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1 Introduction

The purpose of the present paper is to give a new representation of solutions for the
periodic linear differential equation of the form

%m(t) = A®)e(t) + f(£), 2(0)=w (1)

where A(t) is a 7-periodic continuous p X p matrix function with period 7 > 0 and
f : R = CP a 7-periodic continuous function. In general, we know the variation
of constants formula as a representation of solutions for the inhomogeneous linear
differential equation. However it is not easy to obtain the asymptotic behavior of
solutions by analyzing the integral term of the variation of constants formula. For the
case where A(t) is constant, we gave another, new representation of solutions as the
sum of exponential like functions and periodic functions in [1]. This representation
is powerful to investigate the asymptotic behavior of solutions.

In this paper we will study representations of solutions for the general periodic
equation (1) in such a direction. It is closely related to a new representation of
solutions of the linear difference equation of the form

zn+1'= U(r, O)zn + bf, Iy =w, (2)

where U(t, s) is a solution operator for the equation (1) with f(t) =0 and

by = ‘/OT U(r,s)f(s)ds.
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2 Linear difference equations

Throughout this paper we make use of the following notations: Let E be the unit pxp

matrix. For a complex p x p matrix H we denote by o(H) the set of all eigenvalues

of H, and by hy(n) the index of n € o(H). Let My (n) = N((H —nE)*®) be the

generalized eigenspace corresponding to n € ¢(H) and Q,(H) : CP - Mpg(n) the

projection corresponding to the direct sum decomposition C? = 3°, 1) ®Mp(n).
Consider the linear difference equation of the form

ZTpy1 = Bz, +b, 9= w, (3)

where B is a complex p x p matrix and b € CP. Denote by z,(w,b) the solution of
the equation (3). Then the solution z, := z,(w, b) is given as

Zn = B"w + S,(B)b,

where
n—1

Sa(B) =) B* (n21), So(B)=

k=0
Put h(u) he(p), Q. = Qu(B) for u € o(B). Clearly, we have

Quzn(w,b) = B"Quu + Sn(B)an-
To describe the results, we prepare the following notations. The factorial num-
bers (n); are given as
1, (k = 0),
=< nn—-1)n-2)---(n—k+1), (k=1,2,---,n),
0, (k=n+1,n+2,.-.).
Set a(z) = (z— 1)1, (z # 1). Then we have

‘ dk ke
a®(2) == E;k—a(z) = (=1)Fkl(z — 1)7*1,
For any p € o(B) such that u # 1, we define a matrix Z,(B) as follows:

Z,(B) = Z,(B, h(n))

where

h-—-1

ACROTS S DTG CE S W S e

k=0 k=0
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for h = 1,2,---,h(u). For a u € o(B) and a w € CP, two vectors v,(w,b) and
4(w, b) are defined as follows :

’Yp('“’,b) = ’Yu(w»b; B) = Quuw + Zu(B)Qub (b # 1)

and
8(w,b) := §(w,b; B) = (B - E)Quw+@ib (u=1).

Theorem 2.1 [3] Let u € o(B). The component Q,zn(w,b) of the solution z,(w,b)
of the equation (3) is expressed as follows:
1) If p#1, then

| Quzn(w,b) = By, (w,b) — Z,(B)Qyb.
2) If u=1, then
h(1)-1

_ (n)ks
Q1Zn(w,b) = ; 0 _:1;'(3 E)*5(w,b) + Quw.

Lemma 2.1 Let u € o(B), (u#1). Then the following relation
(B — E)Zﬂ(B)Q# = Qu (4)
holds, that is, Z,(B)Q,. is a solution of the equation
(B—E)X = Qy.

Proof For any b € CP the assertion 1) in Theorem 2.1 holds. Settingw =0,n =1
in Theorem 2.1, we have Q,z1(0,b) = BZ,(B)Q.b—Z,(B)Qub = Qubfor all b € C*.
This implies the relation (4). o

Lemma 2.2 If u# 1,u € o(B), then the following relation
(B = E)yu(w,b) = (B — E)Quw + Qub
holds. In particular, we have
Yu(w,0) =0 <= (B — E)yu(w,b) =
Proof Using Lemma 2.1, we have
(B — EYyu(w,b) = (B — E)Quw + (B — E)Z,(B)Qub
= (B~ E)Quw + Qub.

Now, we assume that (B — E)v,(w,b) = 0. Then we see that ,(w,b) € Mp(1).
It follows from definition of «,(w,b) that v,(w,b) € Mp(u). Hence y.(w,b) €
Mg(1) N Mp(p). On the other hand, since u # 1, we get Mp(1) N Mp(p) = {O}
Therefore the relation ,(w, ) = 0 holds.

The following result is one of the main result in this paper.
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-Th%:rem 2.2 The solution x,(w,b) of the equation (3) is ezpressed as follows:
(B — E)zp(w,b) = B*((B — E)w+b) — b.
2) Let p € o(B).
(B — E)Quzn(w,b) = B*((B — E)Quuw + Qub) — Qub.
(1) If p # 1, then
(B — E)Q1Zn(w, b) = B*(B — E)vu(w,b) — Qub.
@) Ifp =1, then |
(B — E)Q1zn(w,b) = B"6(w, b) — Chbd.

