A NOTE ON GT-ADMISSIBLE VARIETIES

TOMOHIDE TERASOMA (UNIV. OF TOKYO)

1. CONTENTS

In this paper, we introduce a notion of GT-admissible varieties. Roughly speaking, it is a (semi-)simplicial oject in the category of varieties $\mathcal{M}_{0,n}, \Delta^*, \ldots$ and their products with tangential points. We introduce a cohomology theory of GT-admissible varieties. To obtain patching varieties, we construct higher homotopy for complexes in the sence of Hanamura. It seems very possible to reconstruct this cohomology theory using a formulation of A_{∞} -category. All constructions in this paper can be done in the setting of more general Tannakian category.

2. CATEGORY (Basic)

2.1. Tangential points. In this subsection, we define a category (Basic) to define the set of associator and Grothendieck-Teichmüller group. The object of (Basic) consists of three object Δ^* , $\mathcal{M}_{0,4}$ and $\mathcal{M}_{0,5}$. Formally speaking, Δ^* , $\mathcal{M}_{0,4}$ and $\mathcal{M}_{0,5}$ are finite set, called tangential points. For example, the most easiest one Δ^* consists of two tangential points $\{+, -\}$. The tangential points of $\mathcal{M}_{0,4}$ consists of $\{01, 0\infty, \cdots\}$ (all together 6 points). The tangential points of $\mathcal{M}_{0,5}$ consists of plane trivalent tree with five end points up to mirror. (Plane tree is equipped with a cyclic ordering for each vertex.) Therefore the number of tangential points is 60. Tangential points are expressed geometrically as follows.

The symbol $\mathcal{M}_{0,5}$ is usually used as a moduli space of genus zero curves with marked 5 points. Mumford and Knudsen defined the stable compactification $\overline{\mathcal{M}_{0,5}}$ of the moduli space $\mathcal{M}_{0,5}$ by adding a normal crossing divisor (=1dimensional) in $\overline{\mathcal{M}_{0,5}}$. There exist 15 crossing points in the boundary divisor. Let p be a crossing point and U_p be a small neighbourhood of p. The intersection $U_p \cap \mathcal{M}_{0,5}(\mathbf{R})$ consists of 4 connected components. Each component corresponds one to one to tangential point of $\mathcal{M}_{0,5}$. In the following context, $\mathcal{M}_{0,5}$ represents the set of these 60 tangental points and forget the geometric meaning of $\mathcal{M}_{0,5}$.

2.2. Two theories of fundamental groups. There exist two theories of fundamental groups, topological fundamental group and de Rham fundamental group. For $X \in (Basic)$ and $p \in X$, the topological fundamental group $\pi_1(X, p)$ can be defined purely conbinatorially. For example, the group $\pi_1(\Delta^*, +)$ is generated by a positive generator θ . More generally, for $p, q \in X$,

we can define the set of path $\pi_1(X, p, q)$ connecting p and q up to homotopy. We can define the **Q**-linear span $\mathbf{Q}[\pi_1(X, p, q)]$ of $\pi_1(X, p, q)$, which is a left $\mathbf{Q}[\pi_1(X, q)]$ (resp. right $\mathbf{Q}[\pi_1(X, p)]$) module of rank one and the completion of $\mathbf{Q}[\pi_1(X, p, q)]$ with respect to the augmentation ideal of $\mathbf{Q}[\pi_1(X, q)]$ is denoted as $\mathcal{U}^B(X, p, q)$. There exist "multiplication"

$$\mathcal{U}^B(X,q,r)\otimes\mathcal{U}^B(X,p,q)\to\mathcal{U}^B(X,p,r)$$

which satisfies the axiom of algebroid, i.e. associative multiplication $\gamma\eta$ is defined only if the starting point of γ is equal to the ending point of η .

There is a theory of de Rham fundamental group $\pi_1^{DR}(X, p)$ of X with a base point p. For $p, q \in X$, there is a canonical isomorphism

$$\pi_1^{DR}(X,p) \simeq \pi_1^{DR}(X,q)$$

in de Rham fundamental group theory, which is a different point from the Betti theory. The group $\pi_1^{DR}(X,p)$ is defined as the set of group like elements of a Hopf algebra $\mathcal{U}^{DR}(X,p)$. There exists a canonical isomorphism

$$\mathcal{U}^{DR}(X,p)\simeq\mathcal{U}^{DR}(X,q)$$

as Hopf algebras. For example, we have $\mathcal{U}(\Delta^*, +) = \mathbb{Q}[[e]]$, where $e = Res_0$.

- 2.3. Functoriality. We introduce morphisms in (Basic). Morphisms cosist of
 - 1. An inclusion $:\Delta^* \to \mathcal{M}_{0,4}$. The tangential points + and goes to \overrightarrow{ab} and \overrightarrow{ac} , where $\{a,b,c\} = \{0,1,\infty\}$. (Therefore altogether, 6 morphism of this type.)
 - 2. An infinitesimal inclusion: $\mathcal{M}_{0,4} \to \mathcal{M}_{0,5}$. We will not write down precisely here. There are 12 connected components of $\mathcal{M}_{0,5}(\mathbf{R})$ and each connected component is bounded by 5 divisors, i.e. it is a pentagon. There exists a unique infinitesimal inclusion by which a connected component of $\mathcal{M}_{0,4}(\mathbf{R})$ goes to an edge of pentagon.
 - 3. A composite of type (1) and type (2).

