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Asymptotic solutions of a class of Hamilton-Jacobi
| equations®
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We study the long time behavior of viscosity solutions to some Cauchy problem for
Hamilton-Jacobi equations. The generalized dynamical approach due to Davini and
Siconolfi is adopted. Contrary to the periodic situation they dealt with, we consider
Hamilton-Jacobi equations having some non-periodic perturbations in both Hamilto-
nian and initial data. We also discuss the representation of corresponding asymptotic
solutions.

1 Introduction.
This paper is concerned with Hamﬂton—J acobi equations of the form

we+H(@, D)~ f(z) =0 in R%x (0,+0c),

(1) u("0)=u0(') on R",

88

where the Hamiltonian H = H (z,p) is assumed to be Z"-periodic in z and convex and
coercive in p. The function f, regarded as a perturbation of the original Hamiltonian H, is -
allowed to be non-periodic. The initial datum uq is assumed to behave like a Z™-periodic

" function as |z| — 400. More precise conditions on these functions will be stated in the next

section.

The objective of this paper is to investigate the large time behavior of continuous viscosity
solutions of (1), namely we seek for a constant ¢ € R and a function v(:) on R™ such that as

t — 400,

(2) - u(z,t) +ct —v(z) — 0 uniformly on compact subsets of R™.

The function v(z) — ct is called the asymptotic solution of the Cauchy problem (1). While
‘the constant ¢ does not depend on initial data, v may change accordmg to the choice of ug.
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Researches on the large time behavio? of viscosity solutions to Hamilton-Jacobi equations
have been growing in recent years. The first attempt to attack such problem was made
by Fathi (7, 8] in the framework of his weak KAM theory. Recently, Davini-Siconolfi [6]
improved his results; they proved the convergence (2) for Hamilton-Jacobi equations in the
unit torus T™ with convex and coercive Hamiltonian (i.e., the case where f = 0 and ug is
Z™-periodic). Their idea is based on the study of PDE aspects of the Aubry-Mather theory
developed by Fathi-Siconolfi [10]. Concerning asymptotic problems in non-compact regions,
Fujita-Ishii-Loreti [12] and Ishii [14] treat Hamilton-J acobi equations on Euclidean n space
" R™. See also [11] for viscous version of this problem.

On the other hand, by another approach based mainly on PDE techniques, Namah-
Roquejoffre [16], Barles-Souganidis [3, 4] and Barles-Roquejoffre [2] investigate same kinds
of asymptotic problems under a different sort of assumptions on Hamiltonians admitting, in
some cases, NON-CONVEX ONES. ‘

Motivated by the paper of Davini-Siconolfi [6], we deal with a perturbed version of their
asymptotic problem by using the former approach of dynamical systems. In order to clarify
the motivation as well as the novelty of this paper, we start with the case where f=0in

(1):

3) | {ut + H(z,Du) =0 in R™ x (0, +00),

u(-,0) = up(-) on R".

. Suppose that ug is continuous and Z"-periodic Then, the problem is reduced to that of [6],
which can be rewrltten in our context as follows: : :

Theorem 1.1 (c.f. Theorem 5.7 of [6]). Assume that ug 18 continuous and Z™-periodic, and
let 4 be the unique Z"-periodic continuous viscosity solution of (3). We define ¢ by

(4) | . c:=inf{a € R; H(z,Dv) = a in R™ has a Z"-periodic subsolution}.
Then, there exists a Z"-periodic viscosity solution 9 of the Hamilton-Jacobi equation
| (5) —c+ H(z, Dv) = 0 in R"

such that as t — +o00,

(6) | i(z,t) + ct — o(z) — 0 uniformly in R™.

So, Cauchy problem (1) is a perturbed version of (3). However, we emphasize that this is
not a simple generalization of [6]. Indeed, it is known that the convergence of the form (2)

easily fails in non-periodic situations.
One of the fundamental differences between [6] and the present paper can be explained as
follows. Due to the lack of uniqueness of solutions to the Hamilton-Jacobi equation in the

limit as t — +o0:

(™ | ~c+ H(a:', Dv) - f(z)=0 in R",
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it is important to find an appropriate uniqueness set in R™ called the (projected) Aubry
set. That is to say, this set, say U, pldys a significant role in establishing the comparison

theorem of the form
‘v <v; on U - = vy <vp on R®
for solutions vy, v, to (7). Remark that U is a closed set and is characterized as.
U = {y € R™; there is no subsolution strict at y }. |

Note also that, in the periodic setting, i becomes the totality of points at which there is no
~ Z™-periodic strict subsolution (see Section 5 for details).
We may classify U as the following three possible situations:

Case (A): U is non-empty and compact. '
Case (B): U is empty.

Case (C): U is non-empty and non-compact.
Davini-Siconolfi [6] stays in the case (A) by virtue of the compactness of the sta.te space T™.
But once the periodicity has been broken by a perturbation f, (B) or (C) occurs and the
situation changes completely. That is the main difference between [6] and ours. We also
point out that the papers (12 14] are stxll in the case (A) although they treat equa.txons in
the whole space R™. . : '

In this paper, we restrict ourselves to the case (B) by adding an additional assumption.
The study of asymptotic problems when (C) takes place will be left in future investigation.
Note that our work is closely related to-the literature [2] which also treats the case (B) by
another approach in a slightly different setting.

Before closing this introductory section, we make a brief comment on the representation of
asymptotic solutions of (1). Since U is empty in our case, we have no representation formula
for asymptotic solutions in the classical sense. So, getting such a formula in some sense is
much of interest. It turns out in Section 5 that our uni(jueness set is hidden at the “infinity”.
By taking account of this fact, we can establish a comparison theorem (Proposition 5.4)
which makes us possible to specify solutions of (7) in terms of their behavior as |z| — +o0,
and to get the representation formula (Proposition 6.3) of asymptotic solutions as well.

This paper is orga.hized as follows. The next section is devoted to preliminaries. Thé main
theorem is stated precisely at the end of the section. We discuss, in Section 3, the additive .

eigenvalue problem (7). Section 4 is concerned with some properties of curves in R" that
will be useful in the sequel. In Section 5, we determine the uniqueness set for the equation
(7). The proof of the main theorem and the representation formula for v are glven in the
last section. We also collect some fundamental facts in Appendix.

2 Preliminaries.

Let C(R"™) be the totality of continuous functions on R™ equipped with the topology of
locally uniform convergence, that is, we say a family of functions {u;};en C C(R™) converges
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to a function u in C(R™) if and only if u;(z) — u(z) as j — +oo uniformly on any compact
subsets of R". We often use the followirg subclasses of C(R™):

BC(R") :=={u € C(R™); |t|oo := s:ng lu(z)| < +o0},

BUC(R") :={u € BC(R"); u is uniformly continuous },
~ Ce(R™) :={u € BUC(R™); supp(u) is compact }.

