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概要

We study the long time behavior of viscosity solutions to some Cauchy problem for
Hamilton-Jacobi equations. The generalized dynamical approach due to Davini and
Siconolfi is adopted. Contrary to the periodic situation they dealt with, we consider
Hamilton-Jacobi equations having some non-periodic perturbations in both Hamilto-
nian and initial data. We also discuss the representation of corresponding asymptotic
solutions.

1 Introduction.
This paper is concerned with Hamilton-Jacobi equations of the form

(1) $\{\begin{array}{ll}u_{t}+H(x,Du)-f(x)=0 in \mathbb{R}^{n}x(0, +\infty),u(\cdot,0)=u_{0}(\cdot) on \mathbb{R}^{n},\end{array}$

where the HamiltonIan $H=H(x,p)$ is assumed to be $\mathbb{Z}^{n}$-periodic in $x$ and convex and
coercive in $p$ . The function $f$ , regarded as a perturbation of the original Hamiltonian $H$ , is
allowed to be non-periodic. The initial datum $u_{0}$ is assumed to behave like a $\mathbb{Z}^{n}$-periodic
function as $|x|arrow+\infty$ . More precise conditions on these functions will be stated in the next
section.

The objective of this paper is to investigate the large time behavior of continuous viscosity
solutions of (1), namely we seek for a constant $c\in \mathbb{R}$ and a function $v(\cdot)$ on $\mathbb{R}^{n}$ such that as
$tarrow+\infty$ ,

(2) $u(x,t)+ct-v(x)arrow 0$ uniformly on compact subsets of $\mathbb{R}^{n}$ .

The function $v(x)-ct$ is caUed the asymptotic solution of the Cauchy problem (1). While
the constant $c$ does not depend on initial data, $v$ may change according to the choice of $u_{0}$ .
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Researches on the large time behavio} of viscosity solutions to Hamilton-Jacobi equations
have been growing in recent years. $T\dot{h}e$ first attempt to attack such problem was made
by Fathi $[7, 8]$ in the framework of his weak KAM theory. Recently, Davini-Siconolfi [6]
improved his results; they proved the convergence (2) for Hamilton-Jacobi equations in the
unit torus $T^{n}$ with convex and coercive Hamiltonian (i.e., the case where $f=0$ and $u_{0}$ is
$\mathbb{Z}^{n}$-periodic). Their idea is based on the study of PDE aspects of the Aubry-Mather theory
developed by Fathi-Siconolfi [10]. Concerning asymptotic problems in non-compact regions,
Kjita-Ishii-Loreti[12] and Ishii [14] treat Hamilton-Jacobi equations on Euclidean $n$ space
$\mathbb{R}^{n}$ . See also [11] for viscous version of this problem.

On the other hand, by another approach based mainly on PDE techniques, Namah-
Roquejoffie [16], Barles-Souganidis $[3, 4]$ and Barles-Roquejoffre [2] investigate same kinds
of asymptotic probiems under a different sort of assumptions on Hamiltonians admitting, in
some cases, non-convex ones.

Motivated by the paper of Davini-Siconolfi [6], we deal with a perturbed version of their
asymptotic problem by using the former approach of dynamical systems. In order to clari\Phi
the motivation as well as the novelty of this paper, we start with the case where $f=0$ in
(1):

(3) $\{\begin{array}{ll}u_{t}+H(x,Du)=0 in \mathbb{R}^{n}x(0, +\infty),u(\cdot, 0)=u_{0}(\cdot) on \mathbb{R}^{n}.\end{array}$

SuPpose that $u_{0}$ is continuous and $\mathbb{Z}^{n}$-periodic. Then, the problem is reduced to that of [6],
which can be rewritten in our context as follows:

Theorem 1.1 (c.f. Theorem 5.7 of [6]). Assume that $u_{0}$ is continuous and $\mathbb{Z}^{n}$ -periodic, and
let $\hat{u}$ be the unique $\mathbb{Z}^{n}$ -periodic continuous viscosity solution of $(S)$ . We define $c$ by

(4) $c:= \inf${$a\in R;H(x,$ $Dv)=a$ in $\mathbb{R}^{n}$ has a $\mathbb{Z}^{n}$ -periodic subsolution}.

Then, there eaists a $\mathbb{Z}^{n}$ -periodic viscosity solution $\hat{v}$ of the Hamilton-Jacobi equation

(5) $-c+H(x, Dv)=0$ in $\mathbb{R}^{n}$

such that as $tarrow+\infty$ ,

(6) $\hat{u}(x,t)+ct-\hat{v}(x)arrow 0$ unifomly in $\mathbb{R}^{n}$ .

So, Cauchy problem (1) is a perturbed version of (3). However, we emphasize that this is
not a simple generalization of [6]. Indeed, it is known that the convergence of the form (2)
easily fails in non-periodic situations.

One of the fundamental differences between [6] and the present paper can be explained as
follows. Due to the lack of uniqueness of solutions to the Hamilton-Jacobi equation in the
limit as $tarrow+\infty$ :

(7) $-c+H(x, Dv)-f(x)=0$ in $\mathbb{R}^{n}$ ,
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it is important to find an appropriate uniqueness set in $\mathbb{R}^{n}$ called the (projected) Aubry

set. That is to say, this set, say $U,$ $pl\phi s$ a significant role in establishing the comparison
theorem of the form

$v_{1}\leq v_{2}$ on $\mathcal{U}$ $\Rightarrow$ $v_{1}\leq v_{2}$ on $\mathbb{R}^{n}$

for solutions $v_{1},$ $v_{2}$ to (7). Remark that $\mathcal{U}$ is a closed set and is characterized as

$\mathcal{U}=$ { $y\in \mathbb{R}^{n}$ ; there is no subsolution strict at $y$ }.

Note also that, in the periodic setting, $\mathcal{U}$ becomes the totality of points at which there is no
$\mathbb{Z}^{n}$-periodic strict subsolution (see Section 5for details).

We may $claesi\mathfrak{h}r\mathcal{U}$ as the following three possible situatioo:
Case (A): $\mathcal{U}$ is non-empty and compact.
Case (B): $\mathcal{U}$ is $empty\sim$.
Case (C): $\mathcal{U}$ is non-empty and non-compact.

Davini-Siconolfi [6] stays in the case (A) by virtue of the compactnaes of the state space $\mathbb{T}^{n}$ .
But, once the periodicity has been broken by aperturbation $f,$ $(B)$ or (C) occurs and the
$8ituation$ changes completely. That is the $ma\dot{i}$ difference $betw\infty n[6]$ and our\S . We also
point out that the papers $[12, 14]$ are still in the case (A) although they treat equation8 in
the whole space $\mathbb{R}^{n}$ .

In this paper, we restrict ourselves to the case (B) by adding an additional assumption.

The study of aspptotic Problems when (C) takae place will be left in future inv\’etigation.

Note that our work is closely related to the literature [2] which ako treats the case (B) by

another approach in aslightly different setting.
Before closing this itroductory section, we make abrief comment on the repraeentation of

aeymptotic solutions of (1). Since $\mathcal{U}$ is empty in our $ca\epsilon e$ , we have no representation formula
for asymptotic solutions in the classical seoe. So, getting sui aformula in some $8eoe$ is
much of interaet. It turns out in Section 5that our uniqueness set is hidden at the “infinity”.
By taking account of this fact, we can establish acomparison $th\infty rem$ (Proposition 5.4)

which $mak\infty$ us possible to $speci6^{r}$ solutioo of (7) in terms of their behavior as $|x|arrow+\infty$ ,
and to get the representation formula (Proposition 6.3) of aspptotic solut$ion8$ as well.

$Th\cdot is$ paper is organized as follows. The next section is devoted to preliminaries. The main
$th\infty rem$ is stated precisely at the end of the aection. We discuss, in Section 3, the additive
eigenvalue problem (7). Srtion 4is concerned with some properties of curvae in $\mathbb{R}^{n}$ that
$wiU$ be useful in the sequel. In Section 5, we determine the unlqueness set for the $eq\dot{u}ation$

(7). The proof of the main $th\infty rem$ and the representation fomula for $v$ aoe given in the.
$la\epsilon t$ section. We also collect some fundamental facts in $Append\dot{\alpha}$ .

2 Preliminaries.
Let $C(\mathbb{R}^{n})$ be the totality of continuous functions on $\mathbb{R}^{n}$ equipped vith the topology of

locally uniform convergence, that is, we say a family of functions $\{u_{j}\}_{j\in N}\subset C(\mathbb{R}^{n})converge8$
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to a function $u$ in $C(\mathbb{R}^{n})$ if and only if $u_{j}(x)arrow u(x)$ as $jarrow+\infty$ uniformly on any compact
subsets of $\mathbb{R}^{n}$ . We often use the followir\’ig subclasses of $C(\mathbb{R}^{n})$ :

$BC(\mathbb{R}^{n})$
$:= \{u\in C(\mathbb{R}^{n});|u|_{\infty} :=\sup_{x\in R^{n}}|u(x)|<+\infty\}$ ,

$BUC(\mathbb{R}^{n}):=$ {$u\in BC(\mathbb{R}^{n});u$ is uniformly continuous},
$C_{\epsilon}(\mathbb{R}^{n}):=$ { $u\in BUC(\mathbb{R}^{n});supp(u)$ is compact}.

Throughout this paper, we identify functions on the unit torus $\Psi$ with their $\mathbb{Z}^{n}$-periodic
extension to the whole space $\mathbb{R}^{n}$ .

For a closed interval $J$ in the real line, the set of all absolutely continuous functions on $J$

with values in $\mathbb{R}^{n}$ is denoted by $AC(J,\mathbb{R}^{n})$ . For given-oo $\leq S<T\leq+\infty$ and $x,y\in \mathbb{R}^{n}$ ,
we set

$C([S,T];x):=\{\gamma\in AC([S,T],\mathbb{R}^{n});\gamma(T)=x\}$ ,
$C([S,T];y,x):=${$\gamma\in AC([S,$ $T],\mathbb{R}^{n});\gamma(S)=.y$ and $\gamma(T)=x$ }.

Let us consider the Cauchy problem (1). In this paper, the notion of solution, subsolution
and supersolution will be interpreted in the viscosity sense. The standing assumptions on
the Hamiltonian $H_{f}(x,p)$ $:=H(x,p)-f(x)$ and initial data are the following.

Assumption 1.
(H1) $H\in C(R^{n}\cross R^{n})$ .
(H2) $H$ is coercive, i.e. $\lim_{|p|arrow+\infty}\inf_{x\in B^{n}}H(x,p)=+\infty$ .
(H3) $H(x, \cdot)isstrictlyconvexinpforeveryx\in \mathbb{R}^{n}$ .
(H4) $H(\cdot,p)$ is $\mathbb{Z}^{n_{-}}periodicinxforeveryp\in \mathbb{R}^{n}$ .
(f1) $f\in C.(R^{n})$ and $f\geq 0$ .
(u1) $\lim_{Rarrow+\infty}\sup_{|x|\geq R}|u_{0}(x)-\hat{u}_{0}(x)|=0forsome\mathbb{Z}^{n}$ -periodic function $\text{\^{u}}_{0}\in BUC(R^{n})$

not $exceed\dot{g}gu_{0}$ on $\mathbb{R}^{n}$ .
Remark 2.1. Assumption (u1) can be weakened if we impose a slightly stronger assumption
on the Hamiltonian. See Section 6 for details.

