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1 Introduction

We consider the following functional equation

¥(X(z, ¥(z))) = Y(z, ¥(z)), (1.1)
where X (z,y), Y(z,y) are function of (z,y) € C?, holomorphic in a neighborhood U of
(0,0).

Here we suppose that X(z,y) and Y (z,y) are written in a neighborhood U of (0, 0)
as :

X(@y)=z+y+ Y 'y’ =z + Xi(z,y),
i+j>2

Y(z,9) =y+ ) diyz'y’ =y +Yi(a,y).
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(1.2)

For the equation (1.1), in which X and Y are written as follows

X(z,y) =z + Xy + D cz'y’ =z + Xu(z,y),
i+5>2
Y(z,y) =py+ Y dya'y’ = py + Yi(z,y),
i+5>2
we considered the case |A| > 1,)' = 0 and |A\] < 1,) = 0 in [5], the case A\ = p,
A #L,N=0and A=y, |[A] #1, ¥ =1in [8], A = p = 1,) = 0 in [6], the case
A =1,u| =1, ¥ =0in [7]. In this present paper, we consider the equation (1.1) in the
case A=pu =\ =1.
When we consider a nonlinear simultaneous system of difference equations:

{ z(t + 1) = X(2(2), y(t)),

y(t +1) = Y(a(t), y(t)), 13
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we can reduce it to the following single equation (see [8])

2(t+1) = X(x(t), \Il(:c(t))),

making use of the equation (1.1). In [3], Kimura consider the first order nonlinear
difference equation, in which eigenvalue is equal to 1. If we can have a solution of (1.1),
then we have an analytic solution of (1.3) making use of the theorem in [3].

In this present paper we have the following theorem 1.

Theorem 1. Suppose X(z,y) and Y (z,y) are defined in (1.2). Suppose dyo =0,
2c30 + dyy £ 1/(2¢30 — d11)? + 8d3o c 2¢0 + d11 + v/(2c20 — d11)? + 8d3o

2 R 7 <0,
(1.4)
and we assume the following conditions,
(9% (c20, d11, d30) + c20)n # €20 — di1 — gg¢ (cz0, d11, dao) (1.5)
(95 (20, d11, d30) + c20)n # €30 — dhy — go (€20, d11, d3o) (1.6)
foralln €N, (n 2 4), where
—(2¢30 — d11) £ v/(2¢30 — d11)? + 84,
(e oy o) = —C0 = ) & V/{Bewo = )’ + 8o
(1.7)

respectively, then we have a formal solution ¥(z) = fogz anz™ of (1.1). Further, for
any k, 0 < k S §, there are a § > 0 and a solution U(z) of (1.1), which is holomorphic
and can be expanded asymptotically as

U(z) ~ ianz“, (1.8)

n=2

in the following domain D(k,$),
© D(k,8) = {z; |argz| < &, 0 < |z| < 8}. (1.9)

2 Proof of the theorem

2.1 Determination of a formal solution

At first, we put a formal solution of (1.1) as ¥(z) = Y >, a,z™. To determine coeffi-

n=1
cients a,,, we substitute ¥(z) = Y > | a,z™ into (1.1) with (1.2), and have
Zan{(l +ay)e+ Eammm + Z c‘,j( Z @, - ..aijk1+...+kj+i)}
n=1 m=2 t'+.722 kq,e- ,kjg1

= Z ana:" + Z d,'fjl( Z Ay Ay ° ** A * $k1+m+k"+"). (21)

n=1 ,'l+jl§2 k1, kj gl
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We compare the coefficients of z”, (n =1,2,--) in (2.1), then we have

z 1a; =0,

22 1dy =0,

z° : ap{2as + (2c20 — d11)} = dao,

z* s az{5az + (3cz0 — d11)} = —2a5(cs0 + c11a2) — az(az + c0)? + dyyag + doza? + dyo,

’

L z": an_l{(n + 1)a2 + (n - 1)020 - dn} = fn-l(a2aa'3, T ,an—z,cijadi’j’), (n g 4)-

Where fn(a2,a3,- - ,an-3,¢ij, dir;j) are polynomials for as,as, - - - , an—, ¢ij, dirjr, i+35 <
n—1,7+3<n-1. :