Throughout this paper, we identify functions on the unit torus T™ with their Z™-periodic
extension to the whole space R"™. ‘
For a closed interval J in the real line, the set of all absolutely continuous functions on J

with values in R" is denoted by AC(J,R™). For given —oc0 < § < T < +00 and z,y € R",
we set

C([S, T};2) ={y € AC(IS, T}, R"); YT) =z},
C([S,T)y,x) :={v € AC([S, T}, R™); v(S) =Yy and y(T) = x} '

'Let us consider the Cauchy problem (1). In this paper, the notion of solution, subsolution
and supersolution will be interpreted in the viscosity sense. The standing assumptions on
the Hamiltonian Hy(z,p) := H(z,p) — f(x) and initial data are the following.

Assumption 1.

(H1) H e C(R™ x R™).

(H2) H is coercive, i.e. limjp|—, 1o infzepn H(z,p) = +o00.

(H3) H(z, -) is strictly convex in p for every z € R™.

(H4) H(-,p) is Z™-periodic in z for every p € R™.

(f1) f € C(R") and f > 0.

(ul}) BmRsio0 SUP|y > R [U0(Z) — Go(x)| = O for some Z"-periodic function 4o € BUC(R™)

not exceeding ug on R".

Remark 2.1. Assumption (ul) can be weakened if we impose a slightly stronger assumption
on the Hamiltonian. See Section 6 for details. ’

- The existence, uniqueness and the dynamic programming principle of solutions to (1) are
standard in the theory of viscosity solutions.

Theorem 2.2. Suppose that (H1)-(H4) and (f1) hold. Then, for every uo € BUC(R"), the
Junction u : R™ x [0,+0c0) — R defined by

) |
(8) u(et) = int { [ L;Cr(6), 3060 ds -+ uoly(=8)) | 7€ C(f-t,02)}

is the unigue solution of (1) in the class C(R™), where Ly stands for the Lagrangian asso-
 ciated with Hy, i.e., Ly(z,) := L(z,§) + f(z) = sup,epn (£ - p — H(z,p)) + f(2).
~ Moreover, for allt,s > 0 and z € R", u satisfies

©  u@art)=int{ [ L0 A dr+uly(-1),9) | v € (=t 05 ).
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Let ¢ be the constant defined by (4) and consider the Hamilton-Jacobi equation (7). We
define Uy by

(10) Uy := {y € R™; there is no subsolution of (7) strict at y}.

Here, we say a subsolution ¢ of (7) is strict in a subset D C R™ if there exists 6 > 0 such
that —c + Hy(y, Dé(y)) < —4 for all y € D in the viscosity sense.

We also make an additional assumption in order to exclude the case (C) from our consid-
eration.

Assumptlon 2. Uy =0, where U is deﬁned by (10) with f 0.

Remark. It is not difficult to check that Assumption 2 is equ1va1ent to assume that Uy =0
and supp(f) N Up = @. A natural interpretation of Assumption 2 will be given in Section 4
(see Remark 4.4). ' o

The next example is one of the most typwal and mmplest ones satisfying Assumptlons 1
and 2. ‘

Example. Let n = 1 and H(z,p) := |p — 1|2 = V(z), where V € C(R) is non-negative,

Z-periodic and minzer V(z) = 0. Suppose that fol \/W dz < 1. Then, we can check that

¢ > 0 (see for example [15]). It is easily seen that the function v(z) := z + [; VV(z)dz

is a subsolution of (5) strict in R. In particular, Uy =@, where U is defined by (10) with

f =0. Since Uy C Uy, we have Uy = 0. :

- Suppose now that fo v/V(z)dz > 1. Then, we have c = . 0 and U =V"10):={ye
R™; V(y) = 0} # 0. Thus, ¥; = V~1(0) \supp(f) # @ and this gives an example of the case

(C).
~We are now in position to formulate our main result (Theorem 2.4).

Proposition 2.3. Suppose that Assumptions 1 and 2 hold and let u be the unique solution
of (1). Then, u(z,t) + ct is bounded and uniformly continuous on R™ x [0, +o0).

Proof. The proof will be postponed until Section 6. ' O

Theorem 2.4. Under Assumptions 1 and 2, there exists a solution v of (7) such that the
convergence (2) holds.

Notice. In order to prove Theorem 2.4, we can assume ¢ = 0 without loss of generality.
Indeed, it suffices to consider the Hamiltonian Hy — ¢ and the solution u(z, t) + ct in place
of Hy and u(z, t), respectively. Thus, we henceforth assume tha.t ¢ =0 for the s1mphc1ty of
description.

3 Additive eigenvalue problems.

In this section, we study the sol\}ability of Hamilton-Jacobi equation (7). Since v in (2) is
expected to be bounded in view of Proposition 2.3, we seek for solutions in the class BC(R").
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For this purpose, we start with the following equation called the additive eigenvalue problem:

(11) o Hf(z,Du(z)) =a  inR",

where unknowns are a € R and v € C(R"). The solvability of (11) in the class C(R™) is

known (see [9] or Theorem 2.1 of [2]).

".I‘h'eorem 3.1. For gle BUC(R"™), wé define the critical'eigenvalue ag €R by
ag,:=inf{a €R; H(z,Dv) —g(z) =a in R™ has a subs;)lz.;tion}. _

Then, for every a > ag, the gquatz'on H(z, Dv) — g(z) = a in R™ has cohtinuéus solutions.

Remark here that by virtue of the coercivity of Hy(z,p) in p, every solution of (11) is
uniformly Lipschitz continuous with a universal constant M > 0 depending only on Hy
and a. However, (11) may not have bounded solutions even in the case where f=
Actually, the solvability of (11) in the class BC(R™) is closely related to the structure of the
non-perturbed additive eigenvalue pfoblem

(12) . H(z,Dv(r))=a inR".

It is known (e.g. [10, 13]) that (12) has bounded solutions if and only if @ = 0 (recall that
¢ = 0 by normalization).
'We now claim that our perturbed problem (11) has a bounded solution only if a = 0.

Lemma 3.2. Suppose that (11) has a bounded solution. Then, a =0.

Proof. Let v be a bounded solution of (11). Let e € Z™ \ {0} and define vi, fi € BC(R™),
k € N, by vg(z) := v(z + ke) and fi(x) := f(z + ke), respectively. Then, vy is a solution of

H(z, Dun(z)) - fe(@) =a  in R,

“and {ve() - vk(O)}keN is uniformly bounded and equi-continuous on R”. Hence, there is an
increasing sequence k; — +oo such that vy, (+) —vk,(0) = w in C(R"™) for some w € BC(R™)
8s j — +00. In the limit as j — +o0, we see that w is a bounded solution of (12), which
implies that a = 0. ' ‘ o

Thus, in thé rest of this section, we concentrate on the equation '
(13) | Hy(z,Du(z))=0 inR"

Proposition 3.3. Let as be the critical eigenvalue of (11). Then, (13) has bounded subso-
lutions if and only ifay < 0.