The category of pointed objects and two pointed objects in (Basic) are written as (*Basic) and (**Basic), respectively.

Let #=B,DR. The correspondence $(X,p)\to \mathcal{U}^\#(X,p)$ and $(X,p,q)\to \mathcal{U}^\#(X,p,q)$ form functors

$$\mathcal{U}^{\#}: (*Basic) \to (Vec_{\mathbf{Q}})$$
 and $\mathcal{U}^{\#}: (**Basic) \to (Vec_{\mathbf{Q}}).$

Moreover these functors give rise to a functor

$$\mathcal{U}^{\#}: (Basic) \rightarrow (Hopf_{\mathbf{Q}})$$

form the category (Basic) to the category of Hopf algebroids over Q.

Theorem 2.1 (Drinfeld). There exists a functorial isomorphism

$$\rho:\mathcal{U}^B\otimes\mathbf{C}\simeq\mathcal{U}^{DR}\otimes\mathbf{C}$$

where

(2.1)
$$\rho(\log \theta) = 2\pi i e \text{ for } \rho: \mathcal{U}^{B}(\Delta, +) \otimes \mathbb{C} \simeq \mathcal{U}^{DR}(\Delta, +) \otimes \mathbb{C}.$$

Hodge theory gives a functorial isomorphism. Less trivial part is the compatibility for infinitesimal inclusions.

2.4. Associator, Grothendieck-Teichmüller group.

Definition 2.2. 1. The set of functorial isomorphisms of C-Hopf algebroids

$$Ass = Isom_{Hopf_G}(\mathcal{U}^B, \mathcal{U}^{DR})$$

is called the set of associators. We define $Ass_{2\pi i}$ as

$$Ass_{2\pi i} = \{ \rho \in Ass \mid \rho \text{ satisfies the condition } (2.1) \}$$

2. Let #=B,DR. The set of functorial isomorphisms of Q-Hopf algebroids

$$GT^{\#} = Isom_{Hopf_{\mathbf{Q}}}(\mathcal{U}^{\#}, \mathcal{U}^{\#})$$

is called the #-Grothendieck-Teichmüller group. We define $GT_1^\#$ as

$$GT_1^\# = \{g \in GT^\# \mid g(\log \theta) = \log \theta \ (if \# = B) \ g(e) = e \ (if \# = DR) \}$$

 $for g : \mathcal{U}^\#(\Delta^*, +) \to \mathcal{U}^\#(\Delta^*, +) \}$

We have an exact sequence

$$1 \to GT_1^\# \to GT^\# \to \mathbf{G}_m \to 1.$$

The set Ass and $Ass_{2\pi i}$ is a left (resp. right) principal homogoeneous space under the group $GT^{DR}(\mathbf{C})$ and $GT_1^{DR}(\mathbf{C})$, $(GT^B(\mathbf{C})$ and $GT_1^B(\mathbf{C}))$, respectively. The group $GT_1^{\#}$ is a nilpotent Lie group and its Lie algebra is denoted as $\mathcal{GT}_1^{\#}$. By the definition of GT^B , $\mathcal{U}^B(\mathcal{M}_{0,4})$ and $\mathcal{U}^B(\mathcal{M}_{0,5})$ are representations of GT^B .

- 2.5. Category (Fund). We define a category (Fund). The object of the category (Fund) consists of
 - 1. $\mathcal{M}_{0,i}$ for $i \geq 4$,
 - 2. Δ^n (big diagonal), $(\Delta^*)^n$ (big diagonal), and
 - 3. their products.

The morphisms consist of inclusions, infinitesimal inclusions and certain projections. We define categories (*Fund) and (**Fund) by pointed and two pointed objects of (Fund). As in (Basic) case, we can define two functors \mathcal{U}^B and \mathcal{U}^{DR} . (For an object $(X,p) \in (*Func)$, $\mathcal{U}^B(X,p)$ is the completion of the group algebra of the fundamental group with respect to the augmentation ideal.) The following theorem is due to Ihara and Lochak.

Theorem 2.3. Let # = B or DR. The action of $GT^{\#}$ on the fuctor $\mathcal{U}^{\#}$: $(**Basic) \to (Hopf_{\mathbf{Q}})$ extends uniquely to the action on the functor $\mathcal{U}^{\#}$: $(**Fund) \to (Hopf_{\mathbf{Q}})$.

This principle is known as MacLane coherence principle.

3. DIFFERENTIAL GRADED ALGEBRA

3.1. From Hopf algebroid to differential graded algebra. Let \mathcal{U} be a Q-Hopf algebroid with an augmentation $\epsilon:\mathcal{U}\to \mathbf{Q}$ over a set X, which is complete for the topology defined by the augmentation ideal $I=Ker(\epsilon)$. In this paper, the coproduct Δ of the Hopf algebroid is always cocommutative and coassociative. Therefore the groupoid like element in \mathcal{U} forms a prounipotent groupoid. We introduce linear topology on \mathcal{U} and assume that \mathcal{U} is compact for the topology. In particular, \mathcal{U}/I^n is a finite dimensional Hopf algebroid. Functors Hom, \otimes are always considered in the category of locally compact vector spaces.