From the coefficients of = and z?, we have a; = 0 and .dy = 0. From the coefficients
of 2% we have

az = gg (c20, d11, d30), g5 (€20, di1, do).
From the coefficients of z™ (n 2 4), we have
at_1{(93 (c20, 11, d30) +c20)n—C20+d11 +97 (€20, d11, d30)} = fn1(02, @3, - , An3, €y dirjt),
or
an_1{(90 (c205 d11, d30)+C20)n—C20+d11+95 (€20, d11,d30)} = fn-1(a2,85," -+ , Gney, cij, dinj).
From the following assumption (1.5) and (1.6), for all n € N, (n 2 4), we have

a¥ . = f“-l(azi as,* "' ,0an-2,Cij, di’j’)
T (n+ 1)95&(029, di1,d30) + (n — 1)coo — dyy’

(n 2 4), (2.2)

respectively. Therefore we can decide a formal solution

U(z) = Zanm". (2.3)

n=2

2.2 Existence of a solution ¥(z)
In this subsection we prove the existence a solution ¥(z) of (1.1) under the condition
(1.4), (1.5) and (1.6).
2.2.1 Map T
Put
u—Y(z,y) =0, (2.4)
f(u’ :c,y) =u- {y + Z di'j'wi’yj'}' ' (25)

/4522
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Since f(0,0,0) =0, % = —1 # 0, thus, we obtain an inverse function H(z,u),

r=y=u=0

y=H(z,u) =u+ Hy(z,u), H(z,u) = Z rizy,

i+i22

such that

defined in |z| < €, |u| < €, where ¢; and €, are small positive constants. The range
of H(z,u) contains a disc |y| < €3. Let ¢ = min(¢y, €3,€3). Then the equation (1.1) is
equivalent to the following equation (2.6)
U(z) = H(:c ¥(X(z, \Il(x)))) for || < e (2.6)
Let x be a number such that 0 < k < 7/2. Take a positive integer N > 3. Let
gn(z) = 3N, .z be the truncation of the formal solutions of (2.3). Put
§ =3V, K, 8) = {¢(z); ¢(z)is holomorphic and satisfies
|6()] < K|z|" and |gn(z)| + K|z|¥ < 6,in D(x,6)}
where N, K and § are positive constants to be determined later. Note that K and §
may be depend on N, and will be expressed, sometimes, as K(N), §(NV), respectively.
Put v = X(z, gn(z) + ¢(z)), we have
|v| = |z| - |1 + (a2 + c20)R[z] + higher terms|, (2.7)
arg[v] = arg[z] + arg[l + (az + cz0)z + 2* Fo(z, #(2))). (2.8)

2c20+d11+ (Zczo d11)2+8d3o

From the condition (1.4), we have a; + ¢ S < 0. Since,
—n/2 < arg[z] < 7/2, further if § is sufficiently small, then we have |z|/2 < |[v| < |z|
and |arg[v]| < |arg[z]|, (see Figure 1).

Figure 1
Thus, if z € D(x,§), then v € D(x,5) and qS(X(:v,gN(x) + $(2))) is defined for
#(z) € §. Hence we can define the following map T, for a ¢(z) € §,

Tigl(x) = H (2,98 (X(2,9n(2) + $(2))) + $(X (2, 9n(2) + $(2)))) — on(a).  (29)

If there is a unique fixed point ¢p(z) in §F and further it is independent of N, then we
have a solution ¥(z) of (1.1) which is holomorphic and can be expanded asymptotically
as in (1.8) in the domain D(k,d), such that ¥(z) = gn(z) + do(z).



82

2.2.2 Existence of a fixed point of T
From (2.9) we have

T[¢)(z) = {H (=, (ov + ¢)(X(z,9v(2) + 6(2))) ) = H (=, n (X (2, 9n(2) + $(2))) )}
+{H (=, 97 (X (2,9n(2) + $(2))) ) = H (2, 95 (X (2, 9n(2))) )}
+ {H(z’gN(X(ma gN(m)))) - gN(-'L')}

= Uldl(z) + V[4](z) + W[¢l(). (2.10)
Since gn(z) is the truncated formal solution, we have
W(@) S Ky(V)[e]™, 211)

for a constant K;(N) which is dependent on N. Put u; = gN(X(a:,gN(:c) + ¢(a:))),
= gn(X(z,gn(z))). Then we have

|ur — ua| S 2]a2|(1 + laz) [z [{[6(2)](1 + K2(N)])},
|1 + r112 + roz(u; + uz) + higher terms| < 2

Therefore, we have
VISl(2)| = |H(z, ) — H(z,u3)| £ 4(1+ Ka(N)[z[)loal(1 + lae) K2V + (212)
where K3(N) is a constant which is dependent on N. Furthermore,

