固有値が1の二階非線形差分方程式に 帰着される、ある関数方程式について

愛知学泉大学・経営学部 鈴木まみ (Mami Suzuki)

Keywords: Analytic solutions, Functional equations, Nonlinear difference equations.

2000 Mathematics Subject Classifications: 39A10,39A11,39B32.

1 Introduction

We consider the following functional equation

$$\Psi(X(x,\Psi(x))) = Y(x,\Psi(x)), \tag{1.1}$$

where X(x,y), Y(x,y) are function of $(x,y) \in \mathbb{C}^2$, holomorphic in a neighborhood U of (0,0).

Here we suppose that X(x,y) and Y(x,y) are written in a neighborhood U of (0,0) as:

$$\begin{cases} X(x,y) = x + y + \sum_{i+j\geq 2} c_{ij} x^i y^j = x + X_1(x,y), \\ Y(x,y) = y + \sum_{i+j\geq 2} d_{ij} x^i y^j = y + Y_1(x,y). \end{cases}$$
(1.2)

For the equation (1.1), in which X and Y are written as follows

$$\begin{cases} X(x,y) = \lambda x + \lambda' y + \sum_{i+j \geq 2} c_{ij} x^i y^j = \lambda x + X_1(x,y), \\ Y(x,y) = \mu y + \sum_{i+j \geq 2} d_{ij} x^i y^j = \mu y + Y_1(x,y), \end{cases}$$

we considered the case $|\lambda| > 1$, $\lambda' = 0$ and $|\lambda| < 1$, $\lambda' = 0$ in [5], the case $\lambda = \mu$, $|\lambda| \neq 1$, $\lambda' = 0$ and $\lambda = \mu$, $|\lambda| \neq 1$, $\lambda' = 1$ in [8], $\lambda = \mu = 1$, $\lambda' = 0$ in [6], the case $\lambda = 1$, $|\mu| = 1$, $\lambda' = 0$ in [7]. In this present paper, we consider the equation (1.1) in the case $\lambda = \mu = \lambda' = 1$.

When we consider a nonlinear simultaneous system of difference equations:

$$\begin{cases} x(t+1) = X(x(t), y(t)), \\ y(t+1) = Y(x(t), y(t)), \end{cases}$$
(1.3)

we can reduce it to the following single equation (see [8])

$$x(t+1) = X\Big(x(t), \Psi(x(t))\Big),$$

making use of the equation (1.1). In [3], Kimura consider the first order nonlinear difference equation, in which eigenvalue is equal to 1. If we can have a solution of (1.1), then we have an analytic solution of (1.3) making use of the theorem in [3].

In this present paper we have the following theorem 1.

Theorem 1. Suppose X(x,y) and Y(x,y) are defined in (1.2). Suppose $d_{20}=0$,

$$\frac{2c_{20} + d_{11} \pm \sqrt{(2c_{20} - d_{11})^2 + 8d_{30}}}{4} \in \mathbb{R}, \frac{2c_{20} + d_{11} + \sqrt{(2c_{20} - d_{11})^2 + 8d_{30}}}{4} < 0, \tag{1.4}$$

and we assume the following conditions,

$$(g_0^+(c_{20}, d_{11}, d_{30}) + c_{20})n \neq c_{20} - d_{11} - g_0^+(c_{20}, d_{11}, d_{30})$$

$$(1.5)$$

$$(g_0^-(c_{20}, d_{11}, d_{30}) + c_{20})n \neq c_{20} - d_{11} - g_0^-(c_{20}, d_{11}, d_{30})$$
(1.6)

for all $n \in \mathbb{N}$, $(n \ge 4)$, where

$$g_0^{\pm}(c_{20}, d_{11}, d_{30}) = \frac{-(2c_{20} - d_{11}) \pm \sqrt{(2c_{20} - d_{11})^2 + 8d_{30}}}{4},$$
(1.7)

respectively, then we have a formal solution $\Psi(x) = \sum_{n\geq 2}^{\infty} a_n x^n$ of (1.1). Further, for any κ , $0 < \kappa \leq \frac{\pi}{2}$, there are a $\delta > 0$ and a solution $\Psi(x)$ of (1.1), which is holomorphic and can be expanded asymptotically as

