / f(z,@)pdz
for any ¢ € W,P(Q) Witslll ¢ >0 a.e. in Q. )
Lemma 2.1. Let h be a strictly increasing continuous function, and assume that
functions u, T € W'?(Q0) N L>(Q) satisfy
—Apu+ h(u) < —AyE + h(T) in Q,
u < T on 69
Then u <7 a.e. in .
Proof. We use an inequality for a, b € RY: There exist positive numbers C; and C;

such that

Olla - b'p (p b 2)7
(al~*a= P26 @ =8 2 { ' o pp

*(lal + ol)>-
Choosing ¢ = (u — @); € Wy*?(Q), we have

(1<p<?2).

02> /Q (|VulP~2Vy — |Va|P~2Va) - V(u — T)4 dz + /n (h(u) — h(T))(u — ©)+ dz

G [IVu-ards (222),
2 [~ - de+ 0 o VB P
| 2/{svﬁ|+|vu|;e0} (|Vyl| + [Val)z-r

> /n (h(w) — b)) — B)4 de.

dz (1<p<?2)
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The last expression is nonnegative, and hence (u — 7)4. = 0 a.e. in Q. Thus u <

u
a.e. in Q O

Lemma 2.2 ([2]). Suppose (F1) and (F4). Let u, T € WHP(Q)NL>®(Q) be, respec-
tively, a subsolution and a supersolution of (P), with u < W a.e. in Q. Then there

exists a minimal (resp. a mazimal) solution u, (resp. u*) for (P) in the interval
[u,T] = {u € L=(Q) |u(z) < u(z) < U(z) a.e. in Q}.

In particular, every solution u € [u,q] of (P) satisfies also u.(z) < u(z) < u*(x)

a.e. in §).

Lemma 2.3 ([9]). Let u € C*(Q) be such that Ayu € L (), u > 0 ae in
Q, —Apu+ B(u) > 0 a.e inQ with §: [0,00) = R continuous, nondecreasing,
B(0) = 0 and either B(s) = O for some s > 0 or B(s) > 0 for all s > 0 but
fol(sﬁ(s))‘l/" ds = +0o. Then if u does not vanish identically on Q, then it is
positive everywhere in Q. Moreover, if u € C*(QU {zo}) for an zo € N that
satisfies an interior sphere condition and u(zo) = 0, then g“-;(xo) < 0, where n is

the outer normal unit vector to Q) at x,.

Finally in this section, we generalize Serrin’s sweeping principle for uniformly
elliptic opérators to the p-Laplace operator. When f(z,u) is independent of z, a
generalized principle has been already given by Guo [6].

Proposition 2.1. Let (F1), (F4), I = [a,b] (a < b) and u € W'?(Q) N C(Q) be
a solution of —A,u = f(z,u). Suppose that a family of functions {v; € WHP(Q) N
C(Q) |t € I} satisfies vy < u on OQ and that there ezists ¢ > 0 such that —Apvy <
f(z,v;) —c forallt € I. If the map t — v, is continuous with respect to the topology
of C(Q) and v, <u in Q, thenv, <u in Q forallt € I.
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Proof. Set E = {t € I|u > v, in O}. By the assumption of the proposition, E is
nonempty and closed. It suffices to show that E is also open in I, which means that
E=1I |

Fix t € E. Since u > v; on 852, there exists a neighborhood I' of 8Q such that
u > v, on . Let €. be a subset of Q with Q. C I'. Then u > v; on 9. There
exists 7. > O such that if 0 < 7 < 7., then g(u) — g(u — 7) < ¢, and we choose

7 € (0,7,) such that u — 7 > v; on 9. From (F4), we have

—A,(u—1)+gu—7) = flz,u) +g(u—"7)
> f(z,u) + g(u) —c
> f(z,ve) +g(ve) —

> —Apv; + g(vy)

in Q,. It follows from Lemma 2.1 that © > u— 7 > v, in ,. Since so is in I', we

conclude that u > v; in Q, and hence E is open. O

Remark 2.1. Suppose that a family of functions {w; € W*(Q) N cQ)|t e I}
satisfies w, > u on & and that there exists ¢ > 0 such that —Ajw; > f (z,wy) + ¢
for all t € I. In the same way, we can prove that if the map ¢ — w; is continuous
with respect to the topology of C(2) and w, > u in Q, then w; > u in Q for all
tel.

