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A NOTE ON GT-ADMISSIBLE VARIETIES

TOMOHIDE TERASOMA ( UNIV. OF TOKYO )

1. CONTENTS

In this paper, we introduce a notion of GT-admissible varieties. Roughly
speaking, it is a (semi-)simplicial oject in the category of varieties Mg 5, A*,. ..
and their products with tangential points. We introduce a cohomology theory
of GT-admissible varieties. To obtain patching varieties, we construct higher
homotopy for complexes in the sence of Hanamura. It seems very possible
to reconstruct this cohomology theory using a formulation of A.-category.
All constructions in this paper can be done in the setting of more general
Tannakian category.

2. CATEGORY (Basic)

2.1. Tangential points. In this subsection, we define a category (Basic)
to define the set of associator and Grothendieck-Teichmiiller group. The
object of (Basic) consists of three object A*, Mg 4 and Mos. Formally
speaking, A*, Mo 4 and My are finite set, called tangential points. For
example, the most easiest one A* consists of two tangential points {+,—}.

The tangential points of Mg 4 consists of {(ﬁ, Ogo, -+ } (all together 6 points).
The tangential points of Mg s consists of plane trivalent tree with five end
points up to mirror. (Plane tree is equipped with a cyclic ordering for each
vertex.) Therefore the number of tangential points is 60. Tangential points
are expressed geometrically as follows.

The symbol Mg s is usually used as a moduli space of genus zero curves
with marked 5 points. Mumford and Knudsen defined the stable compacti-
fication Mg 5 of the moduli space My s by adding a normal crossing divisor
(=1dimensional) in My, 5. There exist 15 crossing points in the boundary
divisor. Let p be a crossing point and U, be a small neighbourhood of p. The
intersection U, N Mo s(R) consists of 4 connected components. Each com-
ponent corresponds one to one to tangential point of Mg 5. In the following
context, My 5 represents the set of these 60 tangental points and forget the
geometric meaning of My .

2.2. Two theories of fundamental groups. There exist two theories of
fundamental groups, topological fundamental group and de Rham funda-
mental group. For X € (Basic) and p € X, the topological fundamental
group 71 (X, p) can be defined purely conbinatorially. For example, the group
m1(A*, +) is generated by a positive generator 8. More generally, for p,q € X,
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we can define the set of path 71 (X, p, ¢) connecting p and ¢ up to homotopy.
We can define the Q-linear span Q[m(X,p,q)] of m1(X,p,q), which is a left
Qlm1(X,q)] (resp. right Q[m1(X,p)]) module of rank one and the comple-
tion of Q[m1(X, p, ¢)] with respect to the augmentation ideal of Q[m (X, g)] is
denoted as UB(X,p, q). There exist “multiplication”

UB(X,q,r) ®UB(X,p,q) = UB(X,p,T)

which satisfies the axiom of algebroid, i.e. associative multiplication 7 is
defined only if the starting point of v is equal to the ending point of 7.
There is a theory of de Rham fundamental group #P®(X,p) of X with a
base point p. For p,q € X, there is a canonical isomorphism
PR (X,p) ~ 7PR(X, q)

in de Rham fundamental group theory, which is a different point from the

Betti theory. The group #P®(X, p) is defined as the set of group like elements

of a Hopf algebra UPE(X, p). There exists a canonical isomorphism
UPR(X,p) 2 UPR(X,q)

as Hopf algebras. For example, we have U(A*, +) = Q[[e]], where e = Resy.

2.3. Functoriality. We introduce morphisms in (Basic). Morphisms cosist -
of
—)

1. An inclusion :A* — Mj 4. The tangential points + and — goes to ab
and ac, where {a,b,c} = {0,1,00}. (Therefore altogether, 6 morphism
of this type.)

2. An infinitesimal inclusion:Mg 4 — Mo 5. We will not write down pre-
cisely here. There are 12 connected components of Mg s(R) and each
connected component is bounded by 5 divisors, i,e. it is a pentagon.
There exists a unique infinitesimal inclusion by which a connected com-
ponent of Mg 4(R) goes to an edge of pentagon.

3. A composite of type (1) and type (2).

The category of pointed objects and two pointed objects in (Basic) are written
as (xBasic) and (* * Basic), respectively.

Let # = B, DR. The correspondence (X,p) = U#(X,p) and (X,p,q) =

U#(X,p,q) form functors
U* : (xBasic) & (Vecq) and U* : (x * Basic) = (Vecq).
Moreover these functors give rise to a functor
U* : (Basic) = (Hopfq)
form the category (Basic) to the category of Hopf algebroids over Q.