$$\Psi(x) \sim \sum_{n=2}^{\infty} a_n x^n, \tag{1.8}$$

in the following domain $D(\kappa, \delta)$,

$$D(\kappa, \delta) = \{x : |\arg x| < \kappa, \ 0 < |x| < \delta\}. \tag{1.9}$$

2 Proof of the theorem

2.1 Determination of a formal solution

At first, we put a formal solution of (1.1) as $\Psi(x) = \sum_{n=1}^{\infty} a_n x^n$. To determine coefficients a_m , we substitute $\Psi(x) = \sum_{n=1}^{\infty} a_n x^n$ into (1.1) with (1.2), and have

$$\sum_{n=1}^{\infty} a_n \left\{ (1+a_1)x + \sum_{m=2}^{\infty} a_m x^m + \sum_{i+j \ge 2} c_{ij} \left(\sum_{k_1, \dots, k_j \ge 1} a_{k_1} \cdots a_{k_j} x^{k_1 + \dots + k_j + i} \right) \right\}^n$$

$$= \sum_{n=1}^{\infty} a_n x^n + \sum_{i'+j' \ge 2} d_{i'j'} \left(\sum_{k_1, \dots, k_j \ge 1} a_{k_1} a_{k_2} \cdots a_{k_j} \cdot x^{k_1 + \dots + k_j + i} \right). \tag{2.1}$$

We compare the coefficients of x^n , $(n = 1, 2, \dots)$ in (2.1), then we have

$$\begin{cases} x^1: a_1 = 0, \\ x^2: d_{20} = 0, \\ x^3: a_2\{2a_2 + (2c_{20} - d_{11})\} = d_{30}, \\ x^4: a_3\{5a_2 + (3c_{20} - d_{11})\} = -2a_2(c_{30} + c_{11}a_2) - a_2(a_2 + c_{20})^2 + d_{21}a_2 + d_{02}a_2^2 + d_{40}, \\ \cdots, \\ x^n: a_{n-1}\{(n+1)a_2 + (n-1)c_{20} - d_{11}\} = f_{n-1}(a_2, a_3, \cdots, a_{n-2}, c_{ij}, d_{i'j'}), \ (n \ge 4). \end{cases}$$
Where $f_n(a_2, a_3, \cdots, a_{n-2}, c_{ij}, d_{i'j'})$ are polynomials for $a_2, a_3, \cdots, a_{n-2}, c_{ij}, d_{i'j'}, i+j \le n-1, i'+j' \le n-1.$

 $n-1, i'+j' \leq n-1.$

From the coefficients of x and x^2 , we have $a_1 = 0$ and $d_{20} = 0$. From the coefficients of x^3 we have

$$a_2 = g_0^+(c_{20}, d_{11}, d_{30}), g_0^-(c_{20}, d_{11}, d_{30}).$$

From the coefficients of x^n $(n \ge 4)$, we have

$$a_{n-1}^+\{(g_0^+(c_{20},d_{11},d_{30})+c_{20})n-c_{20}+d_{11}+g_0^+(c_{20},d_{11},d_{30})\}=f_{n-1}(a_2,a_3,\cdots,a_{n-2},c_{ij},d_{i'j'}),$$

$$a_{n-1}^-\{(g_0^-(c_{20},d_{11},d_{30})+c_{20})n-c_{20}+d_{11}+g_0^-(c_{20},d_{11},d_{30})\}=f_{n-1}(a_2,a_3,\cdots,a_{n-2},c_{ij},d_{i'j'}).$$

From the following assumption (1.5) and (1.6), for all $n \in \mathbb{N}$, $(n \ge 4)$, we have

$$a_{n-1}^{\pm} = \frac{f_{n-1}(a_2, a_3, \cdots, a_{n-2}, c_{ij}, d_{i'j'})}{(n+1)g_0^{\pm}(c_{20}, d_{11}, d_{30}) + (n-1)c_{20} - d_{11}}, \ (n \ge 4),$$
 (2.2)

respectively. Therefore we can decide a formal solution

$$\Psi(x) = \sum_{n=2}^{\infty} a_n x^n. \tag{2.3}$$

2.2 Existence of a solution $\Psi(x)$

In this subsection we prove the existence a solution $\Psi(x)$ of (1.1) under the condition (1.4), (1.5) and (1.6).