3 Proofs

We devote the rest of this paper to the proofs of Theorems 1.1, 1.2 and 1.3. Along

the way, we prepare Lemma 3.1, which is needed for proving Theorem 1.3.

Proof of Theorem 1.1. First we shall show the existence of nonnegative solutions of
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(P). Since @ = A is a supersolution, by Lemma 2.2, it suffices to show the existence

of a subsolution u which is less than or equal to %.

Take any zo € Q. From (F2), there exist - > 0 and § € (0, A) such that
f(z,u) > ouP~t if |z — zo| <7 and 0 < u < §. Let A be the principal eigenvalue of
—A, with Dirichlet boundary condition on the unit ball B(0,1) in RY and ¢ the
principal eigenfunction corresponding to Ag such that max{¢e(z) |z € B(0,1)} = 1:

—Apdo = AoldoP~2¢0, z € B(0,1),
=0, z € 6B(0,1).

It is well-known that Ao > 0 and ¢y is positive. Then we can show that the following

function is a subsolution of (P) for £ < o/A¢:

v¢o (¥2) in B,

u(z) =
0 in Q\ B,

where v € (0,8) and B = B(zo,7) is the ball in R with center z, and radius r.
Indeed, for any ¢ € Wy () with ¢ > 0

. / Vup=Vu - Vods = ey [ [VoP-2940 - Vipds
Q B
=gy / |V¢ol”“2%sﬂds—67”‘1 / Apdop dz
8B On B
< AoeyP! / ¢ pdz
B
AoE
<= / F(z, vdo)p, dz
0 JB

< / f(z,u)pdz,

i Q .

where n is the outer normal unit vector to B at s. Since u < § < A = T, it follows

from (F4) and Lemma 2.2 that there exists a nonnegative solution u € [u, %] of (P).
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By virtue of Theorem 1 of Lieberman [8] combined with the use of boundedness of
the solution, we have that u € C1*(Q2) for some @ € (0, 1).

Next we shall show the positivity of nonnegative solutions of (P). From (F2),
there exists £ > 0 such that the map w — f(z,u) is nondecreasing in [0, €] for all
z €. Let

0, u € [0,€],

o(u) - 9(6), € (§00),
where g is an increasing continuous function in (F4). Then, by (F5), G is nonde-
creasing and —eA,u+8(u) = f(z,u)+8(u) = f(z,0)+F(0) = 0 for any nonnegative

solution u of (P). By Lemma 2.3 with B(€) = 0, we conclude that u is positive in
Q. O

Bu) =

Remark 3.1. For the positivity, we assumed in (F2) that f(z,u) is nondecreasing
in [0,£] for some £ > 0. Or alternatively, we may assume in (F4) that g satisfies

1(sg(s))~Y?ds = +oo0, for Lemma 2.3.
Jo

Proof of Theorem 1.2. Let \g and ¢y be the same as those in the proof of Theorem
1.1. From (F2) and (F3), there exist » > 0 and g € (0, o) such that for any zo € 2,
we have that f(z,u) > gu?~! for all z € B(z,7) N and all u € [0, a(zo) — J). Let
K be a constant satisfying K > \o/(cyg) with ¢, = min{2P~2,1}.

Let €, > 0 be a number such that D(Q, Ke,M/P) # 0, Ke,YP < r and that
Problem (P) with € = ¢, has a positive solution. Take any ¢ < &, and any zo €

D(S2, Ke*/?). Changing scaling as ¢(z) = ¢o((z — zo)/(Ke'/?)), we have
A
_EApib_ = E‘;QP—l, T € B.(mO).-KEI/p)7
$=0, = € 8B(zo, Ke'/P).

