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Derivation and double shuffle relations for multiple zeta values
—— joint work with M. Kaneko, D.Zagier.

UK - HEFF HK RXER (Kentaro Ihara)

1 Introduction

The multiple zeta value (MZV for short) is a real number defined by

C(k) = (K1, k2, ..., kn) = Z F1 kzl_ — _Fn (1)
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where k = (k1,ks,...,ky) is an index set of positive integers with k; > 1. The con-
dition k; > 1 ensures the convergence of the series and the integral. For the value
¢(k1,k2,...,kn), (strictly, for the index set (ki,k2,...,kn)) we call the number n depth
and k = k) + - - - + k, weight. .

There are many linear and algebraic relations over Q among MZV’s of the same weight,
the simplest of which is {(3) = {(2,1) found by Euler. To give a complete description of
them is one of the main goal of the study of MZV’s. From each representation (1) and (2),
we can show that the product of two MZV’s is written as a linear combination of MZV'’s
with rational coefficients. Hence the Q-vector space generated by MZV’s is equipped with
a Q-algebra structure. In this report we investigate the structure of this Q-algebra and
give supplementaly explanations of the results in [1] and [2].

2 Double shuffie relations

To describe the multiplication rules of MZV’s, we use an algebraic setup given by
Hoffman in [5]. Let ) = Q(z,y) be the non-commutative polynomial algebra over Q in
two indeterminates z and y, and $'-and $° its subalgebras Q+$y and Q+zHy respectively.
Let Z : H° — R be the Q-linear map which sends the word z¥1~lyzk2=1ly...zk~1y to the
value ((ki1,k2,...,kn) (“evaluation map”). The weight of {(k;, k2, ...,ks) corresponds to
the total degree of the word z¥1~1y-..z¥—1y and the depth n the partial degree in y.

Put z;, := z%~1y, which corresponds to the Riemann zeta value (k). Then the non-
commutative algebra $! is freely generated by the set {2; | k =1,2,3,...}. Note that all
2z are in H° except for z; = y. We define the harmonic product * on $! inductively by
lxw=wx*1=wand

Zpwy * Ziwg = zg(wy * Zywe) + z1(2pwy * we) + Zg4(wy * we), (3)

where k,l > 1 and w,w;, w2 are any word in ', and extending by Q-bilinearity. In [5),
Hoffman showed that $! becomes an associative commutative algebra under the multipli-
cation * and $° a subalgebra. We will denote these algebras by $! and $? respectively.
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Then the first multiplication law of MZV’s can be stated that the map Z is an alge-
bra homomorphism with respect to the harmonic product *. For instance, the product
2k * 2] = 22 + 212k + 2K+ corresponds to the identity ((k)C(1) = ((k,1) +C(1, k) + {(k+1).

The other commutative product m, called shuffle product corresponding to the product
of two integrals, is defined on all of § inductively by lmw = wm1 = w and

vwimvwe = u(wimvws) + v(vwimws), (4)

where w, wy, ws are any word in § and u,v € {z,y}, and again extending by Q-bilinearity.
Then the space $ make an associative commutative Q-algebra ([11]) which we denote by
$Hm. Obviously the subspaces $' and $H° become subalgebras of $, denoted by Hi;
and $HY; respectively. By the standard shuffie product identity of iterated integrals, the
evaluation map Z is again an algebra homomorphism with respect to the multiplication
oI.

Compareing the two products, we obtain the double shuffie relations (DSR for short)
of MZVs:

Z(wimws) = Z(w; * wa) (wy, wy € H°). (5)

The first example is 4¢(3,1) + 2¢(2,2) = 2¢(2,2) + ¢{(4) (= ¢(2)?) from which we get
4¢(3,1) = ¢(4). However these double shuffle relations do not give the “all” relations. For
instance, the relation {(3) = {(2, 1) can not be obtained from the double shuffle relations.
Let Z; be the Q-vector space generated by all MZV’s of weight k. Below is the table of the
conjectural dimension di of Z; and the upper bounds of the dimZy which are obtained
by double shuffle relations. Therefore we need more larger class of relations to supply
sufficiently many relations. In Section 4 we will show its extended version stated in [1].

k |2]3]4]5]6]7]8]9
de |1]1]1(2[2]3|4]5
DSR|1|2|3(6|9|16 2436

Pt

3 Regularization

Proposition 1 ([5],[11]) For each product ¢ = x or m, we can regard $. as a $H2-algebra
via the inclusion map H° — H1. Then H} is freely generated by the element y over $9. In
other words, for any f € $ there uniquely exist elements fo,..., fr € 52, (fr # 0) such
that

f=fotfiey+faoy 2+ -+ froy™
Proof. See [5] for the case * and [11] for m. "
Definition 1 For each product @ = x or m, we define two maps Z° : Hl — ]R[T] which
are uniquely characterized by the properties that they are algebra homomorphisms for e

and both extend the evaluation map Z : $5° — R and send y to T. In other words under
the notaion in Proposition 1, we have

Z°(f) = Z(fo) + Z(f1)T + Z(f2)T* + --- + Z(f,)T".
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For example,

2*(yzy) = (T - C(2,1) ~ ((3), 2™ (yay) = (T ~ A(2,1).
2*(Pay) = Z6@T ~ (C(3) + ¢, V)T + 20(&) +¢(3,1) +¢(2,1,1),
Z" (yPzy) = %§(2)T2 —-2¢(2,1)T + 3¢(2,1,1).
We introduce the following power series A(u):
A(w) = exp (2_:2 Elcmer).