The existence, uniqueness and the dynamic programming principle of solutions to (1) are
standard in the theory of viscosity solutions.

Theorem 2.2. Suppose that $(H1)-(H4)$ and $(ft)$ hold. Then, for every $u_{0}\in BUC(\mathbb{R}^{n})$ , the
function $u:\mathbb{R}^{n}x[0, +\infty$) $arrow \mathbb{R}$ defined by

(8) $u(x,t)$ $:= \inf\{\int_{-t}^{0}L_{f}(\gamma(s),\dot{\gamma}(s))ds+u_{0}(\gamma(-t))|\gamma\in C([-t,0];x)\}$

is the unique solution of (1) in the class $C(\mathbb{R}^{n}),$ where $L_{f}$ stands for the Lagvangian asso-
ciated utth $H_{f},$ $i.e.,$ $L_{f}(x, \xi):=L(x,\xi)+f(x)=\sup_{p\in R^{n}}(\xi\cdot p-H(x,p))+f(x)$ .

Moreover, for all $t,$ $s>0$ and $x\in \mathbb{R}^{n},$ $u$ satisfies

(9) $u(x, s+t)$ $:= \inf\{\int_{-t}^{0}L_{f}(\gamma(r),\dot{\gamma}(r))dr+u(\gamma(-t), s)|\gamma\in C([-t,0];x)\}$ .
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Let $c$ be the constant defined by (4) hnd consider the Hamilton-Jacobi equation (7). We
define $\mathcal{U}_{f}$ by

(10) $\mathcal{U}_{f}$ $:=$ { $y\in \mathbb{R}^{n}$ ; there is no subsolution of (7) strict at y}.

Here, we say a subsolution $\phi$ of (7) is strict in a subset $D\subset \mathbb{R}^{n}$ if there exists $\delta>0$ such
$that-c+H_{f}(y, D\phi(y))\leq-\delta$ for all $y\in D$ in the viscosity sense.

We also make an additional assumption in order to exclude the case (C) from our consid-
eration.

Assunption 2. $\mathcal{U}_{0}=\emptyset$ , where $\mathcal{U}_{0}$ is defined by (10) with $f=0$.
Remark. It is not difficult to check that Assumption 2 is equivalent to assume that $\mathcal{U}_{f}=\emptyset$

and $supp(f)\cap \mathcal{U}_{0}=\emptyset$ . A natural interpretation of Assumption 2 will be given in Section 4
(see Remark 4.4).

The next example is one of the most typical and simplest ones satisfying Assumptions 1
and 2.

Example. Let $n=1$ and $H(x,p):=|p-1|^{2}-V(x)$ , where $V\in C(\mathbb{R})$ is non-negative,
$\mathbb{Z}$-periodic and $\min_{x\in \mathbb{R}}V(x)=0$ . Suppose that $\int_{0}^{1}\sqrt{V(x)}dx<1$ . Then, we can check that
$c>0$ (see for example [15]). It is easily seen that the function $v(x)$ $:=x+ \int_{0}^{x}\sqrt{V(z)}dz$

is a subsolution of (5) strict in R. In particular, $\mathcal{U}_{0}=\emptyset$ , where $\mathcal{U}_{0}$ is defined by (10) with
$f=0$. Since $\mathcal{U}_{f}\subset \mathcal{U}_{0}$ , we have $\mathcal{U}_{f}=\emptyset$ .

Suppose now that $\int_{0}^{1}\sqrt{V(x)}dx\geq 1$ . Then, we have $c=0$ and $\mathcal{U}_{0}=V^{-1}(0):=\{y\in$

$\mathbb{R}^{n}$ ; $V(y)=0$} $\neq\emptyset$ . Thus, $\mathcal{U}_{f}=V^{-1}(0)\backslash 8upp(f)\neq\emptyset$ and this gives an example of the case
(C).

We are now in position to formulate our main result (Theorem 2.4).

Proposition 2.3. Suppose that Assumptions 1 and 2 hold and let $u$ be the uniqu$e$ solution

of (J). Then, $u(x,t)+ct$ is bounded and unifomly continuous on $\mathbb{R}^{n}x[0,+\infty$).

Prvof The proof will be postponed until Section 6. 口

Theorem 2.4. Under Assumptions 1 and 2, there vists a solution $v$ of (7) such that the
convergence (2) hotds.

Notice. In order to prove Theorem 2.4, we can assume $c=0$ without loss of generality.
Indeed, it suffices to consider the Hamiltonian $H_{f}-c$ and the solution $u(x,t)+ct$ in place
of $H_{f}$ and $u(x, t)$ , respectively. Thus, we henceforth assume that $c=0$ for the simplicity of
description.

3 Additive eigenvalue problems.
In this section, we study the solvability of Hamilton-Jacobi equation (7). Since $v$ in (2) is

expected to be bounded in view of Proposition 2.3, we seek for solutions in the class $BC(\mathbb{R}^{n})$ .
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For this purpose, we start with the following equation called the additive eigenvalue problem:

(11) $H_{f}(x, Dv\langle x))=a$ in $\mathbb{R}^{n}$ ,

where unknowns are $a\in \mathbb{R}$ and $v\in C(\mathbb{R}^{n})$ . The solvability of (11) in the class $C(\mathbb{R}^{n})$ is
known (see [9] or Theorem 2.1 of [2]).

Theorem 3.1. For $g\in BUC(R^{n})$ , we define the $c\sqrt tical$ eigenvalue $a_{9}\in \mathbb{R}$ by

$a_{9}$ $:= \inf_{\prime}${ $a\in \mathbb{R};H(x,$ $Dv)-g(x)=a$ in $\mathbb{N}^{n}$ has a subsolution}.

Then, for every $a\geq a_{9}$ , the equation $H(x, Dv)-g(x)=a$ in $\mathbb{R}^{n}$ has continuous solutions.

Remark here that by virtue of the coercivity of $H_{f}(x,p)$ in $p$, every solution of (11) is
uniformly Lipschitz continuous with a universal constant $M>0$ depending only on $H_{f}$

and $a$ . However, (11) may not have bounded solutions even in the case where $f=0$.
Actually, the solvability of (11) in the class $BC(\mathbb{R}^{n})$ is closely related to the structure of the
non-perturbed additive eigenvalue problem

(12) $H(x,Dv(x))=a$ in $\mathbb{R}^{n}$ .

It is known (e.g. [10, 13]) that (12) has bounded solutions if and only if $a=0$ (recall that
$c=0$ by normahzation).

We now claim that our perturbed problem (11) has a bounded solution only if $a=0$.

Lemma 3.2. Suppose that (11) has a bounded solution. Then, $a=0$ .

Proof. Let $v$ be a bounded solution of (11). Let $e\in \mathbb{Z}^{n}\backslash \{0\}$ and define $v_{k},$ $f_{k}\in BC(R^{n})$ ,
$k\in N$ , by $v_{k}(x)$ $:=v(x+ke)$ and $f_{k}(x):=f(x+ke)$ , respectively. Then, $v_{k}$ is a solution of

$H(x,Dv_{k}(x))-f_{k}(x)=a$ in $\mathbb{R}^{n}$ ,

and $\{v_{k}(\cdot)-v_{k}(0)\}_{k\in N}$ is uniformly bounded and equi-continuous on $\mathbb{R}^{n}$ . Henoe, there is an
increasing sequence $k_{j}arrow+\infty$ such that $v_{k_{\dot{f}}}(\cdot)-v_{k_{j}}(O)arrow w$ in $C(\mathbb{R}^{n})$ for some $w\in BC(\bm{R}^{n})$

as $jarrow+\infty$ . In the limit as $jarrow+\infty$ , we see that $w$ is a bounded solution of (12), which
implies that $a=0$ . $\square$

Thus, in the rest of this section, we concentrate on the equation

(13) $H_{f}(x,Dv(x))=0$ in $\mathbb{R}^{n}$ .

Proposition 3.3. Let $a_{f}$ be the critical eigenvalue of (11). Then, (13) has bounded subso-
lutions if and only if $a_{f}\leq 0$ .

Proof. It is clear by the definition of $a_{f}$ that the existence of bounded subsolutions of (13)

implies $a_{f}\leq 0$ . So, it remains to prove that $a_{f}\leq 0$ implies the existence of bounded
subsolutions. We $8ha[1$ construct one by a cut off argument.

93



Fix a (possibly unbounded) subsolutlon $v\in C(\mathbb{R}^{n})$ of (13) and let $\overline{v}\in BC(\mathbb{R}^{n})$ be any
$\mathbb{Z}^{n}$-periodic solution of

(14) $H(x, Dv(x))=0$ in $\mathbb{R}^{n}$ .

By adding a constant in advance, we ma\’y assume that $v\leq\overline{v}$ on $supp(f)$ .
Choose next $A>0$ so that $\overline{v}-A\leq v$ on $supp(f)$ and define $\underline{v}\in BC(\mathbb{R}^{n})$ by

$\underline{v}(x)$ $:= \min\{\max\{v(x),\overline{v}(x)-A\},\overline{v}(x)\}$ , $x\in \mathbb{R}^{n}$ .

It is standard to show that $w(x):= \max\{v(x),\overline{v}(x)-A\}$ is a subsolution of (13) since $\overline{v}-A$

is also a subsolution of (13). Moreover, from the study of semicontinuous viscosity solutions
for Hamilton-Jacobi equations with convex Hamiltonians due to Barron and Jensen [5], we
can prove that $\underline{v}(x)$ $:= \min\{w(x),\overline{v}(x)\}$ is also a subsolution of (13). Hence, 2 is a bounded
subsolution of (13). $\square$

Corollary 3.4. Under Assumption 1, (1S) has bounded subsolutions.

Proof Let $a_{0}$ be the critical eigenvalue of (12). Then, we can see that $a_{0}=a_{f}$ by the same
argument as in the proof of Lemma 3.2. Since $a_{0}\leq 0$ , the claim is obvious from the previous
proposition. $\square$

Once the existence of a bounded subsolution of (13) has been guaranteed, it is not hard to
construct bounded solutions of (13). We will discuss this point in Section 5.

The following lemma will be used in the next section.

Lemma 3.5. For any compact subset $K\subset \mathbb{R}_{j}^{n}$ there evists a bounded subsolution $\phi.of$ (J3)
strict in $K$ .