Taking a constant 7 € (0, a(zo) — 6) so that n < min{u.(z) |z € B(zo, Ke'/?)}, we
shall show that the family of functions {t_q_S(w) + 1|0 <t < a(zo) — 6 — n} satisfies
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the assumption for v; of Proposition 2.1. Indeed, set v; = t¢ + 7. Then v, =1 < u,

on &B(zo, Ke'/?), and since 0 < v; < a(zo) — § in B(zo, Ke'/?), we have

—elpur = f(z,0) < —et" Ap — a(tg + )P

A
< tp—l_fzoigép-l _ cpg(tp-lgp—l +Qp—1)

B (?A(% B c”g) Y — oorf ™

< —car”™

in B(xo, Ke'/P) for all t € [0, a(zo) — — 7). Since vy < u, in B(xo, Ke'/?), it follows |
from Proposition 2.1 that u.(z) > (a(zo) — 8 — n)¢(x) + 1 in B(zo, Ke'/P). Thus
ue(z0) > a(zo) — 0 for all € < &, and all zo € D(2, Ke'/?). -
Next we show the inverse inequality in a similar way. From (F3), there exist
r > 0 and & > 0 such that for any zo € Q, we have that f(z,u) < —7(34 — u)P™?
for all z € B(zo,r) N and all u € (a(zo) + 6, 34]. Let K be a constant satisfying
K? > Xo/(cp0). | \ |
" Let 2= > 0 be a number such that D(Q, K&;) # 0, K&;/? < r and that (P)
with € = &7 has a positive solution. Take any € < &, and any zo € D(Q, Ke'/?).

Changing scaling as ¢(z) = ¢o((z — z0)/(Ke'/P)), we have
, x € B(zg, Ke'/?),
é=0, z € 0B(xo, Ke'/?).

Taking a constant 77 € (0,24 — a(xp) — §), we shall show that the family of functions
{3A—td(z)-7|0 < t < 3A—a(xo)—6—7} satisfies the assumption for w; of Remark
2.1. Note that A is a supersolution of (P) and that Lemma 2.1 with (F3) and (F4)
gives u, < A in Q. Set w, = 34 — t¢(z) — 7. Then wy =3A -7 > A+a(xo) + 4 >
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A > u, on 8B(zo, Ke'/?), and since a(xy) + 6 < w; < 3A in B(zo, K&'/?), we have

—eApw, — f(z,wy) > et? 1 A,B + ?(t$ + 7P

IA(" GO+

=( a-&) T
K
> oo |

i

in B(zo, Ke/?) for all t € [0,3A—a(z) —8—7). Since wp > A > u. in B(zo, Kel/P),
it follows from Remark 2.1 that u.(z) < 34 — (834 — a(xp) — 6 — H)P(x) — 7 in
B(zo, Ke!/P). Thus u.(zo) < a(zo) + 6 for all ¢ < & and all zo € D(Q, Ke'/?).
Setting &, = min{e,, &} and K = min{K, K}, we conclude that |uc(zo) —a(‘x’d)[ <é
‘when € < &, and zo € D(, Ke'/?). | -0

To show Theorem 1.3, we prepare

Lemma 3.1. Let \, q, R and é be positive constants and h the unigue solution of

—eAyh+ M =0, z € B(0,R), 5.2

h =24, z € B(0, R).
Ifg<p-—1 and

AGP RP
(pq + N@)pr—16°

0<e< @:=p—-1—g>0), (3.3)
then h(0) =

Proof. Due to the uniqueness of the solution of (3.2), it is easy to see that the

solution A must be radially symmetric. Writing h = h(r) with r = |z|, we have

C(rN=UR,[P2h,), + AR =0, 7€ (0,R),

(3.4)
H(0)=0, A(R)=S6.
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It follows from direct computation that the following function satisfies the equation
of (3.4) when ¢ < p — 1:
h(r) = Cr?/?,

where § =p—1-¢ > 0 and

Vi e
¢= (e(pq + NG)pP’l) ' |
Since (3.3) implies § < A(R) = CRP/®, Lemma 2.1 gives 0 < h(r) < h(r) for
~ r €0, R). Since h(0) = 0, we conclude that h(0) = 0. O

Proof of Theorem 1.3. By (F5), there exists dp € (0, @) such that for any v € [0, dp)
f(z,a+v) < =X? forall z € Qy, (3.5)
flz,a—v) > x? for all z € §. ' (3.6)