/:{1 + |$|(|7‘11| + K3(N)|~T|) }dt

where K3(N) is a constant which is dependent on N. Here we take & sufficiently small
such that K3(N)|z| < 1, for z € D(k,d), we have the (2.7) in before. Put 6 = arg[z],
then |0] < k < 7/2, and |z|cos @ > || cos k. Since az + cp0 < 0, if § is sufficiently small,
then

UIA(2)] £|¢(X (2 9n(2) + $(2)))

1
lv| £ |z|-(1 - §|az + cx| - || cos k) < || (2.13)
Hence
N
[6(X(@,0n(z) + 8(a))) | £ Klal™ (1 = loa + el - [z cos ),
for sufficiently small §. Thus,
N N

UIg(e)| £ KoV (1~ Flaz + caol - ol cos ) (14 (rul + Dlel).  (2:14)

From (2.11), (2.12) and (2.14), we have

ITI8)(z)] < Klml"{ (K‘(N) +4(14 Ka(N)8) lagl(1 + lag]) + (Iru| + 1)

- -]—;r—laz + ¢g0| cos n(l + (|ru] + 1)|-’L‘|)> |z| + 1}-



83

If we take N to be large enough, then &|a; + cz0| cos n(l + (Jrul + l)lxl) > A >0, for
a positive constant A. Thus

lT[¢](w)|§KlwlN{( BN 1 4(14 Ka(N)8) k(1 + laal) + (sl + 1) - )|m|+1}

Let A be sufficiently large, i.e., N be large , then we take § small enough such that

A+ (rul+1) _
4laz|(1 + |az)
e, A—4|az|(1+ |az|)(1 + K2(N)8) + (Jr1a] + 1) > 0, for the constant K,(N).

For the N and é which satisfy the condition (2.15), we take K sufficiently large such
that

K3(N)s <

(2.15)

Ki(N)
A — 4ay|(1 +laz|)(1 + K2(N)6) + (Irul +1)’
then we have |T[¢](z)| £ K|z|V, i.e., T in (2.9) maps § into §.

K >

§ is clearly convex, and a normal family by the theorem of Montel. Since T is
obviously continuous, we obtain a fixed point ¢n(z) by Schauder’s fixed point theorem
[4], we conclude the existence of some fixed point ¢(z) € F.

2.2.3 Uniqueness of the fixed point

Next, we show the uniqueness of the fixed point ¢. Suppose there were two fixed points
#i(z) € §, 5 =1,2. then we have

on (X (2, 0w(2) +,(2))) + 65 (X (2, 0v(2) + 45(2))) = ¥ (=, n(2) + 4i(2)), (G = 1,2).
Put v; = v;(z) = X(z,9n(2) + ¢j(z)), s = 1,2. Then

gn(v1) + é1(v1) = Y(2,9n () + é1(2)),
{ av(v1) + 62(1) = Y (2, 9w(3) + da()). (216)
v; — vy = (1 + higher order terms of z)(¢1(z) — ¢2(z)),
gn(v1) — gn(v2) = (2a2z + higher order terms of z)(¢,(x) — ¢2(z)), (2.17)

and

$2(v1) — P3(v2) = (h1(z) — p2(z))(1 + higher order terms of x) /(; &5 (v2 + t(v1 — vg))dt

Put D, = D(k/2,(1/2)6) and C = {¢||¢ —z| = r = |z|sin§, for 2 € D,;}. Then
C C D and by the Cauchy’s integral formula, we see that, for z € D, \{0},

N
s £ 5 [ 2 < - [ (K'“ el

|| sin §)?
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Since [¢] < [e] + I — 2| S [el(1 + sin §), |6(0)] € KEHD [oV-1, Thys,
|p2(v1) — p2(v2)] S K E——ﬁl—l—l-ll + higher order terms of z|- |¢1(z) — ¢2(z)| - ||V~ .

2

Hence, for a fixed N > 3,

[62(v1) — $2(v2)| £ Ka(N)|2*|61(2) - da(2)], (2.18)
where K4(N ) is a constant which is dependent on N. On the other hand,

Y(z,gn(2) + 81(2))-Y (z,9n(2) + ¢2(2))
= (1 + d11z + higher order terms of z)(¢1(z) — ¢2(z)). (2.19)

For z € Dy, by substituting (2.17)-(2.19) into (2.16), we have
$1(v1) — da(v1) = (1 + (du1 — 2a2)z — Ky(N)z* + O(2%))(¢1(2) — ¢2(<)).
Write h(z) = 1 + (dy — 2a2)z — Ko(N)a? + O(2?), then
¢1(v1) — ¢2(v1) = h(z)(d1(z) — $2()). (2.20)