Proof. For $y\in K$ and a subsolution $\phi_{y}$ of (13) strict and $C^{1}$ at $y$ , there exist $r_{y}>0$ and
$\delta_{y}>0$ such that

$H_{f}(x, D\phi_{y}(x))\leq-\delta_{y}$ for all $x\in B(y,r_{y})$ ,

where $B(y,r_{y})$ stands for the closed ball in $\mathbb{R}^{n}$ centered at $y$ with radius $r_{y}$ . Choose a finite
covering $\{B(y_{i},r_{y:})\}_{i\approx 1}^{m}$ of $K$ and define $\phi\in C(\mathbb{R}^{n})$ by

$\phi(x)$ $:= \sum_{i=1}^{m}\lambda_{i}\phi_{y_{l}}(x)$ $x\in \mathbb{R}^{n}$ ,

where $\sum_{i=1}^{m}\lambda_{i}=1$ and $\lambda_{i}>0$ for all $i=1,$ $\ldots$ , $m$. By the convexity of $H$ , we can check
that $\phi$ is a subsolution of (13). $Mor\infty ver$ , for any $x\in K$ , there exists a number $j$ such that
$x\in B(y_{j}, r_{y_{f}})$ and

$H_{f}(x, D \phi(x))\leq\sum_{i\neq j}\lambda:H_{f}(x, D\phi_{y_{\backslash }}.(x))+\lambda_{j}H_{f}(x,D\phi_{y_{f}}(x))$

$\leq-\lambda_{j}\delta_{y_{j}}\leq-\min_{i}\lambda_{i}\delta_{V:}<0$.

Similarly as in the proof of Proposition 3.3, we can construct a bounded subsolution of (13)
equating $\phi$ on $K$ . Hence, we have completed the proof. $\square$
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4 Curves in $\mathbb{R}^{n}$ .
This section is devoted to some properties of curves in $\mathbb{R}^{n}$ . It turns out in Proposition 4.3

that Assumption 2 is concerned with their long time behavior.

Lemma 4.1. Let $S$ and $T$ be such $that-\infty\leq S<S+1\leq T\leq+\infty_{f}$ and suppose that a
curve $\eta\in AC([S, T], \mathbb{R}^{n})$ satisfies

(15) $\int_{a}^{b}L_{f}(\eta(s),\dot{\eta}(s))ds\leq 0_{f}$ $S<\forall a<\forall b<T$

for some constant $C_{f}$

.
$>0$ . Then, for every $\epsilon>0_{f}$ there exists $M_{e}>0$ depending only on

$c_{f},$ $H_{f}$ and $\epsilon$ such that

$\int_{a}^{b}|\dot{\eta}(s)|ds\leq\epsilon+M_{e}(b-a)$ $S<\forall a<\forall b<T$ .

Proof. This lemma is a direct consequence of Proposition 5.9 in $I14$]. $\dot{\square }$

Lemma 4.2. Let $\eta\in AC([S,T],\mathbb{R}^{n})$ be any $cun$)$e$ such that

(a) $\int_{a}^{b}L(\eta(s),\dot{\eta}(s))ds\leq C_{0}$ $S<\forall a<\forall b<T$

for some constant $C_{0}>0$ . Then, $\eta$ satisfies (15) for some constant $C_{f}>0$ .

Proof. Since $supp(f)\cap \mathcal{U}_{0}=\emptyset$ , we can show similarly as in the proof of Lemma 3.5 that

$H(x, D\phi(x))\leq-\delta$ on $supp(f)$ ,

for some $\delta>0$ and a bounded subsolution $\phi$ of (14).

We set $I:=\{s\in[S,T];\eta(s)\in supp(f)\}$ . Then,

$\phi(\eta(T))-\phi(\eta(S))\leq\int_{S}^{T}\{L(\eta(s),\dot{\eta}(s))+H(\eta(s), D\phi(\eta(s))\}ds$

$\leq C_{0}-\delta m(I)$ ,

where $m(I)$ denotes the Lebesgue measure of $I$ . Thus, we have $m(I)\leq\delta^{-1}(C0+2|\phi|_{\infty})<$

$+\infty$ , and for all $S<a<b<T$ ,

$abL_{f}(\eta(s),\dot{\eta}(s))ds\leq C_{0}+abf(\eta(s))ds\leq C_{0}+\delta^{-1}|f|_{\infty}(C+.2|\phi|_{\infty})$ ,

which implies (15) since the right-hans side is independent of $a<b$ . $\square$

Proposition 4.3. Let $\eta\in AC((-\infty, 0$], $\mathbb{R}^{n}$ ) be any curve satishing (15) with $S=-\infty$ and

$T=0$ . Then, for every compact set $K\subset \mathbb{R}^{n}$ , we have

$\tau:=\sup\{t>0;\eta(-t)\in K\}<+\infty$ .

In particular, $|\eta(-t)|arrow+\infty$ as $tarrow+\infty$ .
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Proof. Suppose that $\tau=+\infty$ . Then, $th\check{e}re$ exists a positive diverging sequence $\{t_{k}\}_{k\in N}$ such
that $\eta(-t_{k})\in K$ for all $k\in \mathbb{N}$ . In $parti6ular$ , by taking a subsequence if necessary, we may

assume that $\eta(-t_{k})arrow z$ for some $z\in K$ as $karrow+\infty$ .
In view of Lemma 3.5, we can take a bounded subsolution $\phi$ of (13) such that

$H_{f}(x,D\phi(x))\leq-\delta$ in $B(z, 4r)$

for some $\delta>0$ and $r>0$ . By renumbering $\{t_{k}\}_{k\in N\cup\{0\}}$ if necessary, we may assume that
$\eta(-t_{0})\not\in B(z, 3r)$ and $\eta(-t_{k})\in B(z,r)$ for all $k\in N$ . Let us now set $\sigma_{0}$ $:=t_{0}$ and define
inductively $\sigma_{k}$ and $\tau_{k}$ by

$\sigma_{k}$ $:= \min\{t>t_{k} ; \eta(-t)\not\in B(z, 3r)\}$ ,

$\tau_{k}$ $:= \max\{\sigma_{k-1}\leq t<t_{k} ; \eta(-t)\not\in B(z,3r)\}$.
We set $\sigma_{k}$ $:=+\infty$ if $\{\cdots\}=\emptyset$ . Since $\eta(-t_{k})\in B(z, r)$ , we see by Lemma 4.1 that

$4r \leq\int_{-\sigma_{k}}^{-\tau_{k}}|\dot{\eta}(s)|ds\leq r+M_{r}(\sigma_{k}-\tau_{k})$

for some $M_{r}>0$ not depending on $k\in N$ . Thus, by setting

$I_{t}:=\{s\in[\tau_{1},t];\eta(-s)\in B(z, 3r)\}$ , $t\in[\tau_{1}, +\infty]$ ,

we see
$m(I_{\infty})= \lim_{tarrow\infty}m(I_{t})\geq\sum_{k\approx 1}^{N}(\sigma_{k}-\tau_{k})\geq\frac{3rN}{M_{r}}$ for all $N\in N$ .

On the other hand,

$\phi(\eta(-\prime r_{1}))-\phi(\eta(-t))=\int_{-t}^{-\tau_{1}}D\phi(\eta(s))\dot{\eta}(s)ds$

$\leq\int_{-t}^{-\tau_{1}}\{L_{f}(\eta(s),\dot{\eta}(s))+H_{f}(\eta(s),D\phi(\eta(s)))\}ds$

$\leq C_{f}-\delta m(I_{t})$ .
By letting $tarrow+\infty$ , we obtain

$3M_{r}^{-1}rN\leq m(I_{\infty})\leq\delta^{-1}(C_{f}+2|\phi|_{\infty})<+\infty$ .
Since $N$ is arbitrary, we get the contradiction. Hence $\tau<+\infty$ . 口

Remark 4.4. This proposition shows that Assumption 2 is crucial for the property $|\eta(-t)|arrow$

$+\infty$ as $tarrow+\infty$ .

For $x,$ $y\in \mathbb{R}^{n}$ , we set

(16) $d_{f}(x,y):= \inf\{\int_{0}^{t}L_{f}(\gamma(s),\dot{\gamma}(s))ds|t>0,$ $\gamma\in C([0,t];y,x)\}$ .

It can be checked that the right-hand side of (16) is finite for all $x,$ $y\in \mathbb{R}^{n}$ . By Proposition

A.2 (e) in Appendix, $d_{f}(\cdot , y)$ is a subsolution of (13) in $\mathbb{R}^{n}$ and is a supersolution in $\mathbb{R}^{n}\backslash \{y\}$ .
$Mor\infty ver$ , By Lemma A.3, $d_{f}$ is lower bounded on $\mathbb{R}^{n}x\mathbb{R}^{n}$ since there exists a bounded
subsolution of (13).
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Lemma 4.5. Let $\eta\in AC((-\infty, 0$ ] $;\mathbb{R}^{n}$ ) $\underline{\prime}$ be such that

(17) $\lim_{karrow\infty}\int_{-t_{k}}^{0}L_{f}(\eta,\dot{\eta})ds<+\infty$

for some diverging sequence $\{t_{k}\}_{k\in N}$ . Then, there exists a subsequence $\{t_{k_{l}}\}_{l\in N}$ such that
$\{y_{l}\}_{\{\in N}$ $:=\{\eta(-t_{k_{l}})\}_{l\in N}$ satisfies the following:

(18) $\lim_{karrow+\infty}\lim_{larrow+\infty}d_{f}(y_{k}, y_{l})=0$.

Proof. We set $c_{k}:= \int_{-t_{k}}^{0}L_{f}(\eta,\dot{\eta})ds$ . Then, for every $\epsilon>0$ , there exists $k_{0}\in N$ such that

$d_{f}( \eta(-t_{k}), \eta(-t_{k+m}))\leq\int_{-t_{k+m}}^{-t_{k}}L_{f}(\eta,\dot{\eta})ds=c_{k+m}-c_{k}<\epsilon$

for all $k\geq k_{0}$ and $m\in N$ .
Now, we fix any $\mathbb{Z}^{n}$-periodic subsolution $\phi$ of (14) and take a subsequence $\{t_{k_{t}}\}_{l\in N}$ so that

$\{z_{l}\}_{l\in N}$ $:=\{\phi(\eta(-t_{k_{l}}))^{\backslash }\}_{l\in N}$ forms a Cauchy sequence. Then, there exists $l_{0}^{\backslash }\in N$ such that

$-\epsilon<\phi(z_{t})-\phi(z_{l+m})\leq d_{f}(z_{l}, z_{l+m})<\epsilon$

for all $l\geq l_{0}$ and $m\in N$ . Hence, we have completed the proof. 口

5 Uniqueness set.
In this section, we seek for a uniqueness set for. (13). As is pointed out in the introduction,

the asymptotic behavior of solutions to (13) as $|x|arrow+\infty$ has an important role to specify$\cdot$

their structure.
We first consider the equation (14) under $\mathbb{Z}^{n}$-periodic setting and define

$\mathcal{A}:=$ { $y\in \mathbb{R}^{n}$ ; there is no $\mathbb{Z}^{n}$-periodic subsolution of (14) strict at $y$} $\neq\emptyset$ .

Remark that $A$ is nothing but the $\mathbb{Z}^{n}$-periodic extemsion of the Aubry set for the following
equation in the unit torus $\mathbb{T}^{n_{I}}$

(19) $H(x, Du(x))=0$ in $T^{n}$ .