Note that the coefficient for u* of A(u) is an element of weight k in the Q-algebra generated
by Riemann zeta values. Define an R-linear automorphism p : R[T'] — R[T] by

p(e™) = A(u)e™. (6)
For example, p(T) = T, p(T?) = T? + ¢(2), and p(T?) = T® + 3¢(2)T — 2¢(3).

The following theorem does originally to Zagier, and much work has been done by
other writers Racinet, Goncharov, Minh, Petitot, Boutet de Monvel, Ecalle,...

Theorem 1 We have
Zm" =poZ* onH.

Proof. (Sketch) For more detail see [1]. For each multiplication rule, we define two kinds
of truncation of multiple zeta values: For M > 0 and index set k = (k1, k2,...,kn) (not
necessarily k; > 1), set

1
Cm(kr, k2, ..o kp) = Z P T
*Mn

M>mi>mg>-->my>0 01 Mo -

If k1 > 1 then (ar(k) converges to (k) as M — oco. We can write the product (s (k)¢ar (k)
as a linear combination of {ar(k"”)’s by the sa.me rule as in the case of harmonic product.
With this fact and the classical formula {ar(1) = 3 175ms0 1/m = log M + v + O(M 1),
we can show by induction that

Cr(k) = Zy(log M + ) + O(M~tlog” M) for some J as M — oo,

where Zg(T) := Z*(2y, + - - 2, ) is the associated polynomial defined in Definition 1.
For k = (k1,k2,...,kn) and 0 < t < 1, put

tm 1

Lix (t) = Z k1 kn'

m1>ma>>mp>0 141 m2

_/ﬁ/ﬂ.../ﬂ ./dt /dttdt
Jo t Jo o tJo1-t 0o 1—1¢
k-1
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If k; > 1 then Lix(1) = ((k). We can write the product Liy(t)Liy (t) as a linear combi-
nation of Liy~(t)’s via the shuffle product identity of iterated integrals. When k1, k] > 1,
the formula specializes at t = 1 to that of the shuffle product of {(k)((k’). Together with
Li1 (t) = log 11, we conclude by induction that

Liy(t) = Z¢ (log it) +0((1-1) logJ(l——l_—t-)) for some J as ¢ 1.

1

where Zy™ (T) := Z™ (2k, - - - zx,, ) is the associated polynomial in Definition 1.
For any index set k, we have

™

Lig(t) =
k() Z k1 k2 -mﬁ"‘

mi>ma>aS>mn >0 my my” -

- Z Z Omk1mg2,,,mgn

m=1 \m>ma>:->mn>

=" Gms1(K) = Gn(K) ™ = (1 = 1) 3 )™ 2
m=1

m=1

For any P(T) € R[T] and Q(T) := p(P(T)), we can show the following behavior as
t /L

Q(log ) =(1-1¢ z P(logm + ¥)t™1 + O((1 — t) log’ -—-—1_—-5 .

1 = 1

for some J > 0. We omit the proof of this equation, (see [1]). This fact establishes the
theorem. .

4 Extended double shuflie relations

In this section, we explain the meaning of Theorem 1 from the viewpoint of the algebra
structure on $.

Let § = Q(({z,y)) be the algebra of non-commutative formal power series with Q-
coefficients. The algebra 9 is complete with respect to the grading defined by degz =
degy = 1 and then § is a dense subalgebra of %. A derivation d on $ (resp. f)) is a Q-
linear (resp.+continious) map satisfing the derivation property for concatenation product:

d(wv) = d(u)v + ud(v) for any u,v € § (resp. € £). The space of all derivations of
% form a Lie algebra, denoted by Der($), with usual commutater bracket: [d,d'] :=
dod’ —d'od. On the other hand, the set of all algebra automorphisms of ) (with respect to
the concatenation product) form a group, denoted by Aut(ﬁ) Note that both derivations
and autmorphisms on $ or § are determined by the values on generators z,y. Let Dert G)
be the Lie subalgebra consisting of derivations which increase the degree, or equivalently
which induce the zero derivation on the associated graded algebra gr(®) = d fJ k/Dk+1,
where Hj, is the subspace of ) generated by the words of degree > k. Let Autl(S’J) be the
subgroup of Aut (H) consisting of automorphisms ¢ such that ¢(z) —z and ¢(y) —y belong
to $2, or equivalently which induce the identity automorphism on gr(f))

In the discussion below it is usefull to keep in mind the following facts. There is a one
to one correspondence between the Lie subalgebra Der® () and the subgroup Aut!(%)
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via the exponential and the logarithm maps; exp(d) = e? = ngo %, for d € Der* (5),
10g(6) = ~ Yy L1525, for ¢ € Aut!(H).