Proof. It is clear by the definition of a; that the existence of bounded subsolutions of (13)
implies ay < 0. So, it remains to prove that ay < 0 implies the existence of bounded
subsolutions. We shall construct one by a cut off argument.
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Fix a (possibly unbounded) subsolution v € C(]R”) of (13) and let 3 € BC(R™) be any
- Z™-periodic solution of

(14) o H(z,Du(z) =0 inR".

By adding a constant in advance, we may assume that v < 7 on supp(f).
Choose next A > 0 so that 7 — A < v on supp(f) and define v € BC(R"™) b;

| y_(a:) := min { max{v(z), ¥(z) — A}, v(z)}, zeR™

It is standard to show that w(z) = max{v(z), ¥(z) — A} is a subsolution of (13) since 7— A
is also a subsolution of (13). Moreover, from the study of semicontinuous viscosity solutions
for Hamiltoh-.]acobi equations with convex Hamiltonians due to Barron and Jensen [5], we
éa.nvprove that y(z) := min{w(z),7(x)} is also a subsolution of (13). Hence, v is a bounded
subsolution of (13). : |

Corollary 3.4. Under Assumption 1, (18) has bounded subsolutions.

Proof. Let ap be the critical eigenvalue of (12). Then, we can see that ap = a5 by the same
argument as in the proof of Lemma 3.2. Since ap < 0, the claim is obvious from the previous
proposition. : O

Once the existence of a bounded subsolution of (13) has been guaranteed, it is not hard to
construct bounded solutions of (13). We will discuss this point in Section 5.
The following lemma will be used in the next section.

Lemma 3.5. For any compact subset K C R", there exists a bounded subsolution ¢ of (18).
strict in K.

Proof. For y € K and a subsolution ¢, of (13) strict and C! at y, there exist r, > 0 and
6, > 0 such that |

' H¢(z,Déy(x)) < =6, for all z € B(y,ry), _
whére B(y,r,) stands for the closed ball in R™ centered at y with radius r,. Choose a finite
covering {B(yi, ry,)}%; of K and define ¢ € C(R") by

o(z) == Z A,qby‘ (x) =zeR",
i=1 ’
where Ei_l Ai = land \; >0 foralli=1,..,m. By the convexity of H, we can check
that ¢ is a subsolution of (13). Moreover, for any z € K, there exists a number J such that
-z € B(yj,ry,) and

Hy(z, D(x)) < 3 NH{(z, Doy, (2)) + i Hy (2, Dby, (@)
177
< =0y, < -—-mim Aidy, < 0.

Similarly as in the proof of Proposition 3.3, we can construct a bounded subsolutioﬁ of (13)
equating ¢ on K. Hence, we have completed the proof. ' : O
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4 Curves in R",

This section is devoted to some properties of curves in R™. It turns out in Proposition 4.3

that Assumption 2 is concerned with their long time behavior.

Lemma 4.1. Let S and T be such that —c0 < S < S+ 1 < T < 400, and suppose that a
curve n € AC([S,T),R") satisfies

(15) . | /b L¢(n(s),n(s))ds < Cy S < ‘?’q <W<T

Jor some constant Cy; > 0. Then, for every € > 0, there exists M, > 0 depending only on
Cy, Hy and € such that

b '
/ 1(s)| ds < € + Mc(b—a) S<Va<Vb<T.
a

Proof. This lemma is a direct consequence of Proposition 5.9 in [14]. | 0

Lemma 4.2. Let n € AC([S,T),R"™) be any curve such that

(a) | / " Lln(s)i(s)ds < Co  S<Va<Wb<T
a
~ for some constant Cy > 0. Then, n satisfies (15) for some constant Cy > 0.
Proof. Since supp(f) N dp =0, we can show similarly as in the proof of Lemma 3.5 that
H(z,D¢(z)) < -6  on supp(f),

for some § > 0°and a bounded subsolution ¢ of (14).
We set I := {5 € [S,T]; n(s) € supp(f)}. Then,

T .
¢(n(T)) — ¢(n(5)) < /S {Z(n(s),7(5)) + H(n(s), Dé(n(s))} ds
<Cp-— 6m(I),

where m(I) denotes tshe Lebesgue measure of I. Thus, we have m(I) < < 6“1(Co + 2[¢I°°) <
+oo,and forall S<a<b< T,

rb b
[ Latnto) i ds < Cot [ 5iate)) da < ot 8781f1(C + 2her)

~ which implies (15) since the right-hans side is independent of a < b. ' O

Proposition 4.3. Let n € AC((—o00,0],R") be any curve satisfying (15) with S = —oo and
T = 0. Then, for every compact set K C R™, we have

T :=sup{t > 0;n(—t) € K} < +o0.

In particular, |n(—t)] — +o00 as t — +00.
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Proof. Suppose that 7 = +00. Then, there exists a positive diverging sequence {tx}xen such
that n(—tx) € K for all k € N. In partitular, by taking a subsequence if necessary, we may
assume that n(—tx) — z for some z € K as k — +00. - ‘

In view of Lemma 3.5, we can take a bounded subsolution ¢ of (13) such that

H¢(z,D¢(x)) < =6  in B(z,4r)

for some § > 0 and r > 0. By renumbering {tx}xenu{oy if necessary, we may assume that
n(—to) & B(z,3r) and n(—tx) € B(z,r) for all kK € N. Let us now set oo := to and define
inductively o and 7% by '

Ok 1= min{t > tx; n(-—t).¢ B(z,3r)},
7+ = max{ox_1 < t <t ; n(—t) & B(z,3r)}.

, We set o, := +00 if {-+-} = 0. Since n(—tx) € B(z,r), we see by Lemma 4.1 that -

_.Tk -
ar < / I7(s)| ds < r + M, (o% — 7a)

—Ck

for some M, > 0 not depending on k € N. Thus, by setting
I, := {s € [r1,t]; n(—s) € B(z,3r)}, t € [m, 400},

- 'we see

« . |
. - 3rN
m(le) = t_1}+m°° m(l;) .2 kgal(ak —Tk) 2 T for all N e N.
On the other hand, | '

-n
Bn(=m) = on(=0) = [ Deln(e)) (e ds

< [ 4L s(n(e), (6 + Htnle), D(n(e))} ds
< Cy = Sm(L). | |
By letting ¢t — +00, we obtain '
| 3M N < m(Io) < 67HCy + 2|Blos) < +00.
Since N is arbitrary, we get the contré.diction. Hence 7 < +o00. ‘ : O

Remark 4.4. This proposition shows that Assumption 2 is crucial for the property In(-t)] —
~+00 as t — +00. ‘ ' ~

For z,y € R™, we set

19 dya@y) =it { [ L), ye)de | £>0, yec@o.dua }.