Theorem 2.1 (Drinfeld). There erists a functorial isomorphism
p:UP®Cc~UPRgC

where ,

(2.1) p(log 8) = 2mie for p: UB(A,+) ® C ~UPE(A,+)® C.
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Hodge theory gives a functorial isomorphism. Less trivial part is the com-
patiblitity for infinitesimal inclusions.

2.4. Associator, Grothendieck-Teichmiiller group.
Definition 2.2. 1. The set of functorial isomorphisms of C-Hopf alge-
broids
Ass = Isompyopse (UB,UPR)

is called the set of associators. We define Assar; as
Assor; = {p € Ass | p satisfies the condition (2.1)}'

2. Let # = B,DR. The set of functorial isomorphisms of Q-Hopf alge-
broids

GT# = Isompopsq U, U?)
is called the #-Grothendieck-Teichmiiller group. We define GTI# as

GTY = {g € GT* |g(log6) = log6 (if # = B) g(e) = e (if # = DR)
for g :UH(A*, +) = UH* (A", +)}
We have an exact sequence

1-GT¥ - GT* - G, > 1.

The set Ass and Assay is a left (resp. right) principal homogoeneous space
under the group GTPR(C) and GTPE(C), (GTE(C) and GTE(C)), respec-
tively. The group GTI# is a nilpotent Lie group and its Lie algebra is denoted
as GT7. By the definition of GT'B, UB(M,4) and UB(M, 5) are represen-
tations of GT'B.

2.5. Category (Fund). We define a category (Fund). The object of the
category (Fund) consists of

1. My, for i > 4,

2. A™ — (big diagonal), (A*)" — (big diagonal), and

3. their products.
The morphisms consist of inclusions, infinitesimal inclusions and certain pro-
jections. We define categories (¥Fund) and (* x Fund) by pointed and two
pointed objects of (Fund). As in (Basic) case, we can define two functors
UB and UPE, (For an object (X, p) € (xFunc), UB(X,p) is the completion of
the group algebra of the fundamental group with respect to the augmentation
ideal.) The following theorem is due to Ihara and Lochak.

Theorem 2.3. Let # = B or DR. The action of GT# on the fuctor U# :
(* * Basic) — (Hopfq) extends uniquely to the action on the functor U#* :
(% * Fund) — (Hopfq)-

This principle is known as MacLane coherence principle.

98



TOMOHIDE TERASOMA ( UNIV. OF TOKYO )

3. DIFFERENTIAL GRADED ALGEBRA

3.1. From Hopf algebroid to differential graded algebra. Let If be a
Q-Hopf algebroid with an augmentation € : Y — Q over a set X, which is
complete for the topology defined by the augmentation ideal I = Ker(e). In
this paper, the coproduct A of the Hopf algebroid is always cocommutative
and coassociative. Therefore the groupoid like element in U forms a pro-
unipotent groupoid. We introduce linear topology on U and assume that U
is compact for the topology. In particular, &/I"™ is a finite dimensional Hopf
algebroid. Functors Hom, ® are always considered in the category of locally
compact vector spaces.

Definition 3.1. 1. Let p,q € X. We define a complez K*(U)p 4 by

= UpgQ@Upg®Upy — Up,q @Up,q - Up,q
e(a)b@c—eb)a®c
b8 = ( +e(c)a® b
a®b — €(a)b— e(b)a

Degree of the complez is given by K ~*(U) = UB+1.
2. We define the n-coproduct A™ by the composite

(12" @A)o- - (1QA) 0 A :lpg = Upg ® - ®Upg.

Via this coproduct, U ® --- @ U i3 a two sided U module. Via this U
structures, the differentials in the complexz K*(U) are homomorphisms
of two sided U modules.

Proposition 3.2. The cohomologies of the complex is

Q ifi=0
0 fi#0
Prooﬁ Let p € X and Gp be the group like element in U,. We define a sim-
plicial complex Y as follows: the set of n-simplices is {(go,.--,9n) | 9i € G}.
Since Gy, is a pro-Q-unipotent group, the completion of the chain complex of

Y is canonically isomorphic to K*(U), and the completion of the cohomolo-

gies is isomorphic to the cohomology of the completion for the chain complex
of Y. 0O

H™(K*U)p,e) = {

Definition 3.3 (Differential graded algebra). 1. Let p,q € X. We define

Q' U)p = Hom ey, (K ™ (Up,g), Q)-

Note that this complex does not depend on the choice of q. Using the
transpose of the differential of K*, we have a complex

QU)p: 0o QLU)p - Q1 U)p - B U)p — -+

There exists a left action of U, on Q° arising from the right action of
Up on K*(U)p,q-
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2. We introduce a product structure on Q*(U),. Let w and n be elements
of ¥ (U)p and UV (U),, respectively. We define w - n € Q+i(U), by

(w-n)(@® - ®aitj) = (WM (a0 ® - @ A(a;) ® - Q@ aiyj).