See $[io]$ for the precise definition of the Aubry set for (19). In particular, $\mathcal{A}$ is $Z^{n}$-periodic,

namely $A=A+e:=\{y+e;y\in A\}$ for all $e\in \mathbb{Z}^{n}$ .

Proposition 5.1. Let $D$ be any open set satishing $supp(f)\subset D.$ Then, for every bounded
solution $u$ of (13), the following fomula is valid:

(20) $u(x)= \inf_{y\in D}(d_{f}(x, y)+u(y))$ .

97



Proof. We divide the proof into several’steps.
1. We denote the right-hand side of (20) by $v(x)$ and show $u=v$ on $\mathbb{R}^{n}$ . By Proposition

A.4 in Appendix, we $see$ that $u\leq v$ on $\mathbb{R}^{n}$ and $u=v$ on $A\backslash D$ . So, it remains to prove that

$u=v$ outside $A\backslash D$ .
2. Suppose that $v(y)-u(y)=:4\beta>0$ for some $\beta>0$ and $y\not\in \mathcal{A}\backslash D$ . Then, there exlsts

$\rho_{0}>0$ such that
$y\not\in K_{\rho}^{D}$ $:=$ { $x\in \mathbb{R}^{n}$ ; dist $(x,$ $A\backslash D)\leq\rho$ }

for all $0<\rho\leq\rho_{0}$ . We fix $\rho>0$ so that $supp(f)\cap K_{\rho}^{D}=\emptyset$ and $\rho<(2M)^{-1}\beta$ , where $M>0$

denotes the universal Lipschitz constant for subsolutions of (13).

3. We set $K_{\rho}$ $:=$ { $x\in \mathbb{R}^{n}$ ; dist $(x,$ $A)\leq\rho$}. Then, from Section 6 of [10], we can construct

a $\mathbb{Z}^{n_{-}}periodic$ subsolution $\phi_{1}\in BC(\mathbb{R}^{n})\cap C^{1}(\mathbb{R}^{n}\backslash K_{\rho})$ of (14) satisfying the strict subsolution

property:

(21) $H(x, D\phi_{1}(x))\leq-\delta_{1}$ in $\mathbb{R}^{n}\backslash K_{\rho}$ for some $\delta_{1}>0$ .

On th$e$ other hand, by Lemma 3.5, there exist $\delta_{2}>0$ and a bounded subsolution $\phi_{2}$ of (13)

such that

(22) $H_{f}(x, D\phi_{2}(x))\leq-\delta_{2}$ in $\overline{D}$ .

4. Let $\psi\in C_{c}^{\infty}.(\mathbb{R}^{n})$ be such that $supp(\psi)\subset B(O, 1)$ and $\int_{R^{n}}\psi(x)dx=1$ . We set
$\psi_{\epsilon}(x):=\epsilon^{-n}\psi(\epsilon^{-1}x)$ . For $\lambda_{1},$ $\lambda_{2}\in(0,1)$ satisfying $\lambda_{1}+\lambda_{2}<1$ , we define $w\in C^{1}(R^{n})$ by

$w(x)$ $:=\lambda_{1}\phi_{1}(x)+\lambda_{2}(\phi_{2}*\psi_{\epsilon})(x)+(1-\lambda_{1}-\lambda_{2})(v*\psi_{e})(x)$ ,

and for $\alpha>0$ we set $w_{\alpha}(x)$ $:=w(x)-\alpha(|x-y|^{2}+1)^{1/2}$ , where $(\phi_{2}*\psi_{\epsilon})(\cdot\cdot)$ and $(v*\psi_{\epsilon})(\cdot)$

stand for mollified functioms of $\phi_{2}$ and $v$ by $\psi_{e}$ , respectively. Since $v$ is Lipschitz continuous

with Lipschitz constant $M>0$ , we have $|v*\psi_{\epsilon}-v|_{\infty}\leq M\epsilon$. Thus,

$|w-v|_{\infty}\leq\lambda_{1}|\phi_{1}|_{\infty}+\lambda_{2}|\phi_{2}|_{\infty}+(\lambda_{1}+\lambda_{2})|v|_{\infty}+|v*\psi_{\epsilon}-v|_{\infty}$

$\leq\lambda_{1}|\phi_{1}|_{\infty}+\lambda_{2}|\phi_{2}|_{\infty}+(\lambda_{1}+\lambda_{2})|v|_{\infty}+M\epsilon$

$=:\omega_{1}(\epsilon,\lambda_{1}, \lambda_{2})$ .

We choose $\epsilon,$
$\lambda_{1}$ and $\lambda_{2}$ so that $w_{1}(\epsilon, \lambda_{1}, \lambda_{2})<\beta$ . Then, for $\alpha<\beta$ , we have

(23) $w_{\alpha}(y)=w(y)-\alpha\geq v(y)-\omega_{1}(\epsilon, \lambda_{1}, \lambda_{2})-\alpha>u(y)+2\beta$ .

5. In view of the convexity of $H$ in $p$ , there exists a constant $C>0$ such that

$|H(x,p)-H(x, q)|\leq C|p-q|$ for all $x\in \mathbb{R}^{n},$ $p,q\in B(O,M+1)$ .

Then, we have

$H_{f}(x, Dw_{\alpha}(x))\leq H_{f}(x,Dw(x))+C\alpha$

$\leq\lambda_{1}H_{f}(x,D\phi_{1}(x))+\lambda_{2}H_{f}(x, D(\phi_{2}*\psi_{\epsilon})(x))$

$+(1-\lambda_{1}-\lambda_{2})H_{f}(x, D(v*\psi_{\epsilon})(x))+C\alpha$

$=:\lambda_{1}I_{1}(x)+\lambda_{2}I_{2}(x)+(1-\lambda_{1}-\lambda_{2})I_{3}(x)+C\alpha$.
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6. By taking into account that $f\equiv\tilde{0}$ in $\mathbb{R}^{n}\backslash \overline{D}$ , we can show in combination with (21)
that $I_{1}(x)\leq|f|_{\infty}$ in $\overline{D}\cup K_{\rho}$ and $I_{1}(x)\leq^{i}-\delta_{1}$ in $(\mathbb{R}^{n}\backslash \overline{D})\cap(\mathbb{R}^{n}\backslash K_{\rho})$ . The convexity of $H$

in $p$ and (22) yield

$I_{2}(x) \leq\int_{B(x,\epsilon)}\psi_{\epsilon}(x-z)H_{f}(z, D\phi_{2}(z))dz$

$+ \sup_{z\in B(x,\epsilon)}|H_{j}(x, D\phi_{2}(z))-H_{f}(z,D\phi_{2}(z))|$

$\leq\{\begin{array}{ll}-\delta_{2}+w_{H_{f}}(\epsilon) in \overline{D},\omega_{H_{f}}(\epsilon) in \mathbb{R}^{n}\backslash \overline{D},\end{array}$

where $\omega_{H_{f}}(\cdot)$ denotes the modulus of continuity for $H_{f}$ with respect to $x$ , that is,

$|H_{f}(x,p)-H_{f}(x’,p)|\leq w_{H_{f}}(|x-x’|)$ for all $x,$ $x’\in \mathbb{R}^{n},$ $p\in B(O, M+1)$ .

Similarly, we can prove $I_{3}(x)\leq w_{H_{f}}(\epsilon)$ for all $x\in R^{n}$ .
7. By collecting estimates in Steps 5 and 6, we can conclude that

$H_{f}(x,Dw_{\alpha}(x))$

$\leq\{\begin{array}{ll}\lambda_{1}|f|_{\infty}-\delta_{2}\lambda_{2}+\omega_{H_{f}}(\epsilon)+C\alpha in \overline{D},-\delta_{1}\lambda_{1}+\omega_{H,}(\epsilon)+C\alpha in (\cdot \mathbb{R}^{n}\backslash \overline{D})\cap(\mathbb{R}^{n}\backslash K_{\rho}).\end{array}$

Remark that $(\mathbb{R}^{n}\backslash K_{\rho}^{D})\subset\overline{D}\cup((\mathbb{R}^{n}\backslash \overline{D})\cap(\mathbb{R}^{n}\backslash K_{\rho}))$.
We now take sufficiently small $\epsilon,$

$\alpha$ and $\lambda_{1}>0$ so that

(24) $H_{f}(x, Dw_{\alpha}(x))<0$ in $\mathbb{R}^{n}\backslash K_{\rho}^{D}$ .

Note that the estimate (23) is still valid even if we replace $\epsilon,$ $\alpha$ and $\lambda_{1}>0$ with smaller
ones.

8. Let $y’$ be any maximum point of $w_{\alpha}-u$ in $\mathbb{R}^{n}$ . Remark that such a point exists since $u$

is bounded and $w_{\alpha}(x)arrow-\infty$ as $|x|arrow+\infty$ . Moreover, we can show $y’\in \mathbb{R}^{n}\backslash K_{\rho}^{D}$ . Indeed,
let us take any $x\in K_{\rho}^{D}$ . Then, by the definition of $K_{\rho}^{D}$ and the Lipschitz continuity of $u$

and $v$ , we see

$u(x)+2\beta>u(x)+2M\rho+\beta\geq v(x)+\beta\geq w(x)\geq w_{\alpha}(x)$,

which implies in view of (23) that any $x\in K_{\rho}^{D}$ cannot be a maximum point. Therefore, $w_{\alpha}(\cdot)$

is a $C^{1}$-subtangent to $u$ at $y’$ . Since $u$ is a supersolution of (13), we have $H_{f}(y’, Dw_{\alpha}(y’))\geq 0$ .
But, this contradicts the strict subsolution property (24). Hence, $\beta$ must be zero and we
have $u=v$ in $\mathbb{R}^{n}$ . ロ

Corollary 5.2. Let $D$ be any bounded open set such that $supp(f)\subset D.$ Then, two bounded
solutions of (1S) equating on $A\backslash D$ coincide on $\mathbb{R}^{n}$ .

For a diverging sequence $y=\{y_{k}\}_{k\in N}$ in $A$, we say $y\in\Lambda$ if and only if (18) holds, that
is, for every $\epsilon>0$ , there exists a number $k_{0}\in N$ such that

$-\epsilon<d_{f}(y_{k}, y_{k+m})<\epsilon$ for all $k\geq k_{0}$ and $m\in N$ .
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The next proposition shows that $\Lambda$ is nbt empty.

Proposition 5.3. For every $y\in A$, there exists a divergent sequence $e=\{e_{k}\}_{k\in N}\subset \mathbb{Z}^{n}$

such that $y:=\{y-e_{k}\}_{k\in N}\in\Lambda$ .

Proof. Fix $y\in A_{;}$ By one of the equivalent definition of the Aubry set $A$ for (19) (see

Section 5 of [10] or Proposition 5.10 of [14]), for each $k\in N$ , we can find $e_{k}’\in \mathbb{Z}^{n},$ $t_{k}>0$

and $\gamma_{k}\in C([-t_{k}, 0];y-e_{k}’, y)$ such that

$0 \leq\int_{-t_{k}}^{0}L(\gamma_{k}(s),\dot{\gamma}_{k}(s))ds<2^{-k}$.