It can be checked that the right-ha.nd side of (16) is finite for all z,y € R". By Proposition
~ A.2 (e) in Appendix, dg(-,y)isa subsolution of (13) in R™ and is a supersolution in R™\ {y}.
Moreover, By Lemma A.3, ds is lower bounded on R™ x R™ since there exists a bounded
subsolution of (13). l
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Lemma 4.5. Let 7 € AC((—00,0]; R"): be such that
o ,
17 lim / Lg(n,n)ds < +00
,C—*OO "t_k
for some diverging sequence {tx}xen. Then, there exists a subsequence {tx, }ien such that
{wihien := {n(—tx,) hien satisfies the following:

(18) ‘ lim llm df(yk,yl) = 0.

k=00 I~

| Proof. We set ¢ := f—?t;, L¢(n,n) ds. Then, for every £ > 0, there exists ko € N such that
~tp

dr (1(=t), M =tpm)) < / Ly(n, ) ds = corm — c& < €

—th4m

fora.llk>koandmeN : :
Now, we fix any Z"-periodic subsolution ¢ of (14) and take a subsequence {x, }icn 80 that
{zi}ien := {#(n(- —tk,)) }ien forms a Cauchy sequence. Then, there exists lp € N such that

—& < ¢(z1) = D(z14m) < 5 (21, 214m) <&

for all I > lp and m € N. Hence, we have completed the proof. E O

5 Uniqueness set.

In this section, we seek for a uniqueness set for (13). As is pointed out in the introduction,
the asymptotic behavior of solutions to (13) as |z| — +o0 ha.s an important role to specify:

their structure.
We first consider the equation (14) under Z™-periodic setting and define

A := {y € R™; there is no Z"-periodic subsolution of (14) strict at y} # 0.

Remark that A is nothing but the Z™-periodic extension of the Aubry set for the following
equation in the unit torus T":

(19) ‘ H(z,Du(z)) =0 iﬂ ™.

See [10] for the precise definition of the Aubry set for (19). In particular, A is Z“-penodxc,
namely A=A +e:= {y+e, y € A} for all e € Z™.

Proposition 5.1. Let D be any open set satisfying supp( f) € D. Then, for every bounded
~ solution u of (18), the following formula is valid : ' :

(20) = (e +u).
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Proof. We divide the proof into several’steps.
1. We denote the right-hand side of (20) by v(z) and show u = v on R". By Proposition
A.4 in Appendix, we see that v < v on R” and u = v on A\ D. So, it remains to prove that

u = v outside A\ D. :
2. Suppose that v(y) — u(y) =: 43 > 0 for some >0 and y € A\ D. Then, there exists

po > 0 such that
y € K2 := {z € R"; dist(z, A\ D) < p}

for all 0 <'p < po. We fix p > 0 so that supp(f)nKD @ and p < (2M)~13, where M > 0
denotes the universal Llpschxtz constant for subsolutions of (13).
3. Weset K, := {a: € R*; dist(z, .A) < p}. Then, from Section 6 of [10], we can construct

‘a Z™-periodic subsolution ¢, € BC (RM)NCHR™ \K ) of (14) sa,tlsfymg the strict subsolution
property:

(21) H(z,Dé1(z)) < —6 in R*\ K, for some &; > 0.

On the other ha.nd by Lemma 3.5, there exist 62 > 0 and & bounded subsolutlon 452 of (13)
such that

(22) | Hy(z,Déz(e) < —b2 in D.

4. Let ¢ € C*(R™) be such that supp(v) € B(0,1) and fR;. Y(z)dz = 1. We set
Ye(z) 1= e~™Pp(e™1z). For A1, Az € (0,1) satisfying A1 + Az < 1, we define w € CY(R™) by

w(z) = Ard1(z) + Aa(da * %e)(@) + (1 = M1 = M) (v % %e) (),

and for a > 0 we set wq(z) := w(z) — a(|z — y|? + 1)*/2, where (@3 * ¥.)(-) and (v * ¢)(-)
stand for mollified functions of ¢; and v by e, respectively. Since v is Lipschitz continuous
with Lipschitz constant M > 0, we have |v * ¥ — v|eo < Me. Thus,

lw = Voo € A1ld1]oo + A2ld2]oo + (A1 + A2)[V]oo + [V * e — Voo
< A1ld1oo o+ Azlé2]oo + (M + A2)|v|oo + Me
=: wi(€, A1, A2)-
We choose €, A\; and Az so that wi(e, A1, ,\2) < B. Then, for o < B, we have
(23) wa(y) = w(y) — a > v(y) —wi(e, A, Ae) — @ > u(y) + 26.
5. In view of the convexity of H in p, there exists a constant C' > 0 such that
|H(m,p) - H(:z,q)l <Clp—g| for all z € R™, p,q'e B(0, M +1).
Then, we have

Hy(z, Dwg(z)) < Hf(z, Dw(z)) + Ca
< MH(z, Dé1(2)) + AaHy (2, D(¢32 * ¥e) ()
+ (1 = A1 = A2)Hg(z, D(v * ¥.)(z)) + Ca
=: My (z) + A2l2(z) + (1 = Ay — A2)I3(z) + Ca.
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6. By taking into account that f = 0 in R™\ D, we can show in combination with (21)
that I1(z) < |f|e in DU K, and I1(z) < —6; in (R™\ D) N (R™\ K,). The convexity of H
in p and (22) yield

I(z) < /B ( )¢5(.7:——z)Hf(z, Déa(2)) dz

+ sup IHf(a: Dé¢2(z)) — Hy(z, Dé2(2))]

z€B(z,
< {-62 +wHh,(€) in D,
wr, () in R*\ D,
where wy, (-) denotes the modulus of continuity for Hy with respect to z, that is, ‘
le(:c p) -—Hf(a:’,p)l < wH,(I:r - '|) forallz,z’ €eR™, pe B(O M+1).

Similarly, we can prove I3(z) < wg,(€) for all z €R".
7. By collecting estimates in Steps 5 and 6, we can conclude that

H¢(z, Dwy(z)) |
< A1lfloo = 622 +wr,(€) +Ca  in D, v |
~ | =01\ +wa, (e) + Ca in (R*\D)n (R"\ K,). -

Remark that (R™ \ K,,D) c DU ((R"\D)n(R"\ K,)).
We now take sufficiently small £, a and A1 >0 so that

l(24) : Hf(z, Dwa(z)) <0 in R™® \KPD.

Note that the estimate (23) is still valid even if we replace €, a and A\; > 0 with smaller
ones, ' - : o
8. Let ¥’ be any maximum point of w, —u in R®. Remark that such a point exists since u
is bounded and wq(x) — —o0 as || — +00. Moreover, we can show 3’ € R®\ KP. Indeed,
let us take any x € KP. Then, by the definition of KD and the Lipschitz contmulty of u
and v, we see

w(@) + 28 > u(®) + 2Mp + B 2 v(®) + B > w(®) 2 wa(a),

which implies in view of (23) that any z € K pD cannot be a maximum point. Therefore, wq(-)
is a C'-subtangent to u at y’. Since u is a supersolution of (13), we have Hz(y', Dwq(y’)) 2 0.
But, this contradicts the strict subsolution property (24). Hence, B must be zero a.nd we
haveu-vm]R" 0

Corollary 5.2. Let D be any bounded open set such that supp(f) C D. Then, two bounded
solutions of (18) equating on A\ D coincide on R™.