Definition 3.1. 1. Let $p, q \in X$. We define a complex $K^{\bullet}(\mathcal{U})_{p,q}$ by

Degree of the complex is given by $K^{-i}(\mathcal{U}) = \mathcal{U}^{\otimes i+1}$.

2. We define the n-coproduct $\Delta^{(n)}$ by the composite

$$(1^{\otimes^{n-2}}\otimes\Delta)\circ\cdots(1\otimes\Delta)\circ\Delta:\mathcal{U}_{p,q}\to\mathcal{U}_{p,q}\otimes\cdots\otimes\mathcal{U}_{p,q}.$$

Via this coproduct, $U \otimes \cdots \otimes U$ is a two sided U module. Via this U structures, the differentials in the complex $K^{\bullet}(U)$ are homomorphisms of two sided U modules.

Proposition 3.2. The cohomologies of the complex is

$$H^{-i}(K^{\bullet}(\mathcal{U})_{p,q}) = \begin{cases} \mathbf{Q} & \text{if } i = 0\\ 0 & \text{if } i \neq 0 \end{cases}$$

Proof. Let $p \in X$ and G_p be the group like element in \mathcal{U}_p . We define a simplicial complex Y as follows: the set of n-simplices is $\{(g_0, \ldots, g_n) \mid g_i \in G\}$. Since G_p is a pro-Q-unipotent group, the completion of the chain complex of Y is canonically isomorphic to $K^{\bullet}(\mathcal{U})_p$ and the completion of the cohomologies is isomorphic to the cohomology of the completion for the chain complex of Y.

Definition 3.3 (Differential graded algebra). 1. Let $p, q \in X$. We define

$$\Omega^{i}(\mathcal{U})_{p} = Hom_{(left)\mathcal{U}_{q}}(K^{-i}(\mathcal{U}_{p,q}), \mathbf{Q}).$$

Note that this complex does not depend on the choice of q. Using the transpose of the differential of K^{\bullet} , we have a complex

$$\Omega^{\bullet}(\mathcal{U})_{p}: 0 \to \Omega^{0}(\mathcal{U})_{p} \to \Omega^{1}(\mathcal{U})_{p} \to \Omega^{2}(\mathcal{U})_{p} \to \cdots$$

There exists a left action of U_p on Ω^{\bullet} arising from the right action of U_p on $K^{\bullet}(\mathcal{U})_{p,q}$.

2. We introduce a product structure on $\Omega^{\bullet}(\mathcal{U})_p$. Let ω and η be elements of $\Omega^{i}(\mathcal{U})_p$ and $\Omega^{j}(\mathcal{U})_p$, respectively. We define $\omega \cdot \eta \in \Omega^{i+j}(\mathcal{U})_p$ by

$$(\omega \cdot \eta)(a_0 \otimes \cdots \otimes a_{i+j}) = (\omega \otimes \eta)(a_0 \otimes \cdots \otimes \Delta(a_i) \otimes \cdots \otimes a_{i+j}).$$

Then this multiplication is associative and we have $d(a \cdot b) = da \cdot b + (-1)^{deg(a)}a \cdot db$.

Proposition 3.4. The cohomology $H^i(\Omega^{\bullet}(\mathcal{U})_p)$ of $\Omega^{\bullet}(\mathcal{U})_p$ is equal to $H^i(G, \mathbf{Q})$. The induced right action of \mathcal{U}_p is trivial. i.e. the action of \mathcal{U}_p factors through $\epsilon: \mathcal{U}_p \to \mathbf{Q}$.

Proof. Let Y be the simplical complex defined as before. Since the group G is pro-Q-nipotent, the action of G on Y is fixed point free. Therefore the quotient space $G \setminus Y$ is K(G,1) space. The cochain complex of $G \setminus Y$ is equal to $\Omega^{\bullet}(\mathcal{U})_p$. The triviallity of the action of \mathcal{U}_p will be explained later. \square

3.2. Differential graded algebroid structure on K^{\bullet} . Let \mathcal{U} be a Hopf algebroid over a set X, p,q two points in X and $K^{\bullet}(\mathcal{U})_{p,q}$ be the complex defined in 3.1. We introduce an associative product structure

$$K^{\bullet}(\mathcal{U})_{q,r} \otimes K^{\bullet}(\mathcal{U})_{p,q} \to K^{\bullet}(\mathcal{U})_{p,r},$$

for $p, q, r \in X$.

Definition 3.5. Let a, b be elements in \mathbb{N} and set k = a + b. Minimal path connecting (0,0) and (a,b) is a sequence of $(a_i,b_i) \in \mathbb{N}^2$ $(i=0,\ldots,k)$ such that

- 1. either $a_{i+1} = a_i + 1, b_{i+1} = b_i$, or $a_{i+1} = a_i, b_{i+1} = b_i + 1$, and
- 2. $a_0 = 0, b_0 = 0$ and $a_k = a, b_k = b$.

for $0 \le i \le k-1$. The set of minimal path connecting (0,0) and (a,b) is denoted by $MP_{a,b}$. For a minimal path $p = (a_i,b_i)_i \in MP_{ab}$, the number $\sum_{i=0}^{a} a_i - (a(a+1)/2)$ is called the volume of the path and denoted by vol(p). We define the signature sign(p) of a path p by $(-1)^{vol(p)}$.