2.2.1 Map T

Put

$$u - Y(x, y) = 0, (2.4)$$

$$f(u, x, y) = u - \{ y + \sum_{i'+j' \ge 2} d_{i'j'} x^{i'} y^{j'} \}.$$
 (2.5)

Since f(0,0,0) = 0, $\frac{\partial f}{\partial y}\Big|_{x=y=u=0} = -1 \neq 0$, thus, we obtain an inverse function H(x,u),

such that

$$y = H(x, u) = u + H_1(x, u), \ H_1(x, u) = \sum_{i+j \ge 2} r_{ij} x^i y^j,$$

defined in $|x| < \epsilon_1$, $|u| < \epsilon_2$, where ϵ_1 and ϵ_2 are small positive constants. The range of H(x,u) contains a disc $|y| < \epsilon_3$. Let $\epsilon = \min(\epsilon_1, \epsilon_2, \epsilon_3)$. Then the equation (1.1) is equivalent to the following equation (2.6)

$$\Psi(x) = H\left(x, \Psi(X(x, \Psi(x)))\right), \text{ for } |x| < \epsilon.$$
 (2.6)

Let κ be a number such that $0 < \kappa < \pi/2$. Take a positive integer N > 3. Let $g_N(x) = \sum_{n=2}^N a_n x^n$ be the truncation of the formal solutions of (2.3). Put

 $\mathfrak{F} = \mathfrak{F}(N,K,\delta) = \{\phi(x); \phi(x) \text{ is holomorphic and satisfies}\}$

$$|\phi(x)| \leq K|x|^N$$
 and $|g_N(x)| + K|x|^N < \delta$, in $D(\kappa, \delta)$

where N, K and δ are positive constants to be determined later. Note that K and δ may be depend on N, and will be expressed, sometimes, as K(N), $\delta(N)$, respectively.

Put $v = X(x, g_N(x) + \phi(x))$, we have

$$|v| = |x| \cdot |1 + (a_2 + c_{20})\mathbb{R}[x] + \text{higher terms}|,$$
 (2.7)

$$\arg[v] = \arg[x] + \arg[1 + (a_2 + c_{20})x + x^2 F_0(x, \phi(x))]. \tag{2.8}$$

From the condition (1.4), we have $a_2 + c_{20} leq \frac{2c_{20} + d_{11} + \sqrt{(2c_{20} - d_{11})^2 + 8d_{30}}}{4} < 0$. Since, $-\pi/2 < \arg[x] < \pi/2$, further if δ is sufficiently small, then we have |x|/2 < |v| < |x|and $|\arg[v]| < |\arg[x]|$, (see Figure 1).

Figure 1 Thus, if $x \in D(\kappa, \delta)$, then $v \in D(\kappa, \delta)$ and $\phi(X(x, g_N(x) + \phi(x)))$ is defined for $\phi(x) \in \mathfrak{F}$. Hence we can define the following map T, for a $\phi(x) \in \mathfrak{F}$,

$$T[\phi](x) = H(x, g_N(X(x, g_N(x) + \phi(x))) + \phi(X(x, g_N(x) + \phi(x)))) - g_N(x).$$
 (2.9)

If there is a unique fixed point $\phi_0(x)$ in \mathfrak{F} and further it is independent of N, then we have a solution $\Psi(x)$ of (1.1) which is holomorphic and can be expanded asymptotically as in (1.8) in the domain $D(\kappa, \delta)$, such that $\Psi(x) = g_N(x) + \phi_0(x)$.