Proof Since i, (w,b) = B™w + S,(B)b and (B — E)S,(B)b = B" — b, we have

(B — E)za(w,b) = B™(B - E)w+ (B — E)Sa(B)b
= B"B-E)w+B"%—b
= B"((B— E)w+b)—b,

which implies the assertion 1). The assertion 2) can be easily obtained by using the
assertion 1), Theorem 2.1 and Lemma 2.2. a

3 A representation of solutions of periodic linear
differential equations

Denote by z(t) the solution (t;0,w) of the equation (1). In this section, we give a
representation of the solution z(t) to the equation (1). The solution operator U(Z, s)
is defined as U(¢, s)w = u(t; s, w), w € CP by using the unique solution u(t;s,w) of
the equation '(t) = A(t)u(t) with the initial condition u(s) = w € CP. Define the
well known periodic map V(¢),t €e Rby V(¢) =U(¢,t —7) = U(t + 7,t). Then it is
easy to check the following properties : V(t + 1) =V (¢), V(t)U(%, s) = U(¢, s)V (s).

Set
Qu(t) = Qu(V(?)) (n € o(V(0))).
We give a representation of the component Q,(¢)z(t) of the solution z(t) for the
equation (1) by using the method of periodicizing functions, cf.[2]. It is expressed
by characteristic multipliers. Hereafter, we set

by = /: U(r,8)f(s)ds
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and
Yu(w, bg) = Yu(w, b5;V(0)),  6(w,by) = 6(w,bs5V(0)).
Now we consider the problem of finding a solution z(t) := A7}(-U(¢,0)b;) of
the following equation

A z(t) == 2(t+ 1) — 2(t) = =U(¢,0)b;, (t€R). (5)

Theorem 3.1
1) The solution x(t) of the equation (1) ts expressed as follows:

z(t) = U(t,0)w — A;l(“'U(t:O)bf) + h(t, bf)) (te R),

where
h(t, bf) = A;I(—-U(t, O)bf) + At U(t, s)f(s)ds

is a continuous T-periodic function.
2) Let pu € a(V(0)). The component Q,,(t)z(t) of the solution x(t) of the equation
(1) is expressed as follows:

Qut)z(t) = U(t,0)Qu(0)w — ATH(=U(t,00Qu(0)bs) + hy(t,by), (t €R),

where
hu(t,by) = ATH=U(,0)Q.(0)bs) + fo t U(t,s)Qu(s)f(s)ds

is a continuous T-periodic function.

To get representations of solutions for the equation (1), we will calculate the
functions A7 (—U(t,0)by) and A;1(—U(t,0)Q.(0)by) in Theorem 3.1.

Theorem 3.2
1) The following relation holds.

(V) - B)ATH(=U(t,0)b;) = ~U(t, 0)b; +elt), (¢ €R) (6)

where e(t) is a T-periodic function.
2) Let 4 € o(V(0)). Then

(V(t) — BE)ATY(=U(t,00Q,(0)bs) = —~U(t,0)Q.(0)bs +d(t), (t€R)  (7)

where d(t) is a T-periodic function.
3) Let p € o(V(0)) such that p # 1. Then

ATN=U(6,0)Qu(0)by) = ~U(t,0)Z,(V(0)Qu(0)bs +c(t), (ER),  (8)

where c(t) is a periodic constant.
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Proof 1) Let 2(t),t € R, be a continuous solution of the equation (5). Operating
V(t) — E to the both sides of the equation (5), we have

V() — EN(a(t+ 1) —2(t) = —(V(t) - E)U(¢,0)bs
= =U(t+1,0)by + U(t,0)b;.

Since V(t + 7) = V/(¢), the above relation becomes
(Vit+71)— B)z(t+ 1)+ U+ 7,0)by = (V(t) — E)2(t) + U(t,0)by.

Thus e(t) := (V(t) — E)z(t) + U(t,0)b; is a T-periodic function on R. Therefore the
following relation holds true:

(V(t) — E)z(t) = -U(t,00b; +e(t), (t €R).