Proposition 2 ([1]) Define the map d : § — $H by d(w) = ymw — yw. Then d is a
derivation and we have

exp(d)(w) = (1 - ) (T gmw ) @

where u is a formal parameter.

Proof. Using (4), we can show the derivation property of d and L;d™(w) = y™mw —
y(y™ 'mw) by induction. Multiplying this by 4™ and summing over m gives (7). 1

The analogous result for * product is as follows. See [1] for the proof. Recall z, =

"y,

Proposition 3 ([1]) For n > 1 the map 6, : H' — H! defined by dp(w) := 2, * w — zpw
s a derivation and we have

exp (Z -(—:%b:t—l-&nu") (w) = (1 — yu) (1 -—lyu * w).

n21

These derivation 6, extends to a derivation on all of £, with values on the generators
given by 6n(z) =0, n(y) = (z +y)2n.

Proposition 4 ([1]) We define two automorphisms by
)
U, := exp(du), ®, = exp (Z -T%u">
n21

Then the action on the generators is given by

(e =o(l -y, W) =yl-w) Tu(e) =21 - )7

Du(z) =2, Puy)=(1-2u)""y, Bu(2)=(1~2u)""2(1 —zu),
where we put z = x + y. In particular, both automorphisms ¥, and ®, preserve $°.

Proof. By induction, we can check ~d™(z) = zy™, and Ld™(y) = y™*+!, which gives
the result for ¥,,. For the &,, see [1]. _ [

Definition 2 Let A, be the automorphism of § defined by A, = ¥, 0 ;1. The images
of the generators x and y of Ay, are given by

Au(@) =z(l—yu)™h, Auly) =(1-2)(l-yu)7ly, Au(z) =2

where z = x + y.
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Definition 3 For each product ¢ = x or m, we define algebra homomorphisms reg, :
9t — 9% which is uniquely characterized by the properties that it is identity on $° and
sends y to 0. Specifically reg,(f) := fo for f € B, where fy is the element given in
Proposition 1.

By Definition 1 and Definition 3, for each e = * or m it clearly holds that
Z oregy(f) = 2*() |pes (8)
for all f € §.

Theorem 2 (Extended double shuffle relations) ([1]) The following statements are
true and equivalent: '

(G) Z% —poZ*=0 on H,

(ii) Zo (A, -1)=0 on H°,

(iii) Z[ regy (wimwp — wy * wo) | = 0 for wy € H, wy € H°,
(iv) Z[ reg,(wimwp — w1 * wp) ] = 0 for wy € H*, wp € H°.

We call this equivalent class of relations of MZV’s “extended double shuffie relations”.

Conjecture 1 ([1]) The extended double shuffle relations give the all relations among
MZV’s.

Lemma 1 We have

—1\n—1
expy (yu) = ! =exp,(z( 1) znu")).

1-yu a1 n
where exp,(f) = Y50 arf*" for f € B
Proof. The first equation is direct from y™" = n!y™. For second equation, see [1]. 1

Proof of Theorem 2. (Sketch) In Proposition 2, replace w by A_,(wg) and divide both
sides by 1 — yu, and use the lemma,

1, 1

a2 -u(w0) = y—om Au(wo) = expr (yu)m Ay (wo), (9)

for wp € H°. On the other hand, use Proposition 3 and the lemma, in the same way, we
have

1
l1-y

=% (wo) = ——— % wp = exp (Z (=", u"))*wo (10)
bt At * ~ n i :

Apply Z™ and po Z* to (9) and (10) respectively, we have

Zm (—i—cbj,(wo)) — Z(A—u(wo))e™, (11)

1-yu

. _lyucbz,ﬁ(wo)) = p(Z(wo)e™ A(u)™Y) = Z(wo)e™. (12)

poZ“(
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Since ®”! acts as an automorphism of $° and since the elements

— yuﬁo span H', the
equations (11) and (12) ensures the equivalence between (i) and (ii). Next we show that

(iii) =>(if).

regm<1 1y 1 —1yu *’wo)
= regm ( = Wo = 7 —1yum A-u(wo))
= regm( )(1 — A_y)(wo) = (1 — A_y)(wo),

where we used (9), (10) for the first equation and used the fact regy (1 —yu)~! =1 for
the last equation, which follows from regy (y™) =0, (m > 1). Taking 1= yu for w, in (iii),
the above equation shows that (jii)=> (ii). By the same arguments we can show (iv)=> (ii).
For (i) = (iii), multiply Z(w,) € R on both sides of Z™ (w;) = p(Z*(w1)) and use the
R-linearity of p to get Z™ (wymwy) = p(Z*(wy * wp)). Using (i) on the right, we obtain
Z" (wymwy — wy * wo) = 0. From (8), comparing the constant term of this equation,
which shows (iii). The implication (i)=-(iv) is proved similarly. 1

5 Derivation and Ohno’s relations

Theorem 3 (Derivation relations, [1]) For n > 1, let 8, be the derivation on $) de-
fined by the following action on generators:

On(z) =z(z+y)" Yy, Oh(y) =-z(z+y)" 'y

Then 8, can be ristricted to a derivation on $° and we have Z[ 8,($°) ] = 0.