For a diverging sequence y = {yx}xen in A, we say y € A if and only if (18) holds, that
is, for every € > 0, there exists a number ko € N such that

—& < df(yk, Yk+m) <€ for all k> ko and m € N.
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The next proposition shows that A is ndt empty.

Proposition 5.3. For every y € A, there exists a divergent sequence e = {ex}ren C Z"
such thaty := {y — ex}ren € A. |
Proof. Fix y € A. By one of the equivalent definition of the Aubry set A for (19) (see
Section 5 of [10] or Proposition 5.10 of [14]), for each k € N, we can find €}, € Z" tx >0
and 7k € C([~tx, 0];y — €, ) such that

0< /_ L) (o) ds <27

We define T > 0 and ex € Z" inductively by Tp := 0, T} := tk + Tk—1 and ek := ZLI el,
respectively. We next define n € C((—o0,0};y) by

n(t) == ve(t + Tk-1) — ex—1 fort € (=Tk,~Tk-1], keN.

Then, by the Z™-periodicity of L(z, &) in z, we see

[ 1@ )ds—Z/“T'“I L(n )ds—Z  Lwids <327 <1,
-T%

i=1 ©am1 Y i=1
which shows that 7 satisfies (a) with § = —oco and T = 0. Indeed, fix any bounded
subsolution ¢ of (14). Then, for every —co < ~Tx; < a < b <0,

b , . p0 -
#n(0)) - $(ao)) + [ Lim, ) ds+o(n(a) - 8(n(-T) < [ Limids <1.

-Tk
Since ¢ is bounded, letting k — +oo yields (a).
Thus, we can apply Lemma 4.2 and Proposition 4.3 to see [(—t)] — +00 as t — +o0.
In particular, there exists ko € N such that n(—t) & supp(f) for all ¢ € (—o0,Tk,), and for
all k > ko and m € N, we obtain .

dr(y - ek, Y — ex+m) = dp(n(~Tk), U(—Tk+ﬁ))

—~T% —T
s/ Ly(n,7) ds = /  L(mn)ds

_Tk-l-m Tk+m

k+m 0 k+m - )
= > L(wi,y)ds< D 27°

i=k+1 —t i=k+1
=27k(1 - 2"™),

Hence, {yk}keu ;= {y — ex }ren satisfies |

hmsuphmsup df(yk,yl) <o.

k—o0

On the other hand, fix any bounded subsolution ¢ of (13) and take a subsequence {Yk.. }men
so that {¢(yk,,)}men forms a Cauchy sequence: Then,

lim inf lim in inf df (Ve Ye) 2 UM G(Yk,.) — Jim. ¢(yk,) =0.

m—oo

Hence, y := {yx,, }meN € A and we have completed the proof. (]
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Proposition 5.4. Let w be any boundéd solution of (13). Then,

(25) w(z) = inf iminf (df(z,y) + w(w))  for allz € R™.
. YEA l—+o0 .

In particular, if two solutions wy, wy of (13) satisfy

- (26) ‘ khm (wy —w2)(ye) =0  forall y €A,

then, w, = ws on R™.

Proof. We denote the right-hand side of (25) by w(z) and show w = % on R". Since w is
a subsolution of (13), we have w < W on R" by virtue of Lemma A.3. Thus, it remains to

prove w > w on R". :
Fix any z € R™ and é > 0. By (20), there exists z; € A such that

w(z)+2715 > ds(z,21) + w(zl)
Sumla,rly, there exists z; € A such that A
w(z) +2725 > ds(z1, z2) + w(2a).

Inductively, we can choose a sequence z := {'z,c},,e,, in A so that

k k ‘
‘w(z) + 622‘5 > de(Zj_l,Zj) +w(zx) forall k €N,
j=1 . j=1

where we have set 2y := z. Remark that z can be taken so that |zx| — +00 88 k — 400

since the bounded set D in (20) is arbitrarily chosen.
Now, let us take 1 € C((—o0,0]; z) such that 17(——t,¢) =z and

—tk—1
ds(zg—1,2zx) > / Li(n,7)ds —27%5 forallkeN
—ty
for some diverging sequence {tx}n. Then, we have
. , R
(27) w(z) + 26 > / L¢(n,n)ds+ w(z) forallk €N,
—t

which yields that 7 satisfies (17) since w is bounded. Thus, in view of Lemma 4.5, z belongs
to A and
w(z) + 26 > liminf (df(z, 2x) + w(zk))
k—+o00
> inf limi — ().
2 inf liminf (ds(2, yk) + w(ye)) = ()

Since 6 > 0 is arbitrary, we can conclude that w > @ on R". Hence, we obtain (25).
Now, let w; and wo be bounded solutions of ('13) satisfying (26). Then, for any z € R™,

wy(2) = inf Uminf (dy(2,91) +wi(w))
= ;rexgl&n_:gf (ds(z,ui) +,u{z(yz)) = wa(z).

Hence, we have completed the proof.
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Corollary 5.5. Let w be any bounded Solution of ( 15’) Then, for any 6 > 0 and z € R,
there exists n € C((—00,0); z) such that

w(x) +d.> / L¢(n,n) ds + w(n(—t)) for all t>0.
CJ—t : .

Proof. In view of ’(27), there exists 1 € C((—00,0];z) such that for any‘ given ¢ > 0 and
tx = t, we see .

) -1
w(z)+6> / Lynmyds+ [ Ly(n,n)ds +w(n(-t))

—tk

0
> [ Ly () ds + dp(n(=), 1(—t4) + w(n(~t)

> [t.Lf(ﬂ, ) ds + win(~),

where we have used Lemma A.3 to show the last inequality. a

For vo € BC(R™), we define v : R® — R by

(28) v(z) = ;gghn_l)gxf (ds(z, ) +vo(wn))-

' Lemma 5.6. v is a bounded function on R™.

 Proof. For z € R™, we can find y € A4 such that z —y € [0,1)". In particular, |z —y| < +/n.
By Pxfdposition 5.3, there exists {y1}ien € A and C; > 0 such that dy(y,y) < Cy for all
!l € N. Then,

ds (2, y1) + vo(w) < dp(z,y) + ds (¥, w) + vo(w)
< Cyn+ Cf + [voloo

for some C > 0. In particular, we have
- 9(z) < liminf (df (2, u) + o)) < CVn+Cr + Juoleo-

Thus, v is upper bounded on R". It is clear that v is lower bounded since d; and vy are
lower bounded. Hence, v is bounded. ' ‘ O

Proposition 5.7. Let v be the function defined by (28) Then,
(a) v is the mazimal subsolution of (13) satisfying

(29) limsup (v —v)(yx) <0  forall y € A.
k—+o00

Moreover, if vy 1s a bounded subsolution of (13), then v satisfies

(30) lim (v—v)(yk) =0  forall y€A.
k—+o0 . _

(b) visa supergolution of (18).