This proves the assertion 1).
-2) The relation (7) is easily proved by operating @Q,(t) to the both sides of (6).
3) Let 2(t),t € R, be a continuous solution of the equation

2(t + 1) — 2(t) = —U(t,0)Q,(0)by. (9)
Then for any ¢t € R and n € Ny, we have

2t+nt) = z(t) - "i: U(t + k1,0)Q,(0)by
- n—1
= 2(t) - U(t,0) Z U*(7,0)Qu(0)b;
= 2(t) - U(, O)Qu(o)mn(o),

where z,,(0) is the solution of the equation of the type zn.1 = V(0)x, + by, 29 = 0.
It follows from Theorem 2.1 that Q,(0)z1(0) = V(0)y — v(= Qu(0)by), where v =
Z,(V(0))Q.(0)b;. Hence we have -

U(¢,0)Qu(0)z:1(0) = U(,0)(V(0)y —)
= U@ +7,0)y —U(,0),

from which we see that 2(t + 7) = (2(t) + U(t,0)y) — U(t + 7, 0), that is,
v 2t +71)+U@E+7,0)y = 2(t) + U(¢,0).
Thus ¢(t) := z(t) + U(¢,0) is a 7-periodic function on R. This implies that
A(t) = AT (Ut 0)Qu(0)87) = ~U(t, 0y +(t), (¢ €R).
Therefore the proof of the theorem is completed. O

Using Theorem 3.2, we will crystallize Theorem 3.1.
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Theorem 3.3 For the solution z(t) of the equation (1) the following representa-
tions hold true:

1)
(V(#) = E)z(t) = U(t,0)((V(0) ~ E)w +by) +v(t,by), (¢€R), (10)
where
v(t,by) = (V(t) — E)h(t, btf)
= —U(t,0)bs + /0 Ut,s)(V(s) - E)f(s)ds (1)

8 a continuous T-periodic function.
2) Let pu € o(V(0)). Then

(V(t) - E)Qu(t)z(t) = U(t,0)[(V(0) — E)Qu(0)w + Qu(0)b/]
+vﬂ(t’b.f)1 (t €R),

where
valtrby) = (V(E) = Ehalt,by)
= UG, 00Qu0)b + /0 U(t,5)(V(s) — E)Qu(s)f(s)ds

is a continuous T-periodic function.

Proof Since h(t, bs) given in Theorem 3.1 and V/(t) are r-periodic, v(t, by) = (V(t)—
E)h(t,by) is also T-periodic. Moreover, (10) and (11) are easily proved by combining
Theorem 3.1 with Theorem 3.2. The remainder is obvious. a.

We are now in a position to state the main theorem in this paper.
Theorem 3.4 Let pu € o(V(0)). For the component Q,(t)z(t) of the solution z(t)
of the equation (1) the following representations hold true:
1) Let u# 1. Then
Q“(t)w(t) = U(tv 0)7#("’) bf) + h#(t: bf): (t € R) (12)

where
hu(t,by) = —U(t,0)2,(V(0))Q.(0)bs + /0 t Ut,s)Qu(s)f(s)ds

is a continuous T-periodic function.



66

2) Let u= L. Then
V(&) — BE)Q:(D)(t) = U(t,0)0(w, by) + v1(t,bs), (¢t €R), (13)

where
v (t,by) = =U(2,0)Q1(0)s + /O.t U(t,s)(V(s) — E)Qi(s)f(s)ds

s a continuous T-periodic function.

Proof The assertion 1) is easily proved by using Theorem 3.1 and 3) in Theorem 3.2.

The assertion 2) is the case where 4 = 1 in 2) of Theorem 3.3. O
Corollary 3.1 If 6(w,by) =0 in 2) of Theorem 3.4, then
AZH(=U(t,0)Q1(0)by) = U(t, 0)Qu(0)w + e(2), (14)

where e(t) is a periodic constant, and Q,(t)z(t) = hi(t,by) is a T-periodic solution
of the equation (1).

Proof Since §(w,bs) = 0, we have (V(0) — E)Q:1(0)w = —Q1(0)b;. Then for a
continuous solution 2(t),t € R, of the equation (9) we have

z(t+71)—2() = Ut0)(V(0)— E)Q:(0)w
= U+ 7,0)Q:(0)w — U(t,0)Q:(0)w,

from which it follows that e(t) := 2(t) — U(t,0)Q:(0)w is a 7-periodic function.
Therefore we obtain the relation (14). In view of Theorem 3.1 we have @, (t)z(t) =
hl‘(t, bf) a

Finally, we consider the case where 1 ¢ a(V(O)). Then we have the following
result.

Theorem 3.5 Let 1 & o(V(0)). Then the following results hold.
1)
AN (-U(¢,0)by) = ~U(t,0)(V(0) — E)"'bs +p(t), (t€R)

where p(t) is a periodic constant.
2) For the solution z(t) of the equation (1) the following representation holds
true:

z(t) = U(t,0)(w + (V(0) — E)"'by) + h(t,by), (t€R)
where

fz(t, by) = ~U(t,0)(E — V(0))~1b; + /: U(t,s)f(s)ds

is a T-periodic solution of the equation (1).
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ProofLet z(t),t € R, be a continuous solution of the equation (5). Since 1 & o(V(0)),
we have

2(t+71) = 2(t)— U(t,0)bs
2(t) — U(t,0)(E — V(0))(E — V(0))"by.
Thus we get
2(t+ 1) — Ut + 1,0)(E — V(0)) by = 2(t) — U(t,0)(E — V(0))*b;.

This means that z(t) = U(t,0)(E -V (0))~1b;+p(t), (t € R), where p(t) is a periodic
constant. The remainder is obvious. a
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