We define $T_{k}>0$ and $e_{k}\in \mathbb{Z}^{n}$ inductively by $T_{0}$ $:=0,$ $T_{k}$ :- $t_{k}+T_{k-1}$ and $e_{k}:= \sum_{1=1}^{k}e_{1}’\cdot$ ,
respectively. We next define $\eta\in C((-\infty, 0$ ] $;y$ ) by

$\eta(t)$ $:=\gamma_{k}(t+T_{k-1})-e_{k-1}$ for $t\in(-T_{k}, -T_{k-1}$], $k\in$ N.

Then, by the $\mathbb{Z}^{n}$-periodicity of $L(x,\xi)$ in $x$ , we see

$\int_{-T_{k}}^{0}L(\eta,\dot{\eta})ds=\sum_{i=1}^{k}\int_{-T_{1}}^{-T_{1-1}}L(\eta,\dot{\eta})ds=\sum_{\mathfrak{i}=1}^{k}\int_{-t}^{0}L(\gamma_{i},\dot{\gamma}_{i})ds\leq\sum_{i=1}^{k}2^{-i}<1$ ,

which shows that $\eta$ satisfies (a) with $S=-\infty$ and $T=0$. Indeed, fix any bounded
subsolution $\phi$ of (14). Then, for every-oo $<-T_{k}\leq a<b\leq 0$,

$\phi(\eta(0))-\phi(\eta(b))+\int_{a}^{b}L(\eta,\dot{\eta})ds+\phi(\eta(a))-\phi(\eta(-T_{k}))\leq\int_{-T_{k}}^{0}L(\eta,\dot{\eta})ds<1$ .

Since $\phi$ is bounded, letting $karrow+\infty$ yields (a).
Thus, we can apply Lemma 4.2 and Proposition 4.3 to see $|\eta(-t)|arrow+\infty$ as $tarrow+\infty$ .

In particular, there exists $k_{0}\in N$ such that $\eta(-t)\not\in supp(f)$ for all $t\in(-\infty, T_{k_{0}}$ ], and for
all $k\geq k_{0}$ and $m\in N$ , we obtain.

$d_{f}(y-e_{k}, y-e_{k+m})=d_{f}(\eta(-T_{k}),\eta(-T_{k+m}))$

$\leq\int_{-T_{k+}}^{-T_{k}}$ . $L_{f}( \eta,\dot{\eta})ds=\int_{-T_{k+m}}^{-T_{k}}L(\eta,\dot{\eta})ds$

$= \sum_{\mathfrak{i}=k+1}^{k+m}\int_{-t_{i}}^{0}L(\gamma;,\dot{\gamma}_{i})ds\leq\sum_{i=k+1}^{k+m}2^{-i}$

$=2^{-k}(1-2^{-m})$ .

Hence, $\{y_{k}\}_{k\in N}:=\{y-e_{k}\}_{k\in N}$ satisfies

$\lim\sup\lim_{lkarrow\inftyarrow}\sup_{\infty}d_{f}(y_{k},y_{l})\leq 0$.

On the other hand, fix any bounded subsolution $\phi$ of (13) and take a subsequence $\{y_{k_{m}}\}_{m\in N}$

so that $\{\phi(y_{k_{m}})\}_{m\in N}$ forms a Cauchy sequence. Then,

$\lim_{marrow}\inf_{\infty}\lim\inf d_{f}(y_{k_{m}},y_{k_{l}})\iotaarrow\infty\geq\lim_{marrow\infty}\phi(y_{k_{m}})-\lim_{larrow\infty}\phi(y_{k_{l}})=0$.

Hence, $y:=\{y_{k_{m}}\}_{m\in N}\in\Lambda$ and we have completed the proof. 口
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Proposition 5.4. Let $w$ be any $bound\delta d$ soluti on of (13). Then,

(25) $w(x)= \inf_{y\in\Lambda}\lim_{larrow+}\inf_{\infty}(d_{f}(x, y_{l})+w(y_{l}))$ for all $x\in \mathbb{R}^{n}$ .

In particular, if two solutions $w_{1},$ $w_{2}$ of (13) satisfy

(26) $\lim_{karrow+\infty}(w_{1}-w_{2})(y_{k})=0$ for all $y\in\Lambda$ ,

then, $w_{1}=w_{2}$ on $\mathbb{R}^{n}$ .

Proof. We denote the right-hand side of (25) by $\tilde{w}(x)$ and show $w=\overline{w}$ on $\mathbb{R}^{n}$ . Since $w$ is
a subsolution of (13), we have $w\leq\tilde{w}$ on $\mathbb{R}^{n}$ by virtue of Lemma A.3. Thus, it remains to
prove $w\geq\overline{w}$ on $\mathbb{R}^{n}$ .

Fix any $x\in R^{n}$ and $\delta>0$ . By (20), there exists $z_{1}\in \mathcal{A}$ such that

$w(x)+2^{-1}\delta>d_{f}(x, z_{1})+w(z_{1})$ .

Similarly, there exists $z_{2}\in As$uch that

$w(z_{1})+2^{-2}\delta>d_{f}(z_{1}, z_{2})+w(z_{2})$ .

Inductively, we cm choose a sequence $z:=\{z_{k}\}_{k\in N}$ in $\mathcal{A}$ so that

$w(x)+ \delta\sum_{j=1}^{k}2^{-j}>\sum_{j=1}^{k}d_{f}(z_{j-1}, z_{j})+w(z_{k})$ for all $k\in N$ ,

where we have set $z_{0}:=x$ . Remark that $z$ can be taken so that $|z_{k}|arrow+\infty$ as $karrow+\infty$

since the bounded set $D$ in (20) is arbitrarily chosen.
Now, let us take $\eta\in C((-\infty,0$] $;x$) such that $\eta(-t_{k})=z_{k}$ and

$d_{f}(z_{k-1}, z_{k})> \int_{-t_{k}}^{-t_{k-1}}L_{f}(\eta,\dot{\eta})ds-2^{-k}\delta$ for all $k\in N$

for some diverging sequence $\{t_{k}\}_{N}$ . Then, we have

(27) $w(x)+2 \delta>\int_{-t_{k}}^{0}L_{f}(\eta,\dot{\eta})ds+w(z_{k})$ for all $k\in N$ ,

which yields that $\eta$ satisfies (17) since $w$ is bounded. Thus, in view of Lemma 4.5, $\mathbb{Z}$ belongs

to $\Lambda$ and

$w(x)+2 \delta>\lim_{karrow+}\inf_{\infty}(d_{f}(x,z_{k})+w(z_{k}))$

$\geq\inf_{y\in\Lambda}\lim_{karrow+}\inf_{\infty}(d_{f}(x,y_{k})+w(y_{k}))=\tilde{w}(x)$ .

Since $\delta>0$ is arbitrary, we can conclude that $w\geq\tilde{w}$ on $\mathbb{R}^{n}$ . Hence, we obtain (25).

Now, let $w_{1}$ and $w_{2}$ be bounded solutions of (13) satisfying (26). Then, for any $x\in \mathbb{R}^{n}$ ,

$w_{1}(x)= \inf_{y\in\Lambda}\lim_{arrow+}\inf_{\infty}(d_{f}(x, y_{l})+w_{1}(y_{l}))$

$= \inf_{y\in\Lambda}\lim_{larrow+}\inf_{\infty}(d_{f}(x, y_{l})+w_{2}(y_{l}))=w_{2}(x)$ .

Hence, we have completed the proof. 口
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Corollary 5.5. Let $w$ be any bounded Solution of (13). Then, for any $\delta>0$ and $x\in \mathbb{R}^{n}$ ,
there exists $\eta\in C((-\infty, 0$] $;x$) such that

$w(x)+ \delta.>\int_{-t}^{0}L_{f}(\eta,\dot{\eta})ds+w(\eta(-t))$ for all $t>0$ .

Proof. In view of (27), there exists $\eta\in C((-\infty, 0$] $;x$) such that for any given $t>0$ and
$t_{k}\geq t$ , we see

$w(x)+ \delta>\int_{-t}^{0}L_{f}(\eta,\dot{\eta})ds+\int_{-t_{k}}^{-t}L_{f}(\eta,\dot{\eta})ds+w(\eta(-t_{k}))$

$\geq\int_{-t}^{0}L_{f}(\eta,\dot{\eta})ds+d_{f}(\eta(-t), \eta(-t_{k}\sim))+w(\eta(-t_{k}))$

$\geq\int_{-t}^{0}L_{f}(\eta,\dot{\eta})ds+w(\eta(-t))$ ,

where we have used Lemma A.3 to show the last inequality. 口

For $v_{0}\in BC(\mathbb{R}^{n})$ , we define $v:\mathbb{R}^{n}arrow \mathbb{R}$ by

(28) $v(x)$ $:= \inf_{y\in}.\lim\inf\iotaarrow\infty(d_{f}(x, y_{l})+v_{0}(y_{l}))$ .

Lemma 5.6. $v$ is a bounded $func\hslash on$ on $\mathbb{R}^{n}$ .

Proof. For $x\in \mathbb{R}^{n}$ , we can find $y\in A$ such that $x-y\in[0_{:}1)^{n}$ . In particular, $|x-y|\leq\sqrt{n}$ .
By Proposition 5.3, there exists $\{y_{l}\}_{l\in N}\in\Lambda$ and $C_{f}>0$ such that $d_{f}(y,y_{l})\leq C_{f}$ for all
$l\in N$ . Then,

$d_{f}(x,y_{l})+v_{0}(y_{l})\leq d_{f}(x,y)+d_{f}(y_{J}y_{l})+v_{0}(y_{l})$

$\leq C\sqrt{n}+C_{f}+|v_{0}|_{\infty}$

for some $C>0$ . In particular, we have

$v(x) \leq 1ini\inf_{larrow\infty}(d_{f}(x, y\iota)+v_{0}(y_{l}))\leq C\sqrt{n}+C_{f}+|v_{0}|_{\infty}$ .

Thus, $v$ is upper bounded on $\mathbb{R}^{n}$ . It is clear that $v$ is lower bounded since $d_{f}$ and $v_{0}$ are
lower bounded. Hence, $v$ is bounded. $\square$

Proposition 5.7. Let $v$ be the function defined by (28). Then,
$(a)$ $v$ is the maximal subsolution of (13) satishing

(29) $\lim_{karrow+}\sup_{\infty}(v-v_{0})(y_{k})\leq 0$ for all $y\in\Lambda$ .

Moreover, if $v_{0}$ is a $bo$unded subsolution of (J3), then $v$ satisfies

(30) $\lim_{karrow+\infty}(v-v_{0})(y_{k})=0$ for all $y\in\Lambda$ .

$(b)$ $v$ is a supersolution of (1S).
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Proof. Fix any $x,$ $z\in \mathbb{R}^{n}$ and $\delta>0$ , and take $y’=\{y_{k}’\}\in\Lambda$ so that

$v(z)+ \delta>\lim inflarrow\infty(d_{f}(z, y_{l}’)+v_{0}(y_{l}’))$ .