Let p, q, r be elements in X. We define a dot product

$$*\cdot *: K^a(\mathcal{U})_{q,r} \otimes K^b(\mathcal{U})_{p,q} \to K^{a+b}(\mathcal{U})_{p,r}.$$

Let $g_0, \ldots, g_a, h_0, \ldots, h_b$ be group(oid) like elements in \mathcal{U} . Using these elements the product is defined by

$$(g_0 \otimes \cdots \otimes g_a) \cdot (h_0 \otimes \cdots \otimes h_b)$$

$$= \sum_{p=(a_i,b_i) \in MP_{a,b}} sign(p)(g_{a_0}h_{b_0} \otimes g_{a_1}h_{b_1} \otimes \cdots \otimes g_{a_k}h_{b_k})$$

We can describe the above product using Δ and the multiplication of \mathcal{U} . Then we have

$$d(v \cdot w) = dv \cdot w + (-1)^a v \cdot dw$$

for $v \in K^a(\mathcal{U})_{q,r}, w \in K^b(\mathcal{U})_{p,q}$. The product is associative, i.e. for $x \in K^{\bullet}(\mathcal{U})_{r,s}, y \in K^{\bullet}(\mathcal{U})_{q,r}, z \in K^{\bullet}(\mathcal{U})_{p,q}$, we have $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

We define an action of $K^{\bullet}(\mathcal{U})_{p,q}$ from $\Omega^{\bullet}(\mathcal{U})_p$ to $\Omega^{\bullet}(\mathcal{U})_q$, using the dot product structure on $K^{\bullet}(\mathcal{U})$ as follows.

This homomorphism is a homomorphism of complex. The the associativity for "·" implies the associativity of the action of K^{\bullet} on Ω^{\bullet} .

4. PATCHING BY CECH COMPLEX OF COMPLEXES

- 4.1. Cubic flag and *n*-homotopy. In this subsection, we define an *n*-homotopy h(S) for a finite totally ordered set S, which will be used in the next subsection to defined *n*-homotopies for patching complexes. Let S be a totally ordered set with finite n elements. Cube \square^S over S is defined by $\{0,1\}^S$. If $S = \{1,\ldots,n\}$, the cube over S is denoted as \square^n . A minimal path from $(0,\ldots,0) \in \square^S$ to $(1,\ldots,1) \in \square^S$ (minimal path of S for simiplicity) is defined by a permutation $\sigma = (\sigma_1,\ldots,\sigma_n)$ of S. A minimal path can be regarded as a sequence v_0,\ldots,v_n of \square^S defined by
 - 1. $v_0 = (0, \cdots, 0),$
 - 2. $v_i = v_{i-1} + e_{\sigma_i}$, where e_{σ} is the elementary unit vector for the σ component.

Let $\Sigma(S)$ be the set of minimal path of S expressed as permutations of S and W(S) be the vector space spanned by $\Sigma(S)$ over \mathbb{Q} .

Definition 4.1 (Dot product). Let T_1 be a subset in S and $T_2 = S - T_1$. For elements g and h in $\Sigma(T_1)$ and $\Sigma(T_2)$, $(gh) \in \Sigma(S)$ denotes the composite of words g and h. We define a product

$$W(T_1)^{\otimes (p+1)} \otimes W(T_2)^{\otimes (q+1)} \rightarrow W(S)^{\otimes (p+q+1)}$$

$$(g_0, \dots, g_p) \otimes (h_0, \dots, h_q) \mapsto g \cdot h$$

by

$$g \cdot h = \sum_{p=(a_i,b_i) \in MP(p,q)} sign(p)(g_{a_0}h_{b_0}) \otimes \cdots \otimes (g_{a_{p+q}}h_{b_{p+q}}),$$

where g_i and h_j are elements in $\Sigma(T_1)$ and $\Sigma(T_2)$.

We define $d: W(S)^{\otimes n} \to W(S)^{\otimes (n-1)}$ by

$$\begin{array}{ccc} W(S)^{\otimes n} & \to & W(S)^{\otimes (n-1)} \\ (v_1 \otimes \cdots \otimes v_n) & \mapsto & \sum_{k=1}^n (-1)^{k-1} v_1 \otimes \cdots \otimes v_{k-1} \otimes v_{k+1} \otimes \cdots \otimes v_n, \end{array}$$

for $v_1, \ldots, v_n \in \Sigma(S)$.

Definition 4.2 (n-Homotopy for an ordered set S). Let S be a finite totally ordered set with $\#S = n \ge 1$. We set $tot(S) \in \Sigma(S)$ by $tot(S) = (g_1, \ldots, g_n)$, where $S = \{g_1, \ldots, g_n\}$ and $g_1 < \cdots < g_n$. We define n-homotopy h(S) of S by the induction on #S.

1. If $S = \{a\}$, then we define

$$h(S)=(a).$$

2. If $S = \{a, b\}$ and a < b, then we define

$$h(S) = (ab) \otimes (ba).$$

3. If $\#S \geq 3$, then we define

$$h(S) = tot(S) \otimes \Big(\sum_{\emptyset \neq T \subseteq S} (-1)^{\#T} sign(S, T) h(T) \cdot h(S - T) \Big).$$

where sign(S,T) is the signature of the permutation tot(S) tot(T), tot(S-T).