2.2.2 Existence of a fixed point of T

From (2.9) we have

$$T[\phi](x) = \{H\left(x, (g_N + \phi)\left(X(x, g_N(x) + \phi(x))\right)\right) - H\left(x, g_N\left(X(x, g_N(x) + \phi(x))\right)\right)\} + \{H\left(x, g_N\left(X(x, g_N(x) + \phi(x))\right)\right) - H\left(x, g_N\left(X(x, g_N(x))\right)\right)\} + \{H\left(x, g_N\left(X(x, g_N(x))\right)\right) - g_N(x)\}$$

$$= U[\phi](x) + V[\phi](x) + W[\phi](x).$$
(2.10)

Since $g_N(x)$ is the truncated formal solution, we have

$$|W(x)| \le K_1(N)|x|^{N+1},\tag{2.11}$$

for a constant $K_1(N)$ which is dependent on N. Put $u_1 = g_N(X(x, g_N(x) + \phi(x)))$, $u_2 = g_N(X(x, g_N(x)))$. Then we have

$$|u_1 - u_2| \le 2|a_2|(1 + |a_2|)|x|\{|\phi(x)|(1 + K_2(N)|x|)\},\$$

$$|1 + r_{11}x + r_{02}(u_1 + u_2) + \text{higher terms}| \le 2$$

Therefore, we have

$$|V[\phi](x)| = |H(x, u_1) - H(x, u_2)| \le 4\left(1 + K_2(N)|x|\right)|a_2|(1 + |a_2|)K|x|^{N+1}$$
 (2.12)

where $K_2(N)$ is a constant which is dependent on N. Furthermore,

$$|U[\phi](x)| \leq \left|\phi\Big(X(x,g_N(x)+\phi(x))\Big)
ight|\int_0^1 \left\{1+|x|\Big(|r_{11}|+K_3(N)|x|\Big)
ight\}dt$$

where $K_3(N)$ is a constant which is dependent on N. Here we take δ sufficiently small such that $K_3(N)|x| < 1$, for $x \in D(\kappa, \delta)$, we have the (2.7) in before. Put $\theta = \arg[x]$, then $|\theta| < \kappa < \pi/2$, and $|x| \cos \theta > |x| \cos \kappa$. Since $a_2 + c_{20} < 0$, if δ is sufficiently small, then

$$|v| \le |x| \cdot \left(1 - \frac{1}{2}|a_2 + c_{20}| \cdot |x| \cos \kappa\right) \le |x|.$$
 (2.13)

Hence

$$\left|\phi\left(X(x,g_N(x)+\phi(x))\right)\right| \leq K|x|^N\left(1-\frac{N}{3}|a_2+c_{20}|\cdot|x|\cos\kappa\right),$$

for sufficiently small δ . Thus,

$$|U[\phi](x)| \le K|x|^N \left(1 - \frac{N}{3}|a_2 + c_{20}| \cdot |x| \cos \kappa\right) \left(1 + (|r_{11}| + 1)|x|\right). \tag{2.14}$$

From (2.11), (2.12) and (2.14), we have

$$|T[\phi](x)| \le K|x|^N \left\{ \left(\frac{K_1(N)}{K} + 4\left(1 + K_2(N)\delta\right)|a_2|(1 + |a_2|) + (|r_{11}| + 1) - \frac{N}{3}|a_2 + c_{20}|\cos\kappa \left(1 + (|r_{11}| + 1)|x|\right) \right) |x| + 1 \right\}.$$

If we take N to be large enough, then $\frac{N}{3}|a_2+c_{20}|\cos\kappa\left(1+(|r_{11}|+1)|x|\right)>A>0$, for a positive constant A. Thus

$$|T[\phi](x)| \leq K|x|^N \left\{ \left(\frac{K_1(N)}{K} + 4\left(1 + K_2(N)\delta\right)|a_2|(1 + |a_2|) + (|r_{11}| + 1) - A\right)|x| + 1 \right\}$$

Let A be sufficiently large, i.e., N be large, then we take δ small enough such that

$$K_2(N)\delta < \frac{A + (|r_{11}| + 1)}{4|a_2|(1 + |a_2|)} - 1,$$
 (2.15)

i.e., $A-4|a_2|(1+|a_2|)(1+K_2(N)\delta)+(|r_{11}|+1)>0$, for the constant $K_2(N)$.