103

Proof. Fifc any z,z € R" and 6 > 0, and take Y = {yi} € A so that
v(2) +6 > liminf (ds(z,41) + vo(v1))-
Then, ,
| v(@) - v(z) =6 < lim { inf (ds (@, y1) + vo(ur)) ~ Jof (dr (e 31) + vo(y{))}
< Jim sup (dy(z,y)) — dy(z,u)) < ds(,2).
‘. Sincej d > 0 is arbitrary, we obtain |
| v(z) = v(2) < df(z,2)  forallz,z€R™

Thus, v is a subsolution of (13) in view of Lemma A.3 in Appendix. We also see from this
inequality that v is continuous on R".
We next show (29). Fixe >0andy € A a.rbxtra.nly Then, there exists kg € N such that

for all k > kg and m > k + 1,
z‘é‘,ﬂ (ds(yx, i) +vo(w)) < e+ Jaf o (%1)-
Letting m — +oo yields v(yx) < € + liminf;_, 4o vo(¥1). Thus, we obtain

lim sup (v—vo)(yx) < e+ hm mfvo(yz) - hm mfvo(yk) = €.
k—+o0

Smce € is arbitrary, we get (29). _ :
To prove the maximality of v, let ¢ be any bounded subsolution of (13) sa.tlsfymg (29)

with ¢ in place of v. Then, for every z € R",
| d>(a:) < mf 11m mf (ds(zy ) + o(m))
< mf hm inf (df(z,3) +vo(y)) + sup lxm sup(qb - vo)(11)
! |
Suppqse now that vg is a bbunded subsolution of (13). Then, for every z € R",
v(z) = ;gi lim inf (df(z,0) + 'Uo(yt)) |
> ;Ieli liﬂigf (vo(:§) = vo(s) + vo(w)) = vo(z).

In pa.rtlcula.r, (30) holds.
We next show (b). Suppose that there exist a point z € R” and a strict ct -subtangent ¢

to v at z such that Hy(z, D¢(z)) < 0. Fix r > 0so that Hy(z, Dé(2)) < O forall z € B(z,7).
Then, we can find € > 0 such that v(z) — ¢(z) > € for all z € dB(z,r) since ¢ is a strict
subtangent. Now, we define a new function ¢ € C(R") by ‘

o(o) = {max{¢(z)+£,v(m)} if zeB(zr)

v(zx) ‘ otherwise.
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Then, 7 is a subsolution of (13) satisfyihg ¢ > v on R™ and 4(2) > v(2). ‘
Now, fix any y € A. Since |yx] — +o0 as k — +00, there exists kg € N such that
v(yk) = ¥(yk) for all k > ko. Thus,

lim sup(¥ —vo)(y) = lim sup (v — vo)(yx) < 0.
k—+o00 1>k k—+00 |>k :

But, this contradicts the maximality of v. Hence, v is a supersolution of (13). O

Remark 5.8. If we set df(x,y) := lim;_, 1 ds(z,3) and vo(y) = lim 1nf¢_.+°° vo(yl) for
Yy € A, then, (28) can be rewritten as .

v(z) = ;13\ (df(z,y) +w(y)), z€R™

6 Representation and Convergence.

This section is devoted to proving Theorem 2.4 as well as gettmg a representation formula
for asymptotic solutions. ‘

We first give the proof of Proposition 2.3 which we postponed Since uniform continuity is
standard, we only check boundedness. Let u be the unique solution of Cauchy problem (1)
with an initial function ug € BUC(R™). Notice that H has been normalized so that ¢ = 0.
Let ¢ be any bounded solution of (13). Since up is bounded, we can take A > 0 so that
¢(x) ~ A < up(z) < ¢(z)+ A for all z € R*. Remark also that ¢+ A and ¢ — A are solutions
of (1) with initial data ¢ + A and ¢ — A, respectively. Then, the standard comparison
theorem for (1) infers that ¢(z) — A < u(z,t) < ¢(z) + A for all (z,t) € R” x [0,400). In
particular, u is bounded on R™ x [0, +00) and we have completed the proof of Proposition
- 2.3,

Let us denote by {S(¢)}+>0 the semi-group of mappings on BUC(R") defined by (S(t)uo)(z) :=
u(z, t), where uo is a given initial function and u is the unique solution of (1). We next

define v+,v~ € BUC(]R“) by
v () := limsup(S(t)uo)(z) = limsup*u(z, t),
t—+00 t—+o00
v (2) = lminf(S(9)uo)(2) = minf. ul, ).

Note that from the general theory of viscosity solutions, vt and v~ are sub- and supersolu-
~ tions of (13), respectively. Moreover, the convexity of H(z, -) implies that v~ is a subsolution
of (13) (see [5]). In particular, v~ is a bounded solution of (13). |

We try to obtain a representation formula for ™.

Lemma 8.1. v~ satisfies

(31) | . limsup(v™ —wuo)(yk) <0  forall y €A

k=400
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‘Proof. Take y € A and & > 0 arbitrarily. We fix ¥ € N so that df(yk, Yk+m) < ¢ for all
m € N. Similarly as in the proof of Proposition 5.4, we can find n € C((—00,0]; yx) such
that yk4m = 1(—tm) for some diverging sequence {t; }men and '

0
[ i) ds < ds s irm) +8 < 25

—tm
Thus, . |
| w(Yks tm) < /  Lg(n,7) ds + uo(n(—tm)) < 26 + uo(Yr+m),
. ~tm .

and we have
v (yx) = Lim inf u(yy, t) < liminf u(ye, ém) < 26 + 1;‘1.“#25 uo(y1)-
In particular,

lim sup('u —up)(ye) < 26 + hm mfuo(yz) - hm mf'u.o(yk) = 2.

k—-» +o00
Since § is arbitrary, we obtam (31). , . ‘ a

Lemma 6.2. Suppose that ug is a subsolution of (13) Then, the solution u of (1 ) converges
in C'(]R") to the function

(z) = ;léli lifl‘.i‘.?f (df(z‘, w) + uo(@))-

Proof. Since ug is a subsolution of (13), we can see ugp < ¥ on R™. Moreover, since uo and ¥
are sub- and supersolutions of (1), respectively, the comparison theorem for (1) yields that

for all t > 0, _
up < S(t)uo < S(t)ﬁ =9 in R™.