Then this multiplication is associative and we have d(a - b) = da - b+
(—1)%es(e)q . gb.

Proposition 3.4. The cohomology H*(Q*(U),) of Q°*(U), is equal to H (G, Q).
The induced right action of U, is trivial. i.e. the action of Uy, factors through
€Uy — Q.

Proof. Let Y be the simplical complex defined as before. Since the group G
is pro-Q-nipotent, the action of G on Y is fixed point free. Therefore the
quotient space G\Y is K(G,1) space. The cochain complex of G\Y is equal
to °(U)p. The triviallity of the action of U, will be explained later. O

3.2. Differential graded algebroid structure on K*. Let & be a Hopf
algebroid over a set X, p,q two points in X and K*(U),, be the complex
- defined in 3.1. We introduce an associative product structure

K*U)gr @ K*(U)p,g = K*U)p,r
for p,q,r € X.
Definition 3.5. Let a,b be elements in N and set k = a + b. Minimal path

connecting (0,0) and (a,b) is a sequence of (a;,b;) € N? (i=0, ... ,k) such
that

1. either a;y1 =a; + 1,b;41 = b;, 0T G441 = a4, bi41 = b; + 1, and

2. ag =O,bo =0 and a; = a,bk =b.
for 0 < i < k—1. The set of minimal path connecting (0,0) and (a,bd) is
denoted by MP, . For a minimal path p = (a;,b;); € MPgp, the number
Y ieo @i — (a(a+1)/2) is called the volume of the path and denoted by vol(p).
We define the signature sign(p) of a path p by (—1)vo(»),

Let p,q,r be elements in X. We define a dot product
x-x: KO(U)g,r ® KP(U)p,g — Ka+b(u)p,r-

Let go,...,9a;ho,-..,hs be group(oid) like elements in U. Using these ele-
ments the product is defined by

(90®:--®3ga)  (ho® -+ ® hyp)
= Z 81g1(P) (gao hbo ® ga, hio, ® -+ * ® ga, ho,)
p=(a;,b;)EMP, 3

We can describe the above product using A and the multiplication of 4. Then
we have _

div-w)=dv -w+(-1)% dw
for v € K*(U)q,r,w € K°(U)p,q. The product is associative, i.e. for z €
K*(U)rsy € K*U)gr 2 € K*(U)p,q, Wwe have (z-y)- 2=z (y- 2).
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We define an action of K*(U), q from Q°*(U), to Q°*(U)q, using the dot
product structure on K*(U) as follows.

x okt K'U)pa®QU)p — Q*U),
a® — a-p=(b— eb-a))
This homomorphism is a homomorphism of complex. The the associativity
for “” implies the associativity of the action of K*® on Q°.

4. PATCHING BY CECH COMPLEX OF COMPLEXES

4.1. Cubic flag and n-homotopy. In this subsection, we define an n-
homotopy h(S) for a finite totally ordered set S, which will be used in the
next subsection to defined n-homotopies for patching complexes. Let S be
a totally ordered set with finite n elements. Cube (IS over S is defined by
{0,1}5. If § = {1,...,n}, the cube over S is denoted as O". A minimal path
from (0,...,0) € O° to (1,...,1) € O° (minimal path of S for simiplicity)
is defined by a permutation o = (01,...,0,) of S. A minimal path can be
regarded as a sequence vy, ..., v, of (0% defined by

1. vo = (0,---,0),

2. v; = v;_1 + €5, where e, is the elementary unit vector for the o com-

ponent.

Let 2(S) be the set of minimal path of S expressed as permutations of S and
W (S) be the vector space spanned by X(S) over Q.