For the N and δ which satisfy the condition (2.15), we take K sufficiently large such that

$$K > \frac{K_1(N)}{A - 4|a_2|(1 + |a_2|)(1 + K_2(N)\delta) + (|r_{11}| + 1)},$$

then we have $|T[\phi](x)| \leq K|x|^N$, i.e., T in (2.9) maps $\mathfrak F$ into $\mathfrak F$.

 \mathfrak{F} is clearly convex, and a normal family by the theorem of Montel. Since T is obviously continuous, we obtain a fixed point $\phi_N(x)$ by Schauder's fixed point theorem [4], we conclude the existence of some fixed point $\phi(x) \in \mathfrak{F}$.

2.2.3 Uniqueness of the fixed point

Next, we show the uniqueness of the fixed point ϕ . Suppose there were two fixed points $\phi_j(x) \in \mathfrak{F}, j = 1, 2$. then we have

$$g_N\Big(X(x,g_N(x)+\phi_j(x))\Big)+\phi_j\Big(X(x,g_N(x)+\phi_j(x))\Big)=Y(x,g_N(x)+\phi_j(x)),\ (j=1,2).$$

Put $v_j = v_j(x) = X(x, g_N(x) + \phi_j(x)), j = 1, 2$. Then

$$\begin{cases} g_N(v_1) + \phi_1(v_1) = Y(x, g_N(x) + \phi_1(x)), \\ g_N(v_1) + \phi_2(v_1) = Y(x, g_N(x) + \phi_2(x)). \end{cases}$$
 (2.16)

$$v_1 - v_2 = (1 + \text{higher order terms of } x)(\phi_1(x) - \phi_2(x)),$$

 $g_N(v_1) - g_N(v_2) = (2a_2x + \text{higher order terms of } x)(\phi_1(x) - \phi_2(x)),$ (2.17)

and

$$\phi_2(v_1) - \phi_2(v_2) = (\phi_1(x) - \phi_2(x))(1 + \text{higher order terms of } x) \int_0^1 \phi_2'(v_2 + t(v_1 - v_2))dt.$$

Put $D_1 = \overline{D(\kappa/2, (1/2)\delta)}$ and $C = \{\xi \mid |\xi - x| = r = |x| \sin \frac{\kappa}{2}, \text{ for } x \in D_1\}$. Then $C \subset D$ and by the Cauchy's integral formula, we see that, for $x \in D_1 \setminus \{0\}$,

$$|\phi_2'(x)| \le \frac{1}{2\pi} \int_C \frac{|\phi_2(\xi)|}{|\xi - x|^2} |d\xi| \le \frac{1}{2\pi} \int_C \frac{K|\xi|^N}{(|x| \sin \frac{\kappa}{2})^2} |d\xi|.$$

Since $|\xi| \le |x| + |\xi - x| \le |x|(1 + \sin\frac{\kappa}{2}), |\phi_2'(x)| \le K \frac{(1 + \sin\frac{\kappa}{2})^N}{\sin\frac{\kappa}{2}} |x|^{N-1}$. Thus,

$$|\phi_2(v_1) - \phi_2(v_2)| \le K \frac{(1 + \sin \frac{\kappa}{2})^N}{\sin \frac{\kappa}{2}} |1 + \text{higher order terms of } x| \cdot |\phi_1(x) - \phi_2(x)| \cdot |x|^{N-1}.$$

Hence, for a fixed N > 3,

$$|\phi_2(v_1) - \phi_2(v_2)| \le K_4(N)|x|^2|\phi_1(x) - \phi_2(x)|, \tag{2.18}$$

where $K_4(N)$ is a constant which is dependent on N. On the other hand,

$$Y(x, g_N(x) + \phi_1(x)) - Y(x, g_N(x) + \phi_2(x))$$
= $(1 + d_{11}x + \text{higher order terms of } x)(\phi_1(x) - \phi_2(x)).$ (2.19)

For $x \in D_1$, by substituting (2.17)-(2.19) into (2.16), we have

$$\phi_1(v_1) - \phi_2(v_1) = (1 + (d_{11} - 2a_2)x - K_4(N)x^2 + O(x^2))(\phi_1(x) - \phi_2(x)).$$