Proposition 4.3. We have

$$d\Big(\sum_{\emptyset \neq T \subsetneq S} (-1)^{\#T} sign(S,T) h(T) \cdot h(S-T)\Big) = 0$$

and

$$d(h(S)) = \sum_{\emptyset \neq T \subset S} (-1)^{\#T} sign(S, T) h(T) \cdot h(S - T).$$

4.2. First step for patching differential graded algebras. Let \mathcal{K} be a finite simplicial complex with a total order on the set of vertices. Then \mathcal{K} is a category whose objects and morphisms are given by simplices and their inclusions. Let X be a contravariant functor from the complex \mathcal{K} to the category of Hopf algebroid, i.e. for a simplex σ in \mathcal{K} , X_{σ} is a finite set and $\mathcal{U}(\sigma)$ is a Hopf algebroid over the set X_{σ} . For a face $\tau < \sigma$ of σ , we have a map of finite set $X_{\sigma} \to X_{\tau}$ and a homomorphism of Hopf algebroid $\mathcal{U}(\sigma) \to \mathcal{U}(\tau)$ compatible with the composite for inclusions $\sigma_1 < \sigma_2 < \sigma_3$ of simplices.

Then we have a differential graded algebroid $K^{\bullet}(\mathcal{U}_{\sigma})$ over X_{σ} and a family of differential graded algebra $\Omega^{\bullet}(\mathcal{U}_{\sigma})_x$ for $x \in X_{\sigma}$. The action of $K^{\bullet}(\mathcal{U}_{\sigma})$ on $\Omega^{\bullet}(\mathcal{U}_{\sigma})$ is introduced in the last section. A set of base points $B = (b_{\sigma})_{\sigma}$ with $b_{\sigma} \in X_{\sigma}$ is called a system of base points of X. In this subsection, we define a complex $\Omega^{\bullet}(X) = \Omega^{\bullet}(X)_B$ for a system of base points B.

Let σ be a simplex of \mathcal{K} . We define a full subcategory \mathcal{K}_{σ} of \mathcal{K} defined by

$$ob(\mathcal{K}_{\sigma}) = \{ \tau \mid \sigma < \tau \}.$$

All the morphisms in \mathcal{K}_{σ} of codimension one is denoted as $Mor(\sigma)$, i.e.

$$Mor(\sigma) = \{(\alpha < \beta) \mid \sigma < \alpha < \beta, \dim \alpha + 1 = \dim \beta\}.$$

We introduce a total order in $Mor(\sigma)$. For example lexico graphic order for (α, β) . For a morphism $(\alpha < \beta) \in Mor(\sigma)$, the complex $K^{\bullet}(\mathcal{U}(\alpha))_{b_{\alpha},b_{\beta}|_{X_{\alpha}}}$ is denoted by $K^{\bullet}_{\alpha,\beta}$ for short. Then we have a natural homomorphism $\mu_{\alpha,\beta}$ of complexes:

$$\mu_{\alpha,\beta}: K_{\alpha,\beta}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\alpha))_{b_{\alpha}} \to \Omega^{\bullet}(\mathcal{U}(\alpha))_{b_{\beta}|\alpha} \to \Omega^{\bullet}(\mathcal{U}(\beta))_{b_{\beta}}.$$

Definition 4.4. 1. For a simplex σ in K, we define a complex $\widetilde{\Omega}^{\bullet}(\sigma)$ by

$$\widetilde{\Omega}^{\bullet}(\sigma) = (\bigotimes_{(\alpha < \beta) \in \mathcal{M}or(\sigma)} K_{\alpha,\beta}^{\bullet}) \otimes \Omega^{\bullet}(\mathcal{U}(\sigma))_{b_{\sigma}}.$$

The differential of $\widetilde{\Omega}^{\bullet}(\sigma)$ is given as the differential on the tensor product. As usual, using an isomorphism

$$\begin{array}{ccc} K^{\bullet} \otimes L^{\bullet} & \simeq & L^{\bullet} \otimes K^{\bullet} \\ a \otimes b & \mapsto & (-1)^{\deg a \cdot \deg b} b \otimes a, \end{array}$$

the differential is independent of the order of tensor product.

2. Let $\sigma < \tau$ be a homomorphism in K of codimension one. We define $\delta_{\sigma,\tau}: \widetilde{\Omega}^{\bullet}(\sigma) \to \widetilde{\Omega}^{\bullet}(\tau)$:

$$\bigotimes_{(\alpha < \beta) \in Mor(\sigma)} K^{\bullet}_{\alpha,\beta} \otimes \Omega^{\bullet}(\mathcal{U}(\sigma))_{b_{\sigma}} \\ || \otimes_{(\alpha < \beta) \in Mor(\tau)} K^{\bullet}_{\alpha,\beta} \otimes \bigotimes_{(\alpha < \beta) \in Mor(\sigma) - Mor(\tau)} K^{\bullet}_{\alpha,\beta} \otimes K^{\bullet}_{\sigma,\tau} \otimes \Omega^{\bullet}(\mathcal{U}(\sigma))_{b_{\sigma}} \\ || \otimes_{(\alpha < \beta) \in Mor(\tau)} K^{\bullet}_{\alpha,\beta} \otimes \Omega^{\bullet}(\mathcal{U}(\tau))_{b_{\tau}} \\ || \otimes_{(\alpha < \beta) \in Mor(\tau)} K^{\bullet}_{\alpha,\beta} \otimes \Omega^{\bullet}(\mathcal{U}(\tau))_{b_{\tau}} \\ || \otimes_{\alpha,\beta} a_{\alpha,\beta} \otimes \bigotimes_{\alpha,\beta} b_{\alpha,\beta} \otimes c_{\sigma,\tau} \otimes \omega_{b_{\sigma}}) \\ || \otimes_{\alpha,\beta} a_{\alpha,\beta} \cdot \prod_{\alpha,\beta} \epsilon(b_{\alpha,\beta}) \cdot (c_{\sigma,\tau} \cdot \omega_{b_{\sigma}}).$$

The following proposition is a direct consequence from the definition of $\delta_{\sigma,\tau}$.