Definition 4.1 (Dot product). Let T, be a subset in S and T> = S—T,. For
elemenets g and h in (T1) and X(T3), (gh) € £(S) denotes the composite of
words g and h. We define a product
W (T)®@+) @ W(T,)®Wt) W (S)®(p+a+1)
(90;--19p) ® (hoy ..., hg) — g-h
by '
g-h= E szgn(p)(gaohbo) ] ® (g“p+q hbp+q)’
p=(ai,bi)€EM P(p,q)
where g; and h; are elements in L(Ty) and L(T3).
We define d : W(S)®" — W(S)®"-1) by
w(S)®" - W (S)®(r-1)
(V®:®vs) P Yi (-1 ® QU1 @ Vk41® - ® Uy,
for vy,...,v, € X(S).
Definition 4.2 (n-Homotopy for an ordered set S). Let S be a finite totally
ordered set with #S =n > 1. We set tot(S) € £(S) by tot(S) = (91,---,9n),

where S = {g1,...,9n} and g1 < --- < gp. We define n-homotopy h(S) of S
by the induction on #S.

1. If S ={a}, then we define
h(S) = (a).
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2. If S ={a,b} and a < b, then we define
h(S) = (ab) ® (ba).
3. If #S > 3, then we define

h(S) =tot(S)® ( Y (~1)*Tsign(S, T)A(T) - A(S-T)).
P#£TCS
=

102

where sign(S, T) i8 the signature of the permutation ( tot(S) ) .

tot(T), tot(S — T)
Proposition 4.3. We have

d( 3" (~1)*Tsign(S, T)A(T) - h(S — T)) =0
0¢T§S

and ‘
d(h(S)) = Y (-1)*Tsign(S, T)h(T) - h(S - T).
0¢T$s

4.2. First step for patching differential graded algebras. Let K be a
finite simplicial complex with a total order on the set of vertices. Then K
is a category whose objects and morphisms are given by simplices and their
inclusions. Let X be a contravariant functor from the complex K to the
category of Hopf algebroid, i.e. for a simplex ¢ in K, X, is a finite set and
U(o) is a Hopf algebroid over the set X,. For a face 7 < o of &, we have a map
of finite set X, — X, and a homomorphism of Hopf algebroid U (o) — U(r)
compatible with the composite for inclusions 07 < 03 < o3 of simplices.

Then we have a differential graded algebroid K*(U,) over X, and a family
of differential graded algebra Q°*(U, ), for z € X,. The action of K* (Us) on
Q°*(U,) is introduced in the last section. A set of base points B = (bs)s with
by € X, is called a system of base points of X. In this subsection, we define
a complex Q°(X) = Q*(X)p for a system of base points B.

Let o be a simplex of K. We define a full subcategory K, of X defined by

0b(Ky) ={r |0 < 7}.
- All the morphisms in K, of codimension one is denoted as Mor(c), i.e.
Mor(c) = {(a < B) |0 < a < B,dima + 1 = dim 8}.

We introduce a total order in Mor(c). For example lexico graphic order for
(o, B). For a morphism (a < 8) € Mor(c), the complex K* (U(2))babs)x, 18
denoted by K ; for short. Then we have a natural homomorphism Ma,p Of
complexes:

bap : Ko p ® Q0 (U(a))s, — Q° (U())sg1a = Q2 (U(B))ss-
Definition 4.4. 1. For a simplez o in K, we define a complex ﬁ'(a) by

0% (0) = ( QR Kl @ U©)),.
(a<B)eMor(o)
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The differential of §1° (o) is given as the differential on the tensor prod-
uct. As usual, using an isomorphism

K°®L® =~ L*® K*
a®b — (_l)dega.-degbb®a’
the differential is independent of the order of tensor product.

2. Let 0 < 7 be a homomorphism in K of codimension one. We define
0o,r : Q%(0) = Q°(7):

®(a<p)eMor(o) I'{I;,ﬁ ® Q2*(U(2))s,

® (a<pyeror(r) Kayg @ Ra < ) € Mor(e) - Mor(r) K5 5 ® K3+ ® Q°(U(0))s,
@<P) #(@ <)

!
Q(a<pyeMor(r) Ka,p ® 2 U(T))s,
by
(®a,ﬂ aaaﬂ ® ®a,ﬂ basﬂ ® cavr ® wba)
{

®a,/3 aayﬁ ' Ha,ﬁ G(ba,ﬁ) : (ca:'r : wbc)'

The following proposition is a direct consequence from the definition of
66,T.
Proposition 4.5. Let 0 < 71 < 7 and 0 < v < T be distinct sequence of
codimensition one simplices in K. We define 0 as

a : K;lr‘r ® K;)'Yl ® K;2’T ® K;a'YZ - K;:T l
TQY®z2Qw —  e(2)e(w)z -y —e(z)e(y)z - w