In partxcular, ug < v~ < 7, and m view of Lemma 6.1 and Proposmon 5.7, we ha.ve

i (5 - 7)) = lm (5 - o)) - lim (v™ — uwo)(u) =0

for all y € A. Thus, we can apply Proposition 5.4 to conclude that 4 = v~ = 11+ on R™.

Hence, we have completed the proof. ‘ ' o O

Proposition 6.3. Let ug € BU C'(]R") be any znztzal function. Then, we have the followmg

formula:
v (z) = inf ﬁ{giogf (df(z, 'yz) + vo(yz)),

where vo(z) := infyer~ (ds(z,y) + uo(¥)).

Proof. We denote the right-hand side by v(x). Since vg is a subsolution of (13) and v < ug
on R" by Proposition A.4, we have S(t)vy < S(t)uo for all t > 0. By the comparison theorem
for (1) and Lemma 6.2, we see

v(z) = tl—l-»% S(t)v £ litxp_"g}f S(tyuo = v~ ().
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Fix any 6 > 0, z € R™ and y := {yitien € A. We construct a curve n € C((—o00,0}; z)

such that y; = n(—s;) for some positive sequence {s;}jen and

. .
Ly(n(s),n(s)) ds < ds(2,y;) +6, jEN.

—..sj

For each € N, we fix 2, € R™ so that
dy (g, 1) + vo(a1) < imf (ds(n,v) + uo(y)) + 6.

We also take t; > 0 and y; € C([—s; — t;, —s1]; 21, 1) such that

[ Lotus) (e do < dytun )+ 5.

—~85—1
Now, we define n; € C([—s; — #,0]; z) by
: n(s)  if s €[—s,0]
m(s) = .
vi(s) if s € [—8; — t1, ~81).

~ Then, in view of (8), we see

o 0
s+t S [ L)) do+ uolm(=a~ )

—8;5;—1t1
0
< [ Lntodie) do+ dtunz) + o) +8
< ds(z,p) + inf (df(yz, z) + uo(?i)) +35

=ds(z,y) + vb(y;) + 36 forall 1 €N.

Since |yi| — +00 as I — oo, we have 8; — +00, and therefore s; + ¢; — +0co. Thus,

v (z) < lilmg}fu(m, si+t) < lilrix“i’rolf (ds(z, 1) + vo(ur)) + 36.

R".

By considering the infimum over all y € A and letting § | 0, we obtain v~(z) < v(z) on

We finally prove our main theorem. Fix any ug € BUC(R™) satisfying (ul) of Assumption
1 for some Z"-periodic function 4 € BUC(R"), and let u(z,t) and i(z,t) be solutions of
Cauchy problems (1) and (3) with initial data ug and 4o, respe_ctiyely. Remark that 4(-,t)

is Z"-periodic for all t > 0. |
Lemma 68.4. For every d € (0,1) and t > 0, there ezists R = R(4,t) > 0 such that
u(@t) <@(z,t)+8 forall z€R*\B(O,R).

| Proof. Fix 6 € (0,1) and ¢ > 0, and take any 7 € C([~t,0]; z) such that

(32) a(e, )+ /2> [ Loy ) do + Ga(a(—8)-
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Then, by Lemma 4.1 with f = 0, there exists a constant C > 0 not depending on (z, t) such
that -

' /0 [7(s)|ds £ C(1 +t).

- Let Ry > 0 be a number which satisfies supp(f) C B(0, Ro) and supz> g, |uo(z) — o(z)| <
0/2. We choose a sufficiently large R > Ry so that R — Rq > C(1 + t). Then, for every
z € R" \B(0, R) and 5 € C([-t,0];z) satisfying '(32), we see 7([—t,0]) Nsupp(f) = @ and
[n(—t)| 2 Ro. Therefore, o

o .
w(zt) < /_ Ls(n,) ds + ua(m(~1))
< /0 L(n,7n)ds + '&o(n(—t)). +4/2 < d(z,t)+ 0.
-

Hence, we have completed the proof. . O

Proof of Theorem 2.4. It suffices to show v+ = »~ on R™. Fix any § > 0 and z € R™.
Take a diverging sequence {¢;};en such that u(z,t;) converges to v*(z). Then, in view of
(9) and Corollary 5.5, there exists n € C((—o0,0];z) such that

0 _ :
w(e,ts) < [ Lytmi)da+uln(=),6 —¢

<v7(z) — v~ (n(~1)) + & + u(n(-1),t; — 1)

for all j € N and ¢ € [0,¢;]. We know from Lemma 6.4 that for each k¥ € N, there exists
Ry > 0 such that u(z, k) < i(z,k) + 6 for every z € R™ \ B(0, Ry). Since |n(—t)| — +oo
as t — +o0 by Proposition 4.3, we can find j(k) € N such that {n(—t;) + k)| > R for all
k € N. In particular, by setting s := tj) — k, we have u(n(—sk), k) < @(n(—sk), k) + 4,

w(@, tiry) < v (x) — v (n(=sk)) + G(n(—sk), k) + 26.

and therefore

Thus, letting k — +00 yields

v (z) = o u(z, ) < v (2) - l;iff sup v~ (n(—sy)) + limnf a(n(—sk), k) + 20.
Since 4(-,t) converges uniformly in R™ (or equivalently in T") to 9(-) and 9.<'v~ on R™, we
finally obtain :

v¥(z) < v~ (z) — limsup v~ (n(—sk)) + liminf 6(n(—sk)) + 6 < v~ (z) + 24, -
. k~+00 k—-+o00 |

which infers v+ (z) < v~ (z) after letting 6 | 0. Since v~ < v* on R", we get vt =v~ and
the proof of Theorem 2.4 has been completed. - a

Final Remarks. Throughout this paper, the strict convexity of H is used only to guaran-
tee the convergence of 4( - ,t) as t — +oo. Thus, if it converges under the assumpﬁion that
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H is merely convex, then Theorem 2.4 ig also valid without assuming the strict convexity of

- H.

Concerning condition (ul) of Assumption 1, we do not have to assume that up > o if
as <0, where ay is the critical eigenvalue for (11) (see also [2]). Indeed, let u™) and u(® be
solutions of Cauchy problem (1) with Z™-periodic initial function 4%y and its perturbation
up such that img_,4c0 SUp|z> g |uo(z) — Go(z)| = 0, respectively. Fix § >0, (z,t) € R" x
[0, +00) and take ¥® € C([-t,0];z) so that :

) wP(a,)+8> [ L0O(6),59(6)) do-+uolyO(-1).