Proposition 4.5. Let $\sigma < \gamma_1 < \tau$ and $\sigma < \gamma_2 < \tau$ be distinct sequence of codimensition one simplices in K. We define ∂ as

$$\begin{array}{cccccc} \partial: K^{\bullet}_{\gamma_{1},\tau} \otimes K^{\bullet}_{\sigma,\gamma_{1}} \otimes K^{\bullet}_{\gamma_{2},\tau} \otimes K^{\bullet}_{\sigma,\gamma_{2}} & \to & K^{\bullet}_{\sigma,\tau} \\ x \otimes y \otimes z \otimes w & \mapsto & \epsilon(z)\epsilon(w)x \cdot y - \epsilon(x)\epsilon(y)z \cdot w \end{array}$$

Then $\delta_{\gamma_1,\tau}\delta_{\sigma,\gamma_1}-\delta_{\gamma_2,\tau}\delta_{\sigma,\gamma_2}$ is equal to

$$\bigotimes_{(\alpha < \beta) \in Mor(\sigma)} K_{\alpha,\beta}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\sigma))_{b_{\sigma}}$$

$$\parallel \otimes_{(\alpha < \beta) \in Mor(\tau)} K_{\alpha,\beta}^{\bullet} \otimes \bigotimes_{\substack{(\alpha < \beta) \in Mor(\sigma) - Mor(\tau) \\ (\alpha < \beta) \neq (\sigma < \gamma_{1}), (\gamma_{1} < \tau), \\ (\sigma < \gamma_{2}), (\gamma_{2} < \tau)}} K_{\alpha,\beta}^{\bullet} \otimes K_{\gamma_{1},\tau}^{\bullet} \otimes K_{\sigma,\gamma_{2}}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\sigma))_{b_{\sigma}}$$

$$\downarrow \otimes K_{\gamma_{1},\tau}^{\bullet} \otimes K_{\sigma,\gamma_{1}}^{\bullet} \otimes K_{\gamma_{2},\tau}^{\bullet} \otimes K_{\sigma,\gamma_{2}}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\tau))_{b_{\sigma}}$$

$$\bigotimes_{(\alpha < \beta) \in Mor(\tau)} K_{\alpha,\beta}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\tau))_{b_{\tau}}$$

is given by

$$\begin{array}{c} (\bigotimes_{\alpha,\beta} a_{\alpha,\beta} \otimes \bigotimes_{\alpha,\beta} b_{\alpha,\beta} \otimes x \otimes y \otimes z \otimes w \otimes \omega_{b_{\sigma}}) \\ \downarrow \\ \bigotimes_{\alpha,\beta} a_{\alpha,\beta} \cdot \prod_{\alpha,\beta} \epsilon(b_{\alpha,\beta}) \cdot (\partial(x \otimes y \otimes z \otimes w) \cdot \omega_{b_{\sigma}}). \end{array}$$

This proposition shows that the following diagram does not commute in general.

$$\begin{array}{cccc} \widetilde{\Omega}^{\bullet}(\sigma) & \stackrel{\delta_{\sigma,\gamma_{1}}}{\to} & \widetilde{\Omega}^{\bullet}(\gamma_{1}) \\ \delta_{\sigma,\gamma_{2}} \downarrow & & \downarrow \delta_{\gamma_{1},\tau} \\ \widetilde{\Omega}^{\bullet}(\gamma_{2}) & \stackrel{\rightarrow}{\to} & \widetilde{\Omega}^{\bullet}(\tau) \end{array}$$

In the next subsection, we show that this diagram commutes up to homotopy. Moreover we show the existence of highter homotopy to define a total complex of $\{\widetilde{\Omega}^{\bullet}(\sigma)\}_{\sigma\in\mathcal{K}}$.

4.3. Higher homotopy for differential graded algebras. Let \mathcal{K} be a simplical complex and X a contravariant fuctor from \mathcal{K} to the category of Hopf algebroids. We use the same notations as in the last section. For a Hopf algebroid \mathcal{U} on X and $x,y\in X$, we define a linear homomorphism ten of degree -1 by

$$ten: K^{\bullet}(\mathcal{U})_{x,y} \otimes K^{\bullet}(\mathcal{U})_{x,y} \rightarrow K^{\bullet}(\mathcal{U})_{x,y} (a_0 \otimes \cdots \otimes a_i) \otimes (b_0 \otimes \cdots \otimes b_j) \mapsto a_0 \otimes \cdots \otimes a_i \otimes b_0 \otimes \cdots \otimes b_j.$$

Note that this homogeneous linear map is not a homomorphism of complexes.