Then,

$v(x)-v(z)- \delta\leq\lim_{karrow\infty}\{\inf_{l\geq k}(d_{f}(x,y_{l}’)+v_{0}(y_{l}’))-\inf_{\iota\geq k}(d_{f}(z,y_{l}’)+v_{0}(y_{l}’))\}$

$\leq\lim_{karrow\infty}\sup_{l\geq}(d_{f}(x, y_{l}’)-d_{f}(z, y_{l}’))\leq d_{f}(x, z)$ .

Since $\delta>0$ is arbitrary, we obtain

$v(x)-v(z)\leq d_{f}(x,z)$ for $aUx,$ $z\in \mathbb{R}^{n}$ .
Thus, $v$ is a subsolution of (13) in view of Lemma A.3 in Appendix. We also see.$hom$ this
inequality that $v$ is continuous on $\mathbb{R}^{n}$ .

We next show (29). Fix $\epsilon>0$ and $y\in\Lambda$ arbitrarily. Then, there exists $k_{0}\in N$ such that
for all $k\geq k_{0}$ and $m\geq k+1$ ,

$\inf_{l\geq m}(d_{f}(y_{k}, y_{l})+v_{0}(y_{l}))\leq\epsilon+\inf_{l\geq m}v_{0}(y_{l})$.

Letting $marrow+\infty$ yields $v(y_{k}) \leq\epsilon+\lim\inf_{larrow+\infty}v_{0}(y_{l})$ . Thus, we obtain

$\lim_{karrow+}\sup_{\infty}(v-v_{0}))(y_{k}))\leq\epsilon+\lim_{larrow+}\inf_{\infty}v_{0}((y_{l})-\lim_{karrow+}\inf_{\infty}v_{0}(y_{k}.)=\epsilon$
.

Since $\epsilon$ is arbitrary, we get (29).
To prove the maximality of $v$ , let $\phi$ be any bounded subsolution of (13) satisfying (29)

with $\phi$ in place of $v$ . Then, for every $x\in \mathbb{R}^{n}$ ,

$\phi(x)\leq\inf_{y\in}\lim_{larrow+}\inf_{\infty}(d_{f}(x, y_{l})+\phi(y_{l}))$

$\leq\inf_{y\in}\lim_{larrow+}\inf_{\infty}(d_{f}(x,y_{l})+v_{0}(y_{l}))+\sup_{y\in\Lambda}\lim_{larrow+}\sup_{\infty}(\phi-v_{0})(y_{l})$

$\leq v(x)$ .

Suppose now that $v_{0}$ is a bounded subsolution of (13). Then, for every $x\in \mathbb{R}^{\mathfrak{n}}$ ,

$v(x)= \inf_{y\in}\lim\inf\iotaarrow\infty(d_{f}(x, y_{l})+v_{0}(y_{l}))$

$\geq\inf_{y\in\Lambda}\lim\inf\iotaarrow\infty(v_{0}(x)-v_{0}(y_{l})+v_{0}(y_{l}))=v_{0}(x)$ .

In particular, (30) holds.
We next show (b). Suppose that there exist a point $z\in \mathbb{R}^{n}$ and a strict $C^{1}$ -subtangent $\phi$

to $v$ at $z$ such that $H_{f}(z, D\phi(z))<0$ . Fix $r>0$ so that $H_{f}(x, D\phi(x))<0$ for all $x\in B(z,r)$ .
Then, we can find $\epsilon>0$ such that $v(x)-\phi(x)>\epsilon$ for an $x\in\partial B(z, r)$ since $\phi$ is a strict

subtangent. Now, we define a new function $\psi\in C(\mathbb{R}^{n})$ by

$\psi(x):=\{\begin{array}{ll}\max\{\phi(x)+\epsilon,v(x)\} if x\in B(z,r)v(x) othe\iota wise.\end{array}$
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Then, $\psi$ is a subsolution of (13) satisfyihg $\psi\geq v$ on $\mathbb{R}^{n}$ and $\psi(z)>v(z)$ .
Now, fix any $y\in\Lambda$ . Since $|y_{k}|arrow+\infty$ as $karrow+\infty$ , there exists $k_{0}\in N$ such that

$v(y_{k})=\psi(y_{k})$ for all $k\geq k_{0}$ . Thus,

$\lim_{karrow+\infty}\sup_{l\geq k}(\psi-v_{0})(y_{l})=\lim_{karrow+\infty}\sup_{l\geq}(v-v_{0})(y_{k})\leq 0$
.

But, this contradicts the maximality of $v$ . Hence, $v$ is a supersolution of (13). $\square$

Remark 5.8. If we set $d_{f}(x,y)$ $;= \lim_{larrow+\infty}d_{f}(x, y_{l})$ and $v_{0}(y)$ $:= \lim\inf_{larrow+\infty}v_{0}(y_{l})$ for
$y\in\Lambda$ , then, (28) can be rewritten as

$v(x)= \inf_{y\in\Lambda}(d_{f}(x, y)+v_{0}(y)),$.
$x\in \mathbb{R}^{n}$ .

6 Representation and Convergence.

This section is devoted to proving Theorem 2.4 as well as getting a representation formula

for asymptotic solutions.
We first give the $pro$of of Proposition 2.3 which we postponed. Since unifom continuity is

standard, we only check boundedness. Let $u$ be the unique solution of Cauchy problem (1)

with an initial function $u_{0}\in BUC(\mathbb{R}^{n})$ . Notice that $H$ has been $normali_{\mathbb{Z}}ed$ so that $c=0$ .
Let $\phi$ be any bounded solution of (13). Since $u_{0}$ is bound.ed, we can take $A>0$ so that
$\phi(x)-A\leq u_{0}(x)\leq\phi(x)+A$ for all $x\in R^{\mathfrak{n}}$ . Remark also that $\phi+A$ and $\phi-A$ are solutions
of (1) with initial data $\phi+A$ and $\phi-A$ , respectively. Then, the standard comparison
$th\infty rem$ for (1) infers that $\phi(x)-A\leq u(x, t)\leq\phi(x)+A$ for all $(x, t)\in \mathbb{R}^{\mathfrak{n}}x[0, +\infty)$ . In
particular, $u$ is bounded on $\mathbb{R}^{n}x[0, +\infty$ ) and we have completed the proof of Proposition

2.3.

Let us denote by $\{S(t)\}_{t\geq 0}$ the semi-group of mappings on $BUC(\mathbb{R}^{n})$ defined by $(S(t)u_{0})(x)$ $:=$

$u(x,t)$ , where $u_{0}$ is a given initial function and $u$ is the unique solution of (1). We next
define $v^{+},$ $v^{-}\in BUc_{\text{ノ}}(\mathbb{R}^{n})$ by

$v^{+}(x)$ $:= \lim_{tarrow+}\sup_{\infty}(S(t)u_{0})(x)=\lim_{tarrow+}\sup_{\infty}*u(x,t)$
,

$v^{-}(x):= \lim_{tarrow+}\inf_{\infty}(S(t)u_{0})(x)=\lim_{t\sim+}\inf_{\infty}*u(x,t)$ .

Note that from the general $th\infty ry$ of viscosity solutions, $v^{+}$ and $v^{-}$ are sub- and supersolu-

tions of (13), respectively. $Mor\infty ver$ , the convexity of $H(x, \cdot)$ implies that $v^{-}$ is a subsolution

of (13) (see [5]). In particular, $v^{-}$ is a bounded solution of (13).

We try to obtain a representation formula for $v^{-}$ .

Lemma 6.1. $v^{-}$ satisfies

(31) $\lim_{karrow+}\sup_{\infty}(v^{-}-u_{0})(y_{k})\leq 0$ for all $y\in\Lambda$ .
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Proof. Take $y\in\Lambda$ and $\delta>0$ arbitrarily. We fix $k\in N$ so that $d_{f}(y_{k},y_{k+m})<\delta$ for a\"u

$m\in N$ . Similarly as in the proof of Ptoposition 5.4, we can find $\eta\in C((-\infty, 0$] $;y_{k}$ ) such
that $y_{k+m}=\eta(-t_{m})$ for some diverging sequence $\{t_{m}\}_{m\in N}$ and

$\int_{-.t_{m}}^{0}L_{f}(\eta,\dot{\eta})ds<d_{f}(y_{k},y_{k+m})+\delta<2\delta$.

Thus,

$u(y_{k}, t_{m}) \leq\int_{-t_{m}}^{0}L_{f}(\eta,\dot{\eta})ds+u_{0}(\eta(-t_{m}))\leq 2\delta+u_{0}(y_{k+m})$,

and we have

$v^{-}(y_{k})= \lim_{tarrow+}\inf_{\infty}u(y_{k},t)\leq marrow+\infty hm\inf u(y_{k}, t_{m})\leq 2\delta+\lim_{larrow+}\inf_{\infty}u_{0}(y_{l})$.

In particular,

$\lim_{karrow+}\sup_{\infty}(v -u_{0})(y_{k})\leq 2\delta+\lim_{larrow+}\inf_{\infty}u_{0}(y_{l})-\lim_{karrow+}\inf_{\infty}u_{0}(y_{k})=2\delta$
.

Since $\delta$ is arbitrary, we obtain (31). $\square$

Lemma 6.2. Suppose that $u_{0}$ is a subsolution of (1S). Then, the solution $u$ of (1) converg es
in $C(\mathbb{R}^{\mathfrak{n}})$ to the function

$\overline{v}(x)$ $:= \inf_{y\in}\lim\inf\iotaarrow\infty(d_{f}(x, y_{l})+u_{0}(y_{l}))$ .

Proof. Since $u_{0}$ is a subsolution of (13), we can see $u_{0}\leq\tilde{v}$ on $\mathbb{R}^{n}$ . Moreover, since $u_{0}$ and $\tilde{v}$

are sub- and supersolutions of (1), respectively, the comparison $th\infty rem$ for (1) yields that
for all $t>0$ ,

$u_{0}\leq S(t)u_{0}\leq S(t)\tilde{v}=\tilde{v}$ in $\mathbb{R}^{n}$ .

In particular, $u_{0}\leq v^{-}\leq\overline{v}$, and in view of Lemma 6.1 and Proposition 5.7, we have

$\lim_{larrow+\infty}(\tilde{v}-v^{-})(y_{l})=\lim_{larrow+\infty}(\tilde{v}-u_{0})(y_{l})-\lim_{larrow+\infty}(v^{-}-u_{0})(y_{l})=0$

for all $y\in\Lambda$ . Thus, we can apply Proposition 5.4 to conclude that $\tilde{v}=v^{-}=v^{+}$ on $\mathbb{R}^{n}$ .
Hence, we have completed the proof. $\square$

Proposition 6.3. Let $u_{0}\in BUC(\mathbb{R}^{n})$ be any initial function. Then, we have the $follo\dot{w}ng$

fomula:
$v^{-}(x)=$ inf $\lim\inf(d_{f}(x, y_{l})+v_{0}(y_{l}))$ ,

$y\in\Lambda\iotaarrow\infty$

where $v_{0}(x)$ $:= \inf_{y\in W}(d_{f}(x,y)+u_{0}(y))$ .