Since the function v = u, — a satisfies —eA,v = f(z,a + v) a.e. in §, the

positive part v, € W1P(Qy) of v satisfies
—eApvy < f(z,a+vy) in Q. (3.7)
Indeed, for any ¢ € WyP(Qp) with ¢ >0

e/ [V [PV, - Vpdz =e/ |[Vu[P2Vu - Vydz
(o {v>0}NQ

= 6'/ IVUI"‘Z?—U—zp ds — e/ Ayvpdz
8({v>0}f0) on {v>0}M0

——/ f(z,a+v)pdz
{v>0}ﬂﬂo

== f(x,a-l—v.,.)godx,
Qo

where n is the outer normal unit vector to 8({v > 0} N Q) at s. In a similar way,

IA

v- = (a — u.)+ satisfies

—eApu- £ —f(z,a—v_-) in Q. - (3.8)
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Take so small > 0 that D(Qq,7n) # 0. Fix § € (0,6p). By Theorem 1.2, there
exists €(6) > 0 such that for any € € (0,&(8)), max{vs(z)|z € D(Q,7/2)} < 6.
Applying (3.5) and (3.6) to v = v+ € [0, ), we have, respectively,

flz,a+vy) <=M for all z € D(0,n/2), (3.9)
flz,a—v.) >l forall z € D(Q,7/2). (3.10)

Combining these inequalities (3.7)—(3.10), we obtain
—eApv; + i <0 in D(Q,n/2). (3.11)

Let & € (0,£(6)) be an ¢ satisfying (3.3) with R = /2. Then, by Lemma 3.1 with
g € (0,p—1), for any € € (0,&), the unique solution of the boundary value problem

h =é, z € 9B(0,n/2)
satisfies A(0) = 0.
Take any zo € D(S,7n). It follows from (3.11), (3.12) and Lemma 2.1 that
vi(z) < h(z — ) for all z € B(zy,n/2). Since h(0) = 0, we have vi(zo) = 0, and
hence ue(:c) = g for all x € D(Qp, 7). O

4 Announcement: Semilinear Case

Theorem 1.3 says that if € is sufficiently small, then the coincidence set O, = {z €
Q | ue(z) = a(z)} has an interior point in a subdomain where a(z) is constant.
However, if we assume that O, has an interior point, then a(z) also satisfies the
equation in (P) on the interior of O,, and hence a(z) has to be p-harmonic. Thus it
is natural to expect that the coincidence set has an interior point if and only if a(z)

is p-harmonic.
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We shall announce that Theorem 1.3 with p = 2 will be extended to the case

where a(z) is harmonic on a subdomain.

Theorem 4.1. Let p = 2. Suppose (F1)-(F4) and
(F6) a(z) € C(Q) N HX(Q), Aa(z) =0 a.e. in a nonempty subdomain Sy of Q
and there exist g € (0,1) and A > 0 such that

. f(@,u) — f(z,a(z))
M P T — a(e) [ (s — a(z))

< =\ uniformly in Qo. (4.13)

Then, for sufficiently smalln > 0, there exists gq € (0,¢.) such that if e € (0, &p)

then every positive solution u, of (P) satisfies
u(z) = a(z) for all z € D(Q,n).

Theorem 4.1 can be shown in the similar way as Theorem 1.3. The corresponding

result to the p-Laplace operator has not been obtained because the proof strongly

relies on the linearity of Laplace operator.

5 Remarks

We give a few remark on the theorems.

(1) For all the results of this paper, it is sufficient for (F4) to be assumed only
in the interval [¢, A] with g(&) = 0, instead of [0, c0) with g(0) = 0.

(2) It is easy to extend Theorem 1.3 to the case where a(z) is constant on more
than one subdomain.

(3) Theorem 1.1 does not assure the uniqueness of positive solutions. It is an
interesting problem whether the positive solutions will be unique (when ¢ is suffi-
ciently small). We have positive answers under some cases: p = 2 by Angenent [1];

p>1and f(z,u) = f(u) by Guo [6].
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