1‘

Next, for sufficiently small §, we have 12 2 < |z|(1 = |az + caollz|(1 + «22£)). Since
cosk < 1+ 2%, further from (2.13), if we let p; = |az + c20|(1 + 3 cos fs) > 0 and
P2 = 3|az + pao| cos k, we have

Je|(1 = pile]) € os(=)] £ J2|(1 = pal2]), (2.21)

for sufficiently small z. In the case where z € D(x,§), then v, € D(«,d), and hence,
the following estimations hold:

17 (@)1 = paloi ™ (2)]) £ i (@)] S P (@)1 = palo? M (2)]), (R 21)  (2:22)

where v¥+1(z) = v(v¥*(z)), v¥(z) = 2. From these inequalities, we have

|| i:[(l = pulof(2)]) £ [of(2)] £ |2l(1 = palz) i:[(l — paloy(2))). (2.23)
=0 k=1

On the other hand, from the condition (1.4), we have d;; — 2a,, hence, if we take &
sufficiently small, then we have |h(z)| 2 1 — 2|d1; — 2a2] - |z|. Put b = 2|d;; — 2a;| > 0,
from (2.20), we have the following inequalities:

|61(0] (2)) = d2(0 (2))] 2 (1 = blo7 ™' (2)]) - (077 (2)) = G2 (77 ())], (n 2 1).

From these, we have

. (07(2)) = a(o2())
1(Z) — P2\ T < 1 .
19(2) = (o) & T Thek)

(2.24)
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From the definition of ¢; and ¢,, we have
|61(v1(2)) = $2(v1(2))] S 2K v} ()Y, (n=0,1,2,--- ,n=1).
Similarly, from (2.23) and (2.24), we have
n—1 k N
et T (L= palot())
|¢1(CE) ¢2($)| = 2K|$| !=Io 1— bl'vf(a:)l y

Furthermore, we can take NV sufficiently large, for a given &, such that po N —p; —b 2> 0.
Then we have

1 - palvi(z) )V
1— k _ ( 1 2 )
( pllvl (:E),) 1 — blvlle(w)l 20

Here, we put g(t) = t(1—pyt), ro = r = |z|, re = ¢*(t) = ¢(¢*"'(#)) = q(rx—1), kK 2 2
and r; = ¢(t). From (2.21) and (2.22), by induction, we have |vf(t)| £ gy, (ro=r =
|z]). Note that ¢'(t) = 1—2p1t, ¢"(t) = —2p,, thus for 0St<B,wehave0 < ¢(t) <1
and ¢"(t) < 0. Then, making use of [1], for r < z-, r, = ¢"(r) = 0, (asn — oo).

2p
Hence, from (2.23), we have 1

|| H(l — plvf(@)]) S [o}(2)] S 7y = 0,(as 7 = 0).

Thus,
|61(2) — ¢2(2)] £ 2K e[V 2| [J(1 - pilvF(2)]) = 0.

k=0
Therefore, .
é1(z) = ¢a(z) for z € D(k, ).
From the above discussion, if N is fixed, then there can only be a unique solution
#n(z) which is dependent on N such that

Un(z) — gn(z) = ¢n(e), |én(2)| S Knlzl”,
where ¥y is a solution of (1.1).
2.2.4 Independence of N
Let ¥ys and ¥y, (N’ > N) be solutions of (1.1). Put § = min(dn,dy) and
\IIN:(:::) = gN’(a:) + ¢N/(.’l:) = gN(a:)+(gN'(m) - gN(JJ) + ¢N'($)), for r € D(N,J).

From the uniqueness of ¢y:, we see that gn:/(z) — gn(z) + éni(z) = én(z), for = €
D(k,8). Then we can define Uy n: as

Un T c D(KZ,JN) s
YN = ,
L\ :EED(K,,CSN) )
and if § = min(dn,n’), we see that

Uy = Uy for z € D(k,§).
In that way, we can obtain a solution ¥ of (1.1), which is independent of N.
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2.2.5 Solutions of the equation (1.1)
Take N' = N +1 and § = min(dy, dy-) in the subsection 2.2.4. Then, for z € D(k,?),

[¢n(2)| = [¥n41(2) — gv41(2)] = [¥n(2) — gnea(z)] S (KN + ang]) ]2V
We put Cny = Kn + |an+1|- Then we have
|¥(2) — gn(z)| £ Cnlz|V*!, for « € D(x,d),

where C is a constant and § is sufficiently small.
This also completes the proof of Theorem 1.
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