Define a space of linear endomorphisms on $° by
N ={p€Endg(®") | Z[¢(5°)]=0}

Note that the space A is a right ideal of Endg($°) under the composition of endomor-
phisms. Then the derivation relations can be restated as 8, € N. For later use, we review
several relations of MZV’s.

Proposition 5 (Duality) Let 7 : § — $ be the involutive anti-automorphism which
interchanges z and y: () =y, 7(y) = z; 7(w) = 7(v)7(u) foru,v € H. Thenl—7 €N,
where 1 denotes the identity map on $H°.

Proposition 6 (Ohno’s relations, [9]) Forl >0, leto; : 5% = H° be the Q-linear map
defined by

01(2ky Zky * ** Zka) = E : Zk1+e1%ka+er """ Zknten:
ey +eg+---ten=l
e; 20

Then oy — oy € N.
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For any endomorphism ¢ € Endg($°), put ¥ := 7¢r. If ¢ is a derivation or an
automorphism, then so is @. Since 72 = 1, it holds

o —0] = (0’1 - oT) — (1- T)E[ (13)

Since N is a right ideal, Proposition 5, 6 imply o; — 37 € N. We call these relations weak
Ohno’s relations. Indeed, from (13) the Ohno’s relations is deduced from its weak version
and duality.

We give a table of all derivations which have been defined above. Here z denotes z +y.

Der| d | d | Dy | Dn | on on | Op = —0p |
z |zylz?| 0 |zy" 0 oy 1z | 2 ly
y |2 lzy|a™y| 0 |2zz" 1y 0 —z2"ly
z |zy|zz |2y |zy® | 22"y | 2y iz 0

Define the derivations on § as follows.
Jn an Dn .Dn
Z_un, au=znuna Du=Z——un, Du—z U,
n>1 n2l n>1 n2l
Theorem 4 ([1]) We have following equations among the corresponding automorphisms:
A, := exp(du) exp(—6,) = exp(dy) = exp(D,,) exp(—Dy,).

Proof. 1t is enough to show that the images of generators for each automorphism coincides
with each other. From the definition of Dy, we have D7(z) = 0 and D2(y) = (—1log(1 —
zu))"y for n > 1. Hence this implies

exp(Dy)(z) =z,  exp(Du)(y) = (1 — zu)ly, (14)
exp(—Dy)(z) = z, exp(—Dy)(y) = (1 — zu)y.

Consider the dual of (14), then we have
exp(Du)(y) =y,  exp(Dy)(z) = z(1 — yu)™".
Therefore we have

exp(Dy) (exp(—Du)(2)) = exp(Du)(z) = 2(1 - yu) %,
exp(Dy) (exp(—Du)(y)) = exp(Du) ((1 — zu)y) = (1 - 2(1 — yu) " 'u)y = (1 - zu)(1 — yu) 'y,

which coincides with that of A, in Definition 2. For exp(8,,), it will be shown in a corollary
of Theorem 5 in the next section. 1

As a consequence of the theorem, we find a connection among the regularization,
derivation relations and Ohno’s relations:

Corollary 1 ([1]) The following three statements are true and equivalent:
(i) (Regularization) A,-1€eN ,



95

(ii) (Derivation relations) exp(0,) —-1€ N,
(iii) (Weak Ohno’s relations) exp(D,) —exp(Dy) €N .

Before the proof, we give the table of the upper bounds of the dim Z which are obtained
by derivation relation and (weak) Ohno’s relations.

k 2|13(4(5{6|7 |89 (10|11 |12

di 1j1y1{2{213 14 {5 |71] 9 |12

Der. rel. 111121361020 /|38(75]|147 305
Weak Ohnorel. |1/1(2|3(6|10]20|38|75]147 | 305
Ohno rel. 1{1/2]3(6]|9 |18|30|57| 99 |192

Proof. Since we have already shown (i) in Theorem 2, it is enough to prove the eqluva.lence
The equivalence between (i) and (ii) is directly deduced from Theorem 4. Multiply el
from the right to e?—1 = ePue~Dv —1, then (iii) is deduced from (ii). The reverse direction
is same augument. The reason to put the tag ‘weak Ohno’s relations’ is as folows: Since
eP(z) = z and eP+(y) = (1 — zu)"ly, we have

exp(Du)(a:kl—ly- .. wkn—ly) = xkl_l(l _ a:u)"ly .. .xkn—l(l - xu)‘ly

— Z Z $k1+el—1y . xkn+en—lyul = Z a‘g(.'z:kl"l'y . mkn—ly)ul‘

120 e1+-+en 120

Hence we have exp(D,) = 3,5 01w, and exp(D,,) = Yis0 T
Therefore D+ —eD+ € A is equivalent to the weak Ohno’s relations o,—37 € A (I 3 0).

6 Derivations and automorphisms

Following [2], we discuss the derivations and automorphisms more generally. In this
section we define a family of derivations which generalize {Dy}, {Dnr}, {0n}, {0rn} and {8}
in previous section and discuss the corresponding automorphisms via exponential map.