Write $h(x) = 1 + (d_{11} - 2a_2)x - K_4(N)x^2 + O(x^2)$, then

$$\phi_1(v_1) - \phi_2(v_1) = h(x)(\phi_1(x) - \phi_2(x)). \tag{2.20}$$

Next, for sufficiently small δ , we have $\frac{|x|}{2} < |x|(1-|a_2+c_{20}||x|(1+\frac{\cos\kappa}{2}))$. Since $\cos\kappa < 1+\frac{\cos\kappa}{2}$, further from (2.13), if we let $p_1=|a_2+c_{20}|(1+\frac{1}{2}\cos\kappa)>0$ and $p_2=\frac{1}{2}|a_2+p_{20}|\cos\kappa$, we have

$$|x|(1-p_1|x|) \le |v_1(x)| \le |x|(1-p_2|x|),$$
 (2.21)

for sufficiently small x. In the case where $x \in D(\kappa, \delta)$, then $v_1 \in D(\kappa, \delta)$, and hence, the following estimations hold:

$$|v_1^{n-1}(x)|(1-p_1|v_1^{n-1}(x)|) \le |v_1^n(x)| \le |v_1^{n-1}(x)|(1-p_2|v_1^{n-1}(x)|), (n \ge 1)$$
 (2.22)

where $v_1^{k+1}(x) = v(v^k(x)), v_1^0(x) = x$. From these inequalities, we have

$$|x|\prod_{k=0}^{n-1}(1-p_1|v_1^k(x)|) \leq |v_1^n(x)| \leq |x|(1-p_2|x|)\prod_{k=1}^{n-1}(1-p_2|v_1^k(x)|). \tag{2.23}$$

On the other hand, from the condition (1.4), we have $d_{11} - 2a_2$, hence, if we take δ sufficiently small, then we have $|h(x)| \ge 1 - 2|d_{11} - 2a_2| \cdot |x|$. Put $b = 2|d_{11} - 2a_2| > 0$, from (2.20), we have the following inequalities:

$$|\phi_1(v_1^n(x)) - \phi_2(v_1^n(x))| \ge (1 - b|v_1^{n-1}(x)|) \cdot |\phi_1(v_1^{n-1}(x)) - \phi_2(v_1^{n-1}(x))|, (n \ge 1).$$

From these, we have

$$|\phi_1(x) - \phi_2(x)| \le \frac{|\phi_1(v_1^n(x)) - \phi_2(v_1^n(x))|}{\prod_{k=0}^{n-1} (1 - b|v_1^k(x)|)}.$$
 (2.24)

From the definition of ϕ_1 and ϕ_2 , we have

$$|\phi_1(v_1^n(x)) - \phi_2(v_1^n(x))| \le 2K|v_1^n(x)|^N, \quad (n = 0, 1, 2, \dots, n - 1).$$

Similarly, from (2.23) and (2.24), we have

$$|\phi_1(x) - \phi_2(x)| \le 2K|x|^N \prod_{k=0}^{n-1} \frac{(1 - p_2|v_1^k(x)|)^N}{1 - b|v_1^k(x)|}.$$

Furthermore, we can take N sufficiently large, for a given δ , such that $p_2N - p_1 - b \ge 0$. Then we have

$$(1-p_1|v_1^k(x)|)-\frac{(1-p_2|v_1^k(x)|)^N}{1-b|v_1^k(x)|} \ge 0.$$

Here, we put $q(t) = t(1 - p_1 t)$, $r_0 = r = |x|$, $r_k = q^k(t) = q(q^{k-1}(t)) = q(r_{k-1})$, $k \ge 2$ and $r_1 = q(t)$. From (2.21) and (2.22), by induction, we have $|v_1^k(t)| \le r_{k-1}$, $(r_0 = r = |x|)$. Note that $q'(t) = 1 - 2p_1 t$, $q''(t) = -2p_1$, thus for $0 \le t < \frac{p_1}{2}$, we have 0 < q'(t) < 1 and q''(t) < 0. Then, making use of [1], for $r < \frac{1}{2p_1}$, $r_n = q^n(r) \to 0$, (as $n \to \infty$). Hence, from (2.23), we have

$$|x|\prod_{k=0}^{n-1}(1-p_1|v_1^k(x)|) \leq |v_1^n(x)| \leq r_{n-1} \to 0, (\text{ as } n \to 0).$$