Proof. We denote the right-hand side by $v(x)$ . Since $v_{0}$ is a subsolution of (13) and $v_{0}\leq u_{0}$

on $\mathbb{R}^{n}$ by Proposition A.4, we have $S(t)v_{0}\leq S(t)u_{0}$ for all $t\geq 0$ . By the comparison theorem

for (1) and Lemma 6.2, we see

$v(x)= \lim_{tarrow\infty}S(t)v_{0}\leq\lim_{tarrow}\inf_{\infty}S(t)u_{0}=v^{-}(x)$ .
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Hence, it suffices to show that $v^{-}\leq v\sigma^{v}nR^{n}$ .
Fix any $\delta>0,$ $x\in \mathbb{R}^{n}$ and $y$ $:=\{y_{l}f_{l\in N}\in\Lambda$ . We construct a curve $\eta\in C((-\infty, 0$] $;x$ )

such that $y_{j}=\eta(-s_{j})$ for some positive sequence $\{s_{j}\}_{j\in N}$ and

$\int_{-s_{j}}^{0}L_{f}(\eta(s),\dot{\eta}(s))ds<d_{f}(x, y_{j})+\delta$, $j\in N$ .

For each $l\in N$ , we fix $z_{l}\in \mathbb{R}^{n}$ so that

$d_{f}(y_{l}, z_{l})+u_{0}(z \iota)<\inf_{y\in R^{n}}(d_{f}(y_{l}, y)+u_{0}(y))+\delta$ .

We also take $i_{l}>0$ and $\gamma\iota\in C([-s_{l}-t_{l}, -s_{l}]_{:}\cdot z_{l}, y_{l})$ such that

$\int_{-\prime_{3^{-t_{l}}}}^{-\epsilon\iota}L_{f}(\gamma_{l}(s),\dot{\gamma}_{l}(s))ds<d_{f}(y_{l}\cdot, z_{l})+\delta$ .

Now, we define $\eta\iota\in C([-s_{l}-t_{l},0];x)$ by

$\eta_{l}(s)=\{\begin{array}{ll}\eta(s) if s\in[-s_{l}, 0]\gamma\iota(s) if s\in[-s_{l}-t_{l}, -s_{l}].\end{array}$

Then, in view of (8), we see

. $u(x, s_{l}+t_{l}) \leq\int_{-\epsilon_{j}-t\iota}^{0}L_{f}(\eta_{l}(s),\dot{\eta}_{l}(s))ds+u_{0}(\eta_{l}(-s\iota-t_{l}))$

$\leq\int_{-s_{\dot{9}}}^{0}L_{f}(\eta(s),\dot{\eta}(s))ds+d_{f}(y\dagger’ z_{l})+u_{0}(z_{l})+\delta$

$\leq d_{f}(x, y_{l})+\inf_{z\in R^{n}}(d_{f}(y_{l}, z)+u_{0}(z))+3\delta$

$=d_{f}(x, y_{1})+v_{0}(y_{l})+3\delta$ for 可 U $l\in N$ .

Since $|y_{l}|arrow$ 十\infty as $larrow\infty$ , we have $s_{l}arrow$ 十\infty , and therefore $s_{1}+t_{t}arrow+\infty$ . Thus,

$v^{-}(x) \leq\lim\inf u(x, s_{l}\iotaarrow\infty+t_{l})\leq\lim inflarrow\infty(d_{f}(x,y_{l})+v_{0}(y_{l}))+3\delta$ .

By considering the infimum over all $y\in\Lambda$ and letting $\delta\downarrow 0$ , we obtain $v^{-}(x)\leq v(x)$ on
$\mathbb{R}^{n}$ . $\square$

We finally prove our main theorem. Fix any $u_{0}\in BUC(\mathbb{R}^{n})satis\phi ing$ (u1) of Assumption
1 for some $\mathbb{Z}^{n}$-periodic function $\hat{u}_{0}\in BUC(\mathbb{R}^{n})$ , and let $u(x, t)$ and $\hat{u}(x:t)$ be solutions of
Cauchy problems (1) and (3) with initial data $u_{0}$ and $\hat{u}_{0}$ , respectively. Remark that $\hat{u}(\cdot,t)$

is $\mathbb{Z}^{n}$-periodic for all $t>0$ .

Lemma 6.4. For every $\delta\in(0,1)$ and $t>0$ , there exists $R=R(\delta,t)>0$ such that

$u(x, t)<\hat{u}(x,t)+\delta$ for all $x\in \mathbb{R}^{n}\backslash B(0, R)$ .

Proof. Fix $\delta\in(0,1)$ and $t>0$ , and take any $\eta\in C([-t,0];x)s$uch that

(32) $\hat{u}(x,t)+\delta/2>\int_{-t}^{0}L(\eta,\dot{\eta})ds+\hat{u}_{0}(\eta(-t))$ .
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Then, by Lemma 4.1 with $f=0$, there exists a constant $C>0$ not depending on $(x, t)$ such
that

$\int_{-t}^{0}|\dot{\eta}(s)|ds\leq C(1+t)$ .

Let $R_{0}>0$ be a number which satisfies $supp(f)\subset B(O, R_{0})$ and $\sup_{|x|\geq Ro}|u_{0}(x)-\hat{u}_{0}(x)|<$

$\delta/2$ . We choose a sufficiently large $R>R_{0}$ so that $R-R_{0}>C(1+t)$ . Then, for every
$x\in \mathbb{R}^{n}\backslash B(0,R)$ and $\eta\in C([-t, 0];x)$ satisfying (32), we see $\eta([-t,O])\cap supp(f)=\emptyset$ and
$|\eta(-t)|\geq R_{0}$ . Therefore,

$u(x, t) \leq\int_{-t}^{0}L_{f}(\eta,\dot{\eta})ds+u_{0}(\eta(-t))$

$< \int_{-t}^{0}L(\eta,\dot{\eta})ds+\hat{u}_{0}(\eta(-t))+\delta/2<\hat{u}(x,t)+\delta$.

Hence, we have comPleted the proof. 口

Proof of Theorem 2.4. It suffices to show $v^{+}=v^{-}$ on $\mathbb{R}^{n}$ . Fix any $\delta>0$ and $x\in R^{n}$ .
Take a diverging sequence $\{t_{j}\}_{j\in N}$ such that $u(x, t_{j})$ converges to $v^{+}(x)$ . Then, in view of
(9) and Corollary 5.5, there exists $\eta\in C((-\infty\cdot, 0$ ] $;x$) such that

$u(x,t_{j}) \leq\int_{-t}^{0}L_{f}(\eta,\dot{\eta})ds+u(\eta(-t),t_{j}-t)$

$<v^{-}(x)-v^{-}(\eta(-t))+\delta+u(\eta(-t),t_{j}-t)$

for all $j\in N$ and $t\in[0,t_{j}]$ . We know kom Lemma 6.4 that for each $k\in N$ , there exists
$R_{k}>0$ such that $u(z, k)<\hat{u}(z, k)+\delta$ for every $z\in \mathbb{R}^{n}\backslash B(0, R_{k})$ . Since $|\eta(-t)|arrow$ 十\infty

as $tarrow+\infty$ by Proposition 4.3, we can find $j(k)\in N$ such that $|\eta(-t_{j(k)}+k)|>R_{k}$ for all
$k\in N$ . In particular, by setting $s_{k}$ $:=t_{j(k)}-k$ , we have $u(\eta(-s_{k}), k)<\hat{u}(\eta(-s_{k}), k)+\delta$ ,
and therefore

$u(x,t_{j(k)})<v^{-}(x)-v^{-}(\eta(-s_{k}))+\hat{u}(\eta(-s_{k}),k)+2\delta$ .
Thus, letting $karrow+\infty$ yields

$v^{+}(x)= \lim_{karrow+\infty}u(x,t_{j(k)})<v^{-}(x)-\lim_{karrow+}\sup_{\infty}v^{-}(\eta(-s_{k}))+\lim_{karrow+}\inf_{\infty}\hat{u}(\eta(-s_{k}), k)+2\delta$
.

Since $\hat{u}(\cdot,t)$ converges uniformly in $\mathbb{R}^{n}$ (or equivalently in $\mathbb{T}^{n}$ ) to $\hat{v}(\cdot)$ and $\hat{v}\leq v^{-}$ on $\mathbb{R}^{n}$ , we
finally obtain

$v^{+}(x)<v^{-}(x)- \lim_{k-+}\sup_{\infty}v^{-}(\eta(-s_{k}))+\lim_{karrow}\inf_{\infty}\hat{v}(\eta(-s_{k}))+\delta\leq v^{-}(x)+2\delta$
,

which infers $v^{+}(x)\leq v^{-}(x)$ after letting $\delta\downarrow 0$ . Since $v^{-}\leq v^{+}$ on $R^{n}$ , we get $v^{+}=v^{-}$ and
the proof of $Th\infty rem2.4$ has been completed. $\square$

Final Remarks. Throughout this paper, the strict convexity of $H$ is used only to guaran-
tee the convergence of $\hat{u}$ (. , t) as $tarrow+\infty$ . Thus, if it convergae under the assumption that

107



$H$ is merely convex, then Theorem 2.4 $i_{8}$ also valid without assuming the strict convexity of
$H$ .

Concerning condition (u1) of Assumption 1, we do not have to assume that $u_{0}\geq\hat{u}_{0}$ if
$a_{f}<0$ , where $a_{f}$ is the critical eigenvalue for (11) (see also [2]). Indeed, let $u^{(1)}$ and $u^{(2)}$ be
solutions of Cauchy problem (1) with $\mathbb{Z}^{n}$-periodic initial function $\hat{u}_{0}$ and its perturbation
$u_{0}$ such that $\lim_{Rarrow+\infty}\sup$} $x|\geq R|u_{0}(x)-\hat{u}_{0}(x)|=0$, respectively. Fix $\delta>0,$ $(x,t)\in \mathbb{R}^{n}x$

$[0, +\infty)$ and take $\gamma^{(t)}\in C([-t, 0];x)$ so that

(33) $u^{(2)}.(x,t)+ \delta>\int_{-t}^{0}L_{f}(\gamma^{(t)}(s),\dot{\gamma}^{(t)}(s))ds+u_{0}(\gamma^{(t)}(-t))$ .

Then, in view of (8), we see

$u^{(1)}(x,t)-u^{(2)}(x,t)<\hat{u}_{0}(\gamma^{(t)}(-t))-u_{0}(\gamma^{(t)}(-t))+\delta$ .
We claim here that $|\gamma^{(t)}(-t)|arrow+\infty$ as $tarrow+\infty$ . To show this, suppose that $\sup_{j}|\gamma_{j}(-t_{j})|<$

$+\infty$ for some sequence $\gamma_{j}$
$:=\gamma^{(t_{j})}\in C([-t_{j}, 0];x)$ satisfying (33) with $t=t_{j},$ $j\in N$ . Then,

for any subsolution $\phi$ of (11) with $a=a_{f}$ , we have

$\phi(\gamma_{j}(0))-\phi(\gamma_{j}(-t_{j}))\leq\int_{-t_{j}}^{0}\{L_{f}(\gamma_{j}(s),\dot{\gamma}_{j}(s))+H_{f}(\gamma_{j}(s),D\phi(\gamma_{j}(s)))\}ds$

$\leq|u_{0}|_{\infty}+\sup_{j\in N}|u^{(2)}$
$($ . , $t_{j})|_{\infty}+\delta+a_{f}t_{j}$ .