Let {a, b} be an arbitrary set of (topological) generators of $, for example a and b are
both linear combinations of z and y which are not proportional. In general, the generators
a and b need not be of degree 1 homogeneous elements. We will fix such {a,b}. In this

section we use the letter D,, to express Dﬁla’ﬂ 19) defined below, unlike the previous section.

Definition 4 ([2], [1]) For all n > 0 and elements «, B8,7,6 in Q, define the derivations
D . D(Q)Bi’ﬁ ) by

D,(a) =0, Dy(b) = aa™"! + Ba™b + yba™ + 6ba™ b,
which are clearly in Dert (5).

Proposition 7 ([2], [1]) Fiz the elements o, 3,7,6 € Q, then the sequence of derivations
{D, = De:A0) | n > 1} commute with each other: [DS,? Brd) pleh ’7’6)] = 0 for all
m,n 2 1.
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Proof. Clearly the [Dy,, D,] is also a derivation on %. One can check easily the images of
a and b are both 0. '

To consider any linear combination of D,’s, we use the notation D; which was intro-
duced in [1]:

Definition 5 Let f(X) = 3_,5; cnX™ € XQ[[X]] be a formal power series in one inde-
terminate X without constant term. We define the derivation Dy € Der"'(ﬁ) by Dy =

Zn}l CnDn-

The action on generators {a, b} is given by D¢(a) = 0 and

D¢(b) = af(a)a+ Bf(a)b+ vbf(a) + be(a)b = f(a)u + bf-(a—alv

a
where u = aa + 8b and v = ya + db. The element ﬂaﬁl €9 is given by substituting a for

X in the power series L%l € Q[[X]].
Next, we give the automorphism corresponding to Dy via the exponential map.

Definition 6 ([2]) Let h(X) € 1 + XQ[[X]] be a power series with constant term 1. We
define an automorphism Ay as follows: Denote by € and ' the two roots of the quadratic
equation T2 + (B8 + )T + aé =0 and put w = € — €'. The elements ¢,&' and w belong to a
quadratic estensiton K of Q, but the elements e + &' = —(B +) and e’ = &b are in Q.

Let Ap € Aut'(9) be the automorphism defined by the following action on generators:
Ap(a) = a and

h(a)™®

—————:—1(aa - ab)] X [1 + h(a)”

AR) = ()b + M= 2 (ca—a)] " h(aye (19)

= h(a)? [(h(a)e ~ h(a)?)aa — (€h(a)* - eh(a)® )b]
h@)t - h(@)*

) -1
x [(e(a)* — €'h(a)*) - b| h@  (16)
where h(a)* = exp(Alogh(a)) for any A € K, and the quotients (h(a)* — 1)/wa and
(h(a)t — h(a)¢')/a define the elements of K{{(z,y)), since each numerator has no constant
term, one can divide it by a. In the case w = 0, we regard the elements (h(a)™ —1)/(—w)
and (h(a)” — 1)/wa as logh(a) and (log h(a))/a respectively. Since the expression (16) is
symmetric in € and €', it defines an element of 5.

First we check the expression (15) equals (16):

h_@l‘i:l(aa _ gb)]

Ap : = h(a)P*e [b-l—

= h(a)? [h’(a)a :}h(a)e’ aa+ (h(a)® - 5(h(a)€; h(a)e'))b]
h(a)¢ — h(a)® o e'h(a)t — eh(a) b] .
w w

= h(a)’| a7)
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On the other hand, we have

Bit:=[1+ i(-‘-‘%u%—‘-i(sa —o0)] h(a)e =14 h(“)wa‘ “(ea— 3b)] " ha)=(5+)
_ [n(a)® + Eh(@)7 =h@)) _ ha)* = h(a)® ] h(a)
L w wa
_reh(a)® —€'h(a)®  h(a)® —h(a)® 171, , \_
= | ” - — 5b] h(a)=P. (18)

Thus we have shown that (15)=(16). Since the equation (18) deﬁnes an invertible element
of §, we denote the inverse by Bj. Hence we have Ap(b) = AhBh .

Theorem 5 ([2]) For any f(X) € XQ[[X]], set h(X) = efX) € 1 + XQ[[X]]. Then we
have

Ap = exp(Dy). (19)

Proof. For the derivation Dy we can consider the 1-dimensional commutative Lie subal-
gebra {tD; = Dys} spaned by D¢. Then the image of the Lie algebra under the exponen-
tial map forms a 1-parametor subgroup {et?f = eD*f} of Aut!(). The tangent vector
along the path at the unit (identity automorphlsm on YJ) corresponds to log(ePf) = Dy.
Therefore it is enough to show that (i) £Aptli=0 = Dy, and (ii) Agn = AgA, for
g,h € 1+ XQ[[X]], i.e., the map h +— Ay, is a group homomorphism.