Thus,

$$|\phi_1(x) - \phi_2(x)| \le 2K|x|^{N-1}|x|\prod_{k=0}^{\infty}(1-p_1|v_1^k(x)|) = 0.$$

Therefore,

$$\phi_1(x) \equiv \phi_2(x) \text{ for } x \in D(\kappa, \delta).$$

From the above discussion, if N is fixed, then there can only be a unique solution $\phi_N(x)$ which is dependent on N such that

$$\Psi_N(x) - g_N(x) = \phi_N(x), \quad |\phi_N(x)| \leq K_N |x|^N,$$

where Ψ_N is a solution of (1.1).

2.2.4 Independence of N

Let $\Psi_{N'}$ and Ψ_{N} , (N' > N) be solutions of (1.1). Put $\delta = \min(\delta_{N}, \delta'_{N})$ and

$$\Psi_{N'}(x) = g_{N'}(x) + \phi_{N'}(x) = g_N(x) + \Big(g_{N'}(x) - g_N(x) + \phi_{N'}(x)\Big), \text{ for } x \in D(\kappa, \delta).$$

From the uniqueness of $\phi_{N'}$, we see that $g_{N'}(x) - g_N(x) + \phi_{N'}(x) = \phi_N(x)$, for $x \in D(\kappa, \delta)$. Then we can define $\Psi_{N,N'}$ as

$$\Psi_{N,N'} = \begin{cases} \Psi_N & \left(x \in D(\kappa, \delta_N)\right), \\ \Psi_{N'} & \left(x \in D(\kappa, \delta'_N)\right), \end{cases}$$

and if $\delta = \min(\delta_N, \delta_{N'})$, we see that

$$\Psi_{N'} = \Psi_N \text{ for } x \in D(\kappa, \delta).$$

In that way, we can obtain a solution Ψ of (1.1), which is independent of N.

2.2.5 Solutions of the equation (1.1)

Take N' = N + 1 and $\delta = \min(\delta_N, \delta_{N'})$ in the subsection 2.2.4. Then, for $x \in D(\kappa, \delta)$,

$$|\phi_{N'}(x)| = |\Psi_{N+1}(x) - g_{N+1}(x)| = |\Psi_{N}(x) - g_{N+1}(x)| \le (K_N + |a_{N+1}|)|x|^{N+1}.$$

We put $C_N = K_N + |a_{N+1}|$. Then we have

$$|\Psi(x) - g_N(x)| \leq C_N |x|^{N+1}$$
, for $x \in D(\kappa, \delta)$,

where C_N is a constant and δ is sufficiently small. This also completes the proof of Theorem 1.

References

- [1] R. L. Devaney, , An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, 1989.
- [2] M. Kuczma, B. Choczewski, R. Ger, *Iterative functional equations*, Encyclopedia of mathematics and its applications, vol. 32, Cambridge University Press, 1990.
- [3] T. Kimura, On the Iteration of Analytic Functions, Funkcialaj Ekvacioj, 14, (1971), 197-238.
- [4] D.R. Smart, Fixed point theorems, Cambridge Univ. Press, 1974.
- [5] M. Suzuki, Holomorphic solutions of some functional equations, Nihonkai Math. J., 5, (1994), 109-114.
- [6] M. Suzuki, Holomorphic solutions of some functional equations II, Southeast Asian Bulletin of Mathematics, 24, (2000), 85-94.
- [7] M. Suzuki, Holomorphic solutions of some functional equations III, J. of Difference Equations and Applications, 6, (2000),369-386.
- [8] M. Suzuki, Holomorphic solutions of a functional equation and their application to nonlinear second order difference equations, Aequationes Mathematicae, to appear.

Mami Suzuki

Department of Management Informatics, Aichi Gakusen Univ. 1 Shiotori, Oike-cho, Toyota-City, 471-8532 Japan

e-mail: m-suzuki@gakusen.ac.jp,