Then, in view of (8), we see
uM(z,t) — u® (z,t) < 2o (v M (=) — ug(v\? (<)) + 4. .,

We claim here that |y (—¢)] — +0c0 as t — +00. To show this, suppose that sup; [v;i(—t;)| <
+00 for some sequence v;j = At e ¢( ([-t;,0]; z) satisfying (33) with t =t;, j € N. Then,
for any subsolution ¢ of (11) with a = as, we have

60500 ~ 6t < [ (A0 (01 + H (0, Do) d
< Juoloo +8up [u® (-, t5) oo + 8+ ay 5.
JEN

Since ay < 0, we get the contradiction by letting j — +-c0. Thus, we obtain

lim sup(u(l)(:z: t) — u®(z, t)) < 4.

t—+<400

Similla.rly, we also have
limsup(u® (z,t) — u*(z,1)) < 6.

t—4c0

Remark that the convergence is uniform on any compact subset of R™. Hence, u(%(-,t) —
ul®@(.-,t) converges to zero in C(R™). _

If A contains an equilibrium point or a closed loop of critical curve, then we can see that

as < 0. However, we do not know if Uy = () implies ay < 0 in general cases.

~ We also remark that Theorem 2.4 is still valid if limy—1oo(9— vo)(z1) =0 forall y € A
even in the case where Uy =0, a5 = 0 and up(z) < fp(z) for some z € R™. The last claim
is clear from the proof of Theorem 2.4.. '

A Fundamental facts.
- We collect some properties of ds(z,y) defined by (16) (cf. [10, 14] ).

- Lemma A.l. There ezists ¢ > 0 and C > 0 such that Lg(z,€) < C for all (z,¢) €
R™ x B(0,¢).

Proof. This lemma is a slight modification of Proposition 2.1 in [14] by taking into account
that L is Z™-periodic in z. : ‘ : o
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Proposition A.2.

(a) dg(z,z) <df(z,y) +ds(y,2) for all z,y,z € R™.

() ds(y,y) =0 for ally €R™.

(¢) dg(-,y) is Lipschitz continuous on R™ uniformly iny € R™.

(d) dj(z, -) is Lipschitz continuous on R™ uniformly in z € R™.

(e) ds(-,y) is a subsolution of (13) in R™ and is a supersolution in R® \ {»}.
(f) -"df (y, -) 13 a subsolution of (18) in R™ and is a supersolution in R™ \ {y}.

Proof. One can easily show (a) by the definition of d;. . (b) is also easily checked since
ds(y,v¥) > 0 by (a) and one can see d¢(y,y) < 0 by taking a convergent sequence ¢, | 0 and

Tn =y € C([0,tn]; ¥, ) in (16).
To show (c), fix any =,y € R, § > 0 and set T := £~1(6 + |z — y|) and 6 =T Yz —
y) € B(0;¢), where € > 0 is taken so that Lemma A.1 holds. Next we define the curve

v € C([0,T];y, z) by v(s) := y + s¢. Then, we get

- T T B .
ds(z,9) < /0 Ly(7(s),4(s)) ds = /0 Ly(y+3,€)ds < CT <e™'C(G + o — ).

Letting 6 | 0 yields ds(z, y) < e~1C|z—y|, which implies in particular that dy is a continuous
function on R™ x R™. By using (a), we can show that

lds(z,y) —ds(z,y)| < e71Clz — 2| for all é,y,z €R"™.

Hence, dj( - ,y) is Lipschitz continuous uniformly in ve ]R" The assertlon (d) is now trivial
from the proof of (c). ‘

We prove (e). Since dy(z,y) is continuous with respect to  on R™, we can apply Theorems
A.1and A.2 of [14] to show that d¢(-,y) is a subsolution of (13) in R™ and is a supersolution
of (13) in R™\ {y}. ' ' '

To show (f), remark first that ds(y,z) can be represented as

d(y, ) == inf {/0 Ly(v(s),%(s))ds | £ >0, v € C([0, ]y, 2) } ,

where Lf(z,£) := L(z, &) + f(z) and L(z,¢) = L(z, —€). Since L is the convex conjugate of
H(z,p) := H(z,~p) and H satisfies (H1)-(H4) in place of H, we can apply Appendix A.1 in
- [14] to deduce that dg(y, - ) is a subsolution of A (z, Du) — f(z) = 0 in R™. Thus, ~dy(y, *)
is a subsolution of (13) in R". , =

Lemma A.3. A function u € C(R™) (which is possibly unbounded) is a subsolution of (13)
" if and only if the following formula is valid: ' :

(34) u(z) — uly) < dg(z,y)  forall z,y €R™

- In particular, d¢(-,y) and —ds(y, -) are the mazimal and minimal subsolutions of (18)
equating 0 at y, respectively. '
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Proof. The “only if” part is a direct corisequence of Proposition 2.5 in [14]. Now, we assume
(34). Fix any z € R™ and let ¢ be a C*-supertangent to u at z such that ¢(z) = 0. Then,
by (34), .
| 6(y) 2 u(y) — u(@) 2 ~ds(z,y)  forally € R,

~ and #(z) = —df(z,z) = 0. Thus, ¢ is also a Cl-gupertangent to —ds(z, ) at z. By
Proposition A.2 (f), we have Hs(z, Dé(z)) < 0, which implies the subsolution property of
U, - : ‘ . 0
Proposition A.4. Let C be any subset of R" and uo € BC(R™). Then, the function
u € C(R"™) defined by '

@) u(z) := inf (d(2,v) + vo(u)

is the mazzmal subsolution of (13) not e:z:ceedmg ug on C, and it is a solution in ]R" \C.
Moreover, suppose that ug is a subsolution of (18). Then, u=ug on C.

Proof. By the previous ‘lemma, dy is lower bounded since (13) has a bounded subsolution.
Fix any z,y € R", § > 0 and take a point ys € R™ such that

df(_-’v, ys) + uo(ys) < zlgg (ds (2, 2) + uo(2)) + 6.
Then, we see that |

u(z) — uly) < ds(z,vs) + uo(ys) = dz (v, ys) — uo(ys) +6
< dy(z,y) + 6, |

- where we have used the tna.ngle inequality for ds. Since § >0is arbtrary, we obtain the

subsolutlon property of u.
Let us take any subsolution ¢ € C’(R") of (13) not exceedmg ug on C. Then,

#(z) < inf (d:(x, 2)+6(2)) < inf, (ds(z,2) + w0(2)) = u(a),

~ which implies the maximality of u.

We next show the supersolution property of u in R® \ C. Suppose that there exist a point.
z € R™\ C and a strict C'-subtangent ¢ to u at z such that H¢(2, D¢(z)) < 0. Fix r > 0 so
that B(z,7) NC = 0 and Hy(z, ¢(z)) < O for all z € B(z,r). Then, we can find € > 0 such
‘that u(z) — ¢(z) > ¢ for all z € 8B(z,r) since ¢ is a strict subtangent. Now, we define a
new function 9 € C(R™) by '

u(z) . otherwise.

Y(x) = {maX{¢(x) +eu(z)} if z€B(zr) |

Then, it is clear that 1) is a subsolution of (13) in R™ not exceeding u on C and ¥(z) > u(2).
But, this contradicts ‘the maximality of u. The last assertion can also be proved by the
maximality of u. : O
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