For (i), from the definition of Dy and Ap it is clear that %Ahe (a)lte=o = Dy(a) = 0.
Next we have from (15)

wt

E)_-t—w—_—l(aa - eb)] [1 +

where we write h for h(a) for simplicity. By using the formula %h'\‘h:o E—e"tf @)tz =
Af(a) for A € K, we have

d
dt

—_ -1
Ape(b) = plB+e)t [b + 1 (€a — 5b)] R(Y+e)t

2 8B, = (8+ )1 (@b + f(a)(aa — eb) = LD ea - 58) + bl + )£ @)
af(@)a + BF (@) + b (a) + 8612 (“) Hayu+L2,

This coincides with the expression in Definition 5. For the proof of (u) we need the
following lemma, which is proved in [2].

Lemma 2 For any g,h € 1 + XQ[[X]], we obtain
Ag(AnBy = Agn,  8g(Bn)By = By (0
where Ap, By, are the elements defined above.
Using this lemma we can prove (ii): Ag(Ax(a)) =a = Agp(a) and
Ag(An(b)) = Ag(AnBy ) = (AgnB; 1) (BenB; 1) ™! = AgnBy,l = Agn(b).

|
The following theorem is a special case of Theorem 5, but is worth stating separately

because of the conciseness of the expression.
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Theorem 6 ([2]) Suppose that o, 8,v,0 € Q satisfy aé — By = 0. Then the derivation
Dy is defined by the images D¢(a) = 0, Ds(b) = wﬂ-—lw on the generators for some
w,w' € Qa+ Qb and the automorphism Ap = exp(Dy) for h = ef sends the generators to

- _ h(a)?~7 -1 h(a)f~7 =1 1-1
@ = a0 = e Tl - SH=s T @

where u = aa + (b, v = ya + 6b.

Corollary 2 We have

exp(8y)(z) = z(1 —yu) ™', exp(8u)(2) = 2,
where 8, is a derivation defined in Section 5.

Proof. Take the generator {a,b} as {z = z + y,z} and (¢, 3,7, 6) as (0,0,1,~1), which

satisfies the assumption of Theorem 6. Moreover put f(X) = —log(1 —uX) for parameter
u, then D}a’ﬂ %) = 8,. In this case we obtain exp(8,)(z) = z(1 —yu)~, and exp(8,)(z) =
z from the theorem. '

7 Linearized double shuffle relations

In this section we estimate the number of generators of the algebra of MZV’s of given
weight k£ and depth n by considering the extended double shuffle relation modulo elements
of lower depth and products.

Let Z = @k;o Z;, be the graded algebra generated by all MZV’s over QQ, where 2Z; is
the Q-vector space generated by MZV’s of weight k. The space Zj, has a natural filtration

2, = Un>0 Z,(c"), where Z( ") is the Q-vector space spanned by MZV’s of weight k¥ and

depth € n. Thus 2 = ®k>0 Z( ") gives a corresponding filtration Z = |J,, >0 Z(™ on
the algebra Z. Let 7 = @k>1 Zk be the augumentation ideal of Z and Z2 its square
ideal. The grading and filtration are induced to the cotanjent space 7 = Z/Z2. The
dimension of the space 7y, the weight k& component of 7, coincides with the minimum
number Dj of algebra generators of Z in weight k. We can consider the bigraded vector
space M = gr(T) associated to the graded filtered space 7

M= @ MP, M =TT s 20 (00 + 20

k,n>1

Then the dimension Dy, of .MSC") equals the number of algebra generators of Z of weight

k and depth n, and we have Dy = n_l Dk,n There is a conjectural formula giving these
dimensions Dy p, due to Broadhurst and Kreimer.

Conjecture 2 ([3]) The number Dy, of algebra generaters of weight k and depth n are
given by

-1
H(l ~Dim — L I - 3y N z2y2(1 — 3?)
s 1-2z2 1-22  (1-z%)(1 - 2%
n21
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Following is the table of this conjectural values of Dy .

k 1 4 6 8 1011111213 |14 11516 |17 {18 19
Dy 1{1j0(1j0j1)1j111}2;2(3{3(45 ;7|8 11
Dral [L]1] 11] J1] |1 1 1
Dy 1 1 1 2 2 2
Dy 3 1 2 2 4 5
Dr.s 1 1 3 5
D5 1 ) 5
Dy6 1

In [1], certain vector space DS, (d) was intrduced for each n,d > 0 whose dimension
gives an upper bound of the numbers D, 4,. In this section, we summarize a result in
[1] and estimate the dimensions of DS, (d) for small n. As a consequence, we obtain a
non-trivial upper bound of Dy, for small n.

Let &, be the symmetric group of degree n and Z[S,] its group algebra. We de-
note Q[zi,...,z,] the space of (commutative) polynomials in n variables with rational
coefficients and by Q[z1,...,Zn]g) its subspace of homogeneous polynomials of degree
d. The group &, acts on these spaces by permutation of variables: ( flar) (z1y-..,2Zn) =
f(@o-101), -+ ., Zo-1(n)). For any o and 7 in Gy, it holds f|(o7) = (f|o)|T. We extend the
action Z-linearly to an action of Z[G,].