Let $n \geq 2$ be a natural number and $\sigma < \tau$ be simplices in \mathcal{K} of codimension n. Then $\tau - \sigma$ is a totally ordered set S with #S = n. There is a one to one corresponded between the cube \square^S and the set of simplices γ contained in τ cotaining σ , i.e. $\sigma < \gamma < \tau$. By this correspondence, the set \square^S is regarded as a subset of simplices in \mathcal{K} .

The pair of simplices $(\alpha < \beta)$ of codimension one in \square^S is denoted as $Mor(\sigma, \tau)$. We put

$$Chain_{\sigma,\tau}^{\bullet} := \otimes_{(\alpha < \beta) \in Mor(\sigma,\tau)} K_{\alpha,\beta}^{\bullet}$$

Let $\kappa \in \Sigma(S)$ be a minimal path in \square^S . This corresponds to a sequence of simplices $\kappa_0 < \cdots < \kappa_n$ in \square^S . We define a homomorphism $c(\kappa) : Chain_{\sigma,\tau}^{\bullet} \to K_{\sigma,\tau}^{\bullet}$ of complexes by

Here we used the dot product defined in the last section.

We define a homogeneous linear map (not a homomorphism of complex in general)

$$h(S):Chain_{\sigma,\tau}^{\bullet}\to K_{\sigma,\tau}^{\bullet}$$

of degree -n+1 by the induction of n as follows.

1. If n=2, we may assume that $S=\{1,2\}$.

$$h(S) = ten \circ (c(12) \otimes c(21)) \circ \Delta :$$

$$Chain_{\sigma,\tau}^{\bullet} \to Chain_{\sigma,\tau}^{\bullet} \otimes Chain_{\sigma,\tau}^{\bullet} \to K_{\sigma,\tau}^{\bullet} \otimes K_{\sigma,\tau}^{\bullet} \to K_{\sigma,\tau}^{\bullet}$$
where

$$\Delta: Chain_{\sigma,\tau}^{\bullet} \to Chain_{\sigma,\tau}^{\bullet} \otimes Chain_{\sigma,\tau}^{\bullet}$$

is the coproduct homomorphism obtained from that of $K_{\alpha,\beta}^{\bullet}$. (See Definition 3.3. 2.)

2. For a simplex γ such that $\sigma < \gamma < \tau$, we define

$$split_{\gamma}: Chain_{\sigma,\tau}^{\bullet} \to Chain_{\gamma,\tau}^{\bullet} \otimes Chain_{\sigma,\gamma}^{\bullet}$$

by operating the augmentation homomorphism ϵ for a component (α, β) satisfying neither $\sigma < \alpha < \beta < \gamma$ nor $\gamma < \alpha < \beta < \tau$. The subset of S corresponding to the simplex γ is denoted as T. For $T \subset S$, we define a linear homomorphism $h(S-T) \cdot h(T) : Chain_{\sigma,\tau}^{\bullet} \to K_{\sigma,\tau}^{\bullet}$ by the composite

$$\begin{array}{c} h(S-T) \cdot h(T) : Chain_{\sigma,\tau}^{\bullet} \xrightarrow{split_{\gamma}} Chain_{\gamma,\tau}^{\bullet} \otimes Chain_{\sigma,\gamma}^{\bullet} \\ \xrightarrow{h(S-T) \otimes h(T)} K_{\gamma,\tau}^{\bullet} \otimes K_{\sigma,\gamma}^{\bullet} \xrightarrow{\text{dot product}} K_{\sigma,\tau}^{\bullet}. \end{array}$$

3. We consider a homogeneous linear map

$$ten \circ \left(c(tot(S)) \otimes (h(S-T) \cdot h(T))\right) \circ \Delta :$$

$$Chain_{\sigma,\tau}^{\bullet} \xrightarrow{\Delta} Chain_{\sigma,\tau}^{\bullet} \otimes Chain_{\sigma,\tau}^{\bullet}$$

$$c(tot(S)) \otimes (h(S-T) \cdot h(T)) \xrightarrow{K_{\sigma,\tau}^{\bullet}} K_{\sigma,\tau}^{\bullet} \xrightarrow{ten} K_{\sigma,\tau}^{\bullet}.$$

of degree -n+1. We define $h(S):Chain_{\sigma,\tau}^{\bullet}\to K_{\sigma,\tau}^{\bullet}$ by

$$h(S) = \sum_{\emptyset
eq T \subset S} (-1)^{\#(S-T)} sign(S, S-T) \cdot \\ ten \circ (c(tot(S)) \otimes (h(S-T) \cdot h(T))) \circ \Delta$$

The following proposition is a direct consequene of Proposition 4.3.