Since $a_{f}<0$ , we get the contradiction by letting $jarrow+\infty$ . Thus, we obtain

$\lim_{tarrow+}\sup_{\infty}(u^{(1)}(x,t)-u^{(2)}(x,t))\leq\delta$ .

Similarly, we also have
$\lim_{tarrow+}\sup_{\infty}(u^{(2)}(x,t)-u^{(1)}(x,t))\leq\delta$ .

Remark that the convergence is uniform on any compact subset of $\mathbb{R}^{n}$ . Hence, $u^{(1)}(\cdot, t)-$

$u^{(2)}(\cdot,t)$ converges to zero in $C(\mathbb{R}^{n})$ .
If $\mathcal{A}$ contains an equilibrium point or a closed loop of critical curve, then we can see that

$a_{f}<0$ . However, we do not know if $\mathcal{U}_{j}=\emptyset$ implies $a_{f}<0$ in general cases.
We also remark that Theorem 2.4 is still valid if $\lim_{larrow+\infty}(\hat{v}-v_{0})(y_{l})=0$ for all $y\in\Lambda$

even in the case where $\mathcal{U}_{f}=\emptyset,$ $a_{f}=0$ and $u_{0}(x)<\hat{u}_{0}(x)$ for sdme $x\in \mathbb{R}^{n}$ . The last claim
is clear from the proof of Theorem 2.4.

A Fundamental facts.
We collect some properties of $d_{f}(x, y)$ defined by (16) (cf. [10, 14]).

Lemma A.l. There exists $\epsilon>0$ and $C>0$ such that $L_{f}(x,\xi)\leq C$ for all $(x,\xi)\in$

$\mathbb{R}^{n}xB(0,\epsilon)$ .
Proof. This lemma is a slight modification of Proposition 2.1 in [14] by taking into account
that $L$ is $\mathbb{Z}^{n}$-periodic in $x$ . $\square$
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Proposition A.2.
$(a)$ $d_{f}(x, z)\leq d_{f}(x, y)+d_{f}(y, z)$ for ail $x,$ $y,$ $z\in R^{n}$ .
$(b)$ $d_{f}(y, y)=0$ for all $y\in \mathbb{R}^{n}$ .
$(c)$ $d_{f}(\cdot , y)$ is Lipschitz continuous on $\mathbb{R}^{n}$ unifomly in $y\in \mathbb{R}^{n}$ .
$(d)$ $d_{f}(x, \cdot)$ is Lipschitz continuous on $\mathbb{R}^{n}$ unifomly in $x\in \mathbb{R}^{\acute{n}}$ .
$(e)$ $d_{f}(\cdot , y)$ is a subsolution of (13) in $\mathbb{R}^{n}$ and is a supersolution in $\mathbb{R}^{n}\backslash -\{y\}$ .
$(f)$ $-d_{f}(y, \cdot)$ is a subsolution of (1S) in $\mathbb{R}^{n}$ and is a supersolution in $\mathbb{R}^{\mathfrak{n}}\backslash \{y\}$ .

Prvof One can easily show (a) by the definition of $d_{f}$ . . $(b)$ is also $easil\dot{y}$ checked since
$d_{f}(y, y)\geq 0$ by (a) and one can see $d_{f}(y,y)\leq 0$ by taking a convergent sequence $t_{n}\downarrow 0$ and
$\gamma_{n}\equiv y\in C([0,t_{n}];y,y)$ in (16).

To show (c), fix any $x,$ $y\in \mathbb{R}^{n},$ $\delta>0$ and set $T$ $:=\epsilon^{-1}(\delta+|x-y|)$ and $\xi:=T^{-1}(x-$

y) $\in B(O;\epsilon)$ , where $\epsilon>0$ is taken so that Lemma A.l holds. Next, we deflne the curve
$\gamma\in C([0, T];y, x)$ by $\gamma(s)$ $:=y+s\xi$ . Then, we get

$d_{f}(x, y) \leq\int_{0}^{T}L_{f}(\gamma(s),\dot{\gamma}(s))ds=\int_{0}^{T}L_{f}(y+s\xi,\xi)ds\leq CT\leq\epsilon^{-1}C(\delta+|x-y|)$ .

Letting $\delta\downarrow 0$ yields $d_{f}(x,y)\leq\epsilon^{-1}C|x-y|$ , which implies in particular that $d_{f}$ is a continuous
function on $R^{n}\cross R^{n}$ . By using (a), we can show that

$|d_{f}(x, y)-d_{f}(z, y)|\leq\epsilon^{-1}C|x-z|$ for all $x,$ $y,$ $z\in \mathbb{R}^{n}$ .

Hence, $d_{f}.(\cdot, y)$ is Lipschitz continuous uniformly in $y\in \mathbb{R}^{n}$ . The assertion (d) is now trivial
’from the proof of (c).

We prove (e). Since $d_{f}(x,y)$ is continuous with respect to $x$ on $\mathbb{R}^{n}$ , we can apply Theorems
A. 1 and A.2 of [14] to show that $d_{f}$ (. , y) is a subsolution of (13) in $\mathbb{R}^{n}$ and is a supersolution
of (13) in $R^{n}\backslash \{y\}$ .

To show (f), remark first that $d_{j}(y,x)$ can be represented as

$d_{f}(y,x):= \inf\{\int_{0}^{t}\tilde{L}_{f}(\gamma(s),\dot{\gamma}(s))ds|t>0,$ $\gamma\in C([0,t];y,x)\}$ ,

where $\tilde{L}_{f}(x, \xi):=\overline{L}(x, \xi)+f(x)$ and $\overline{L}(x, \xi)=L(x, -\xi)$ . Since $\tilde{L}$ is the convex conjugate of
$\tilde{H}(x,p)$ $:=H(x, -p)$ and $\tilde{H}$ satisfies $(H1)-(H4)$ in place of $H$ , we can apply Appendix A.l in
[14] to deduce that $d_{f}(y, \cdot)$ is a subsolution of $\tilde{H}(x, Du)-f(x)=0$ in $\mathbb{R}^{n}$ . Thus, $-d_{f}(y, \cdot)$

is a subsolution of (13) in $\mathbb{R}^{n}$ . $\square$

Lemma A.3. A junction $u\in C(\mathbb{R}^{n})$ (which is possibly unbounded) is a subsolution of (13)

if and only if the following fomula is valid:

(34) $u(x)-u(y)\leq d_{f}(x, y)$ for all $x,$ $y\in \mathbb{R}^{n}$ .

In particular, $d_{f}($ . , $y)$ and $-d_{f}(y, \cdot)$ are the maximal and minimal subsolutions of (1S)
equating $0$ at $y$ , respectively.
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Proof. The “only if” part is a direct co\v{n}sequence of Proposition 2.5 in [14]. Now, we assume
(34). Fix any $x\in \mathbb{R}^{n}$ and let $\phi$ be a $C^{J*}$-supertangent to $u$ at $x$ such that $\phi(x)=0$ . Then,

by (34),
$\phi(y)\geq u(y)-u(x)\geq-d_{f}(x, y)$ for all $y\in R^{n}$ ,

and $\phi(x)=-d_{f}(x, x)=0$ . Thus, $\phi$ is also a $C^{1}$ -supertangent to $-d_{f}(x, \cdot)$ at $x$ . By

Proposition A.2 (f), we have $H_{f}(x, D\phi(x))\leq 0$ , which implies the subsolution property of
口$u$ .

Proposition A.4. Let $C$ be any subset of $\mathbb{R}^{n}$ and $u_{0}\in BC(\mathbb{R}^{n})$ . Then, the func$\hslash$on
$u\in C(R^{n})$ defined by

(35) $u(x):- rightarrow\inf_{y\in C}(d_{f}(x, y)+u_{0}(y))$

is the maximal subsolution of (1S) not exceeding $u_{0}$ on $C$ , and it is a solution in $\mathbb{R}^{n}\backslash \overline{C}$.
Moreover, suppose that $u_{0}.is$ a subsolution of (1S). Then, $u\equiv u_{0}$ on $C$ .

Proof. By the previous lemma, $d_{f}$ is lower bounded since (13) has a bounded subsolution.
Fix any $x,$ $y\in \mathbb{R}^{n},$ $\delta>0$ and take a point $y_{\delta}\in \mathbb{R}^{n}$ such that

$d_{f}(x, y_{\delta})+u_{0}(y_{\delta})< \inf_{z\in C}(d_{j}(x, z)+u_{0}(z))+\delta$.

Then, we see that

$u(x)-u(y)<d_{f}(x,y_{\delta})+u_{0}(y_{\delta})-d_{f}(y, y_{\delta})-u_{0}(y_{\delta})+\delta$

$\leq d_{f}(x, y)+\delta$,

where we have used the triangle inequality for $d_{f}$ . Since $\delta>0$ is arbtrary, we obtain the
subsolution property of $u$ .

Let us take any subsolution $\phi\in C(\mathbb{R}^{n})$ of (13) not exceeding $u_{0}$ on $C$ . Then,

$\phi(x)\leq\inf_{z\in C}(d_{f}(x, z)+\phi(z))\leq\inf_{z\in C}(d_{f}(x, z)+u_{0}(z)).=u(x)$,

which implies the $m$aximality of $u$ .
We next show the supersolution property of $u$ in $\mathbb{R}^{\mathfrak{n}}\backslash \overline{C}$. Suppose that there exist a point

$z\in \mathbb{R}^{n}\backslash \overline{C}$ and a strict $C^{1}$-subtangent $\phi$ to $u$ at $z$ such that $H_{f}(z, D\phi(z))<0.$ .Fix $r>0$ so
that $B(z, r)\cap\overline{C}=\emptyset$ and $H_{f}(x, \phi(x))<0$ for all $x\in B(z, r)$ . Then, we can find $\epsilon>0$ such
that $u(x)-\phi(x)>\epsilon$ for all $x\in\partial B(z,r)$ since $\phi$ is a strict subtangent. Now, we define a
new function $\psi\in C(\mathbb{R}^{\mathfrak{n}})$ by

$\psi(x)$ $:=\{\begin{array}{ll}\max\{\phi(x)+\epsilon,u(x)\} if x\in B(z,r)u(x). otherwise.\end{array}$

Then, it is clear that $\psi$ is a subsolution of (13) in $\mathbb{R}^{n}$ not exceeding $u_{0}$ on $C$ and $\psi(z)>u(z)$ .
But, this contradicts ‘the maximality of $u$ . The last assertion can also be proved by the
maximality of $u$ . $\square$
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