Define the double shuffle subspace DSy, of Q[z1,...,z,) as follws: For each integer !
with 1 <! < n, define the [-th shuffle element by sh; = Y o € Z[G,,], where the sum runs
over the element o € &, satisfying 6(1) < --- < o(l) and 6(! +1) < --- < o(n). Then

DS, = {f € Q[z1,...,2Zn] | flshi = fAshi=0for 1 <1 <n} (22)
where for any polynomial f € Q[z,,...,z,], we put
z1,...,z0) =f(zm1+a2+ -+ Tn, 22+ -+ Tn,...,Tn-1 + Tn, Zn)

We write DS, (d) for the degree d part of DS,,. For example, the case n = 2 is

_ f(z1,22) + f(z2,21) =0,
DS, = {f € Qlz1, z2] F(21 + 23, 21) + (21 4+ T2, 72) = 0}

Theorem 7 ([1]) For all k > n > 0, we have
Dy < dimg DSp(k —n).

It is conjectured that Dy , = dim DS, (k — n) for n > 1.

For example, the case n = 2 and d = 6, the space DS,(6) is spaned by a single
polynomial: DS2(6) = ( 22829 — 2z125 — 5ziz2 + 52%14 ). By the therem, Dgo < 1 is
deduced. We will sketch a proof of the theorem after some preliminaries. A part of the
proof is different from the original one given in [1].

Recall that $! is generated by 2z = z*¥~ly, (k > 1). For a fixed n, consider the
generating function

Fu(T1,.. %n) = D _ 2k, -+ 26,25 Lo zhr ™ € B[z, ..., 2n)]
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where the sum runs over all index sets k = (ki,...,ky) (allowing k1 = 1) of depth n,
and $![[z1,...,2n]] is the algebra of formal power series in n variables with coefficients
ring $H'. For each product e, (¢ = -, * or m), we can consider the algebra structure on
H[z1,...,2,]] which is isomorphic to the tensor algebra $1RQ[[z1, ... ,Zg]]. Forn > 2
and 1 <! < n, we have easily

Fi(z1,...,21) - Foei(Zi41,- . -, Zn) = Fp(z1,- .., Tn)-
Proposition 8 For anyn 2 2 and 1 <1 < n, we have
(i) Fi(zr,...,31) * Foo(Ti41,- .-, Tn)
= Fi(z1) - (Fi=1(z2,- ., 1) * Fooi(Ti41, - - -, Tn))
+F(zi41) - (Fi(z1, ... 20) * Fpoi-1(Zig, . .., 20))

Fi(zy) — Fy(z
+ ie) — Ri@i) (Fi-1(z2,- .., 1) * Fpoi-1(zi42, - - -, Zn)).
1 — Zi+1
(11) F'l(mlr--aml)an—l(ml-i-l’--',zn)

= Fi(z1 + Z141) (Fl—1($2, v x)m Fy (%4, - - ,l‘n))
+Fi(z1 +zi41) - (Fi(z1, .. o)m Fooic1 (242, .., 2n)).

Proof. From (3) and (4), it is enough to show the case n = 2 and ! = 1. For (i), we have

k -1 ka1 LFi—l ka1
Fi(z1) * Fi(z2) = (E 2k, X7 ) (E ZkyTol ) :}: Zky * 2y Tyt Ty
-1 _ko-1
=) " (2ky 2k + Zko 2k1 + Zhy 4y ) TN 2R
k=1 ks -1 k=1 ka1 k-1 ko1
= § :zklzklel 5 "'z:zkz"rklxl1 ' +§ :zk1+k2 Tmg?

Fy(z;) — Fl(l‘z)
r1 — 22 )

= Fy(z1,22) + Fa(z2,21) +

For (ii), we use Fi(z;) = Zk1>1 m’“'lymkl -1 =(1=-2zz;) 'y = y+ 2z F1(x;), for i = 1,2,
and (4), then

Fi(z1)m Fi(22) = (y + zz1F1 (1)) m (y + z22Fy(22))
= ymy + ymz(z1F1(z1) + 22 F1(22)) + 221 Fi (z1)m 222 Fy (22)
= ymy + yz(21F1 (21) + 22 F1 (22)) + 3 (ym (21 Fy (1) + 22F1 (22)))
+ z(z1F1(21) + 222 F1(22)) + z (221 F1(21) + 22 F1(22))
= ymy +y(Fi(z1) —y + Fi(z2) —y) + x(ym (z1F1 (1) + $2F1($2)))
+ m(mFl(ml)m (Fi(ze) = 3/)) + x((Fl(ﬂh) - y)m$2F1($2))
=y(Fi(21) + Fi(22)) + z(z1 + 22) (F1(z1)m F1 (29)).
Therefore |

Fi(z1)m Fy(z2) = (1 - (21 + 22)) " y(Fi(z1) + Fi(z2))
= F1($1 + .’I)z)(Fl(:Bl) -+ F1(:2:2)) = Fg(x1 + 932,.'1:1) -+ F2(x1 -+ mz,mz).
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|
We can define a filtered graded structure on $!. The grading and filtration are defined

by the total degree and partial degree in y respectively. The space $? is a filterd graded
subalgebra of §] for each ¢ = x or m. Then the both evaluation map Z : $° — Z and
regualization map reg, : H) — H9 are morphisms preserving the grading and filtration.