Proposition 4.6. 1. Under the notation as above, we have

$$(4.1) dh(S) - h(S)d = \sum_{\emptyset \neq T \subseteq S} (-1)^{\#(S-T)} sign(S, S-T)h(S-T) \cdot h(T).$$

- 2. The righthand side of (4.1) is a homomorphism of complexes.
- 4.4. Patching differential graded algebra. Let $\sigma < \tau$ be simplices of \mathcal{K} of codimension $n \geq 2$. We define a homogeneous linear map $h(\sigma, \tau) : \tilde{\Omega}^{\bullet}(\sigma) \to \tilde{\Omega}^{\bullet}(\tau)$ of degree -n+1 by

$$\begin{split} \widetilde{\Omega}^{\bullet}(\sigma) &= \bigotimes_{(\alpha,\beta) \in Mor(\sigma)} K_{\alpha,\beta}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\sigma))_{b_{\sigma}} \\ &\simeq \bigotimes_{(\alpha,\beta) \in Mor(\sigma) - Mor(\sigma,\tau)} K_{\alpha,\beta}^{\bullet} \otimes Chain_{\sigma,\tau}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\sigma))_{b_{\sigma}} \\ &\xrightarrow{1 \otimes h(S)} \bigotimes_{(\alpha,\beta) \in Mor(\sigma) - Mor(\sigma,\tau)} K_{\alpha,\beta}^{\bullet} \otimes K_{\sigma,\tau}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\sigma))_{b_{\sigma}} \\ &\longrightarrow \bigotimes_{(\alpha,\beta) \in Mor(\sigma) - Mor(\sigma,\tau)} K_{\alpha,\beta}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\tau))_{b_{\tau}} \\ &\simeq \bigotimes_{(\alpha,\beta) \in Mor(\sigma) - Mor(\sigma,\tau) - Mor(\tau)} K_{\alpha,\beta}^{\bullet} \otimes \bigotimes_{(\alpha,\beta) \in Mor(\tau)} K_{\alpha,\beta}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\tau))_{b_{\tau}} \\ &\longrightarrow \bigotimes_{(\alpha,\beta) \in Mor(\sigma) - Mor(\sigma,\tau) - Mor(\tau)} K_{\alpha,\beta}^{\bullet} \otimes \Omega^{\bullet}(\mathcal{U}(\tau))_{b_{\tau}} &\longrightarrow \bigotimes_{(\alpha,\beta) \in Mor(\tau)} K_{\alpha,\beta}^{\bullet} \otimes \Omega^{\bullet}(\mathcal$$

Using $\delta_{\sigma,\tau}$ and $h(\sigma,\tau)$, we define a complex $\Omega^{\bullet}(X)$ and a homogeneous linear map $d_X:\Omega^{\bullet}(X)\to\Omega^{\bullet}(X)$ as follows:

$$\begin{split} \Omega^{i}(X) &\simeq \oplus_{\sigma \in \mathcal{K}} \widetilde{\Omega}^{i-\dim(\sigma)}(\sigma), \\ d_{X} &= (-1)^{\deg} \cdot \Big(\sum_{\sigma < \tau \text{ is codimension one}} sign(\sigma) \delta_{\sigma,\tau} \\ &+ \sum_{\text{codimension of } (\sigma < \tau) \geq 2} sign(\sigma) h(\sigma,\tau) \Big), \end{split}$$

where $sing(\sigma) = {tot(K) \choose tot(\sigma), tot(K - \sigma)}$. Now we can state the main theorem

Theorem 4.7. We have

$$dx \circ dx = 0.$$

This is a direct consequence of Proposition 4.6.

4.5. GT-adimissible varieties.

Definition 4.8. Let K be a simplical complex. A contravariant functor Y from K to the category (Fund) is called a GT-admissible variety.

Let #=B or DR. By attaching fundamental algebroid, we defined a functor $\mathcal{U}^\#$ from the category (Fund) to the category $(Hopf_{\mathbf{Q}})$ of Hopf algebroid space over \mathbf{Q} . Then the composite $\mathcal{U}^\#\circ Y$ is functor from \mathcal{K} to the category of Hopf algebroids. We apply the construction of the last section to the functor $X=\mathcal{U}^\#\circ Y$ and get a complex $\Omega^\bullet(X)$.

Definition 4.9. The cohomology $H^{i}_{\#}(Y)$ of Y is defined by the cohomology $H^{i}(\Omega^{\bullet}(\mathcal{U}^{\#}\circ Y))$ of $\Omega^{\bullet}(\mathcal{U}^{\#}\circ Y)$.

Theorem 4.10. 1. For a GT variety Y, the cohomology $H^i_\#(Y)$ is a GT#-module.

2. Let Φ be an associator. Then there exists an object

$$H^{i}(Y) = (H^{i}_{B}(Y), H^{i}_{DR}(Y), comp) \in Vec_{\mathbf{Q}} \times_{Vec_{\mathbf{C}}} Vec_{\mathbf{Q}}$$

such that the first and the second factors are functorially isomorphic to $H_B^i(Y)$ and $H_{DR}^i(Y)$, respectively.

3. Moreover if the associator Φ is Drinfeld associator, the third factor in 2 is equal to the comparison map.

Remark 4.11. We fix an inclusion $\overline{\mathbf{Q}} \to \mathbf{C}$. If a GT-admissible variety Y comes form a covering of an algebraic variety \mathcal{Y} , $H^i_{DR}(Y)$ (resp. $H^i_B(Y)$, $H^i_B(Y) \otimes \mathbf{Q}_l$) is canonically isomorphic to the classical cohomology $H^i_{DR}(\mathcal{Y}, \mathbf{Q})$ (resp. $H^i_B(\mathcal{Y}/\mathbf{Q})$, $H^i_{et}(\mathcal{Y}, \mathbf{Q}_l)$). Moreover the action of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$ factors through the natural homomorphism $Gal(\overline{\mathbf{Q}}/\mathbf{Q}) \to GT^B(\mathbf{Q}_l)$.