Let o™ : 2™ — Mi ™ be the natural surjection and +( : Z® — M® be its
direct sum : (%) = Ds 1,§c ). For each product e = x or m, consider the composition map

where f)i’(") is the n-th filtered subspace of ., namely which is generated by the words
whose partial degree in y are less than or equa.l to n. By the definition of M, the image
of the subspace 2’ =1 in M® via this composition map is {0}. Furthermore, the image

of the product f e f' € H ™) in M® is also {0} for f € H2® and e py o(n=1),
Lemma 3 ([1]) We have a following equation in M™MEQ([z1, ..., z]]

™ o Z o reg, (Fu(@1,...,2n)) = ™ 0 Z oregy (Fu(z1, .. .,Zn)),
where the composition maps acts on the coefficient part.

Proof. From (8), the gap between Z o reg, and Z o regy; is given by the map p defined
in (6). The lemma follows from Theorem 1 and the fact that the coefficient of p(T*) is
contained in the algebra generated by Riemann zeta values i.e., MZV’s of depth 1. [

Let M be the bigraded Q-algebra associated to the filterd graded algebra Z/72. As

a Q-vector space M = Q & M, here Q is regarded as the (0,0)-degree component of M.
In the following, we think M as a subspace of M. Consider .M[[:z:l, .., Zn]] the algebra

of power series with M coeficients and extend the Z[Sy]-action to M[[xl, ..., Zp]] in the
obvious way.

Definition 7 Deﬁne a power series in /\7[[3:1, ..., Zn]] by
Fa(z1,...,zn) =™ o0 Z oreg, (Fu(@1,...,24)) = i 0 Z o regyy (Fn(21,- - ., Zn))-
Proposition 9 ([1]) For 1 <! < n, we have

(Falsh){(z1,...,2n) = (E;ﬁlshg)(zl, .ouyTy) = 0.
Hence the polynomial F,(d), the homogeneous degree d part of F,, , is in M® DS, (d).
Proof. For each product e = * or m, apply (™ o Z o reg, to Proposition 8, then

0= FI(IL'],)(.F[-;L(-’L?, R ml)Fn—l(zl+la cee 73"71))
+ 7’-].-(xl-(—].)(.:-F—.'Z(mla ceey ml)Fn—l—-l(xl-i-% s ,xn)) = (E‘Shl)(xla v 1zn)'
and
0= E(xl + xl-!-l,) ' ﬂ—1($27 ey zl)Fn—l(ml+1> <o 7$n))
+ Fi(z1 4 z141) - (Fi(@1, - - 2) P11 (T142, - - - Tn)) = (Fj|3hl)($1, cery Tp).
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Thus we conclude the proof. )

Proof of Theorem 7. As a corollary of Proposition 9, we can show that the dimension
of the Q-vector subspace of Mgcn) spaned by the coefficients of F,,(k — n) is less than or
equal to the dimension of DS, (k — n). Since images of all MZV’s of weight k and depth n

in M{™ are appered as the coefficients of Fn(k —n), we have dim M{™ < dim DS, (k —n),
which proves the theorem. 1

In the rest of this section we give some estimates of the space DS,(d).
Let T, = (,1z ,,31 - 71‘) € G,. For n,d 2 1, define the space

VVn(d) = {f € Q[zl’ v 1m‘n](d) l fﬁ‘sh’l =0 (1 < I< n)v flTn = (-l)n_lf}‘
Proposition 10 ([1]) We have (i) DSp(d) C Wyr(d), (ii) Wnr(d) = {0} if d is odd.
Proof. Omitted. The space Wy(d) is equal to the space ‘ShCyp(d)’ in [1].

Corollary 3 (Parity result) If d is odd, then DS,(d) = {0} for every n > 0. Conse-
gently Dy, = 0 if k # n mod 2.

This result was proved independently by Tsumura [13] by a different method.

For small n, we can compute explicitly the dimension of the space W, (d), which gives
a non-trivial upper bound of the number D, 4.

Proposition 11 ([6]) Let E,(t) = 3_ 450 dim Wi (d)t? be the Poincaré series of the spaces
Wn(d). Then,

, 6

(i) Es(t) = (1-2)(1- t6) ’

. t?

(11) E3(t) = (1 — t2)2(1 _ t6)7
t4(1 + t4)

(i) Ba(t) = 7 —py5q = 110y’

t2(1 + 2 + 4¢* + 248 + 568 + 4810 + 4412 4 14 4 2¢16)
(1 -#2)2(1 - %)?(1 — #19) '
We give the table of dim Wy (k — n) up to n < 5 and k < 19 as follows.

(iv) Es(t) =

nN\k|l1{2|3[{4|5|6|78|9(10|11|12{13|14|15}16-|17 |18 19
1 111 1 1 1 1 1 1 1 1
2 1 1 1 2 2 2
3 1 2 3 5 7 9 12 15
4 1 3 7 13 21 32
5 1 3 9 19 36 66 108
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