Then 6, +05,y, — 04,,r00,4, 13 equal to

®(a<ﬂ)€Mor(a) Iﬁ&,ﬁ ® Q° (u(a))ba

® or(r) Ka,p ® @ (a < p) € Mor(e) - Mor(r) K§
(a<B)eMor(r) o, (:<ﬂ)¢(ao<r:1),(’71°£:)' P
(0 <73)(12 <7)

®K;1,'r ® K;,'yg ® * (u(a))ba

Q (a<p)emor(r) Ka,p ® QL (U(T))s,

® K;

7,7

® KJ

72,7

is given by
(®a,p Qa,B ® ®a,ﬁ ba,ﬂ Qr®y RzRUW® wb,)

¢
@9, [lapebap) (0(z@Y® 20 W) - ws,).

This proposition shows that the following diagram does not commute in
general.
(o(0) P fo(m)
éav'YZ 'l' {6’71 »T
Q') - 0°(r)

Y27
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In the next subsection, we show that this diagram commutes up to homotopy.
Moreover we show the existence of highter homotopy to define a total complex

of {Q*(0)}oek-

4.3. Higher homotopy for differential graded algebras. Let K be a
simplical complex and X a contravariant fuctor from X to the category of
Hopf algebroids. We use the same notations as in the last section. For a
Hopf algebroid U on X and z,y € X, we define a linear homomorphism ten
of degree —1 by

ten: K*U)z,y ® K*(U)zy — K*U)z,y
(a0® - ®a;)Qbo® - ®bj) = a® --®a®b®---®b;.

Note that this homogeneous linear map is not a homomorphism of complexes.

Let n > 2 be a natural number and o < 7 be simplices in K of codimension
n. Then 7 — o is a totally ordered set S with #S = n. There is a one to one
correspondece between the cube [J° and the set of simplices v contained in 7
cotaining o, i.e. 0 < 4 < 7. By this correspondence, the set (15 is regarded
as a subset of simplices in K.

The pair of simplices (@ < 3) of codimension one in (0% is denoted as
Mor(o,7). We put

Chain;’f = ®(a<ﬂ)€M0"(°'s"’)K;,ﬁ

Let k € £(S) be a minimal path in [0°. This corresponds to a sequence of
simplices Ko < -+ < Kn, in [35. We define a homomorphism c(x) : Chaing , —
K; , of complexes by

®(a,ﬁ)eMor(d,'r)K;,ﬁ =~

®(a,ﬁ)E~K;,ﬁ ® ®(a,ﬁ)€an.x,/3 3 (aa,ﬁ’ br; ,na+1)
{
®(a,ﬂ)€an.x,ﬁ 3 Hf(aa,ﬂ) : (bn.-,m-‘-x)
4
K;f‘r 2 Hc(aa,ﬂ) : b"n—l,"n Teen® bNO,"l

Here we used the dot product defined in the last section.
We define a homogeneous linear map (not a homomorphism of complex in
general)
h(S) : Chaing , — K ,
of degree —n + 1 by the induction of n as follows.
1. If n = 2, we may assume that S = {1,2}.

h(S) =teno (c(12) ® ¢(21)) 0o A :

Chaing, . = Chaing , ® Chaing ., -+ K3 ., ® K5, — K ,
where '
A : Chaing , = Chaing , ® Chaing ,
is the coproduct homomorphism obtained from that of K3 5. (See Def-
inition 3.3. 2.)
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2. For a simplex « such that o < v < 7, we define
splity : Chaing , — Chain} . ® Chaing

by operating the augmentation homomorphism e for a component (a, 3)
satisfying neither ¢ < &« < 8 < vy nor ¥ < a < B < 7. The subset of
S corresponding to the simplex < is denoted as I'. For T' C S, we
define a linear homomorphism k(S — T') - h(T) : Chaing, — K . by
the composite

h(S = T) - h(T) : Chain spTit)-, Chain} , ® Chaing

o,T

— K. ®K — .
hS-T)enT) 7 57 dot product 7
3. We consider a homogeneous linear map

ten o (c(tot(S)) ® (h(S —T)-h(T))) o A:
Chaing, , 2 Chaing , ® Chain,, .
K;,®K;, = K;,.

o, T

—y
c(tot(S))®(h(S—T)-h(T))

of degree —n + 1. We define h(S) : Chaing , — Kg . by

h(S)= Y (-1)*EDsign(s,5-T)-
ﬂ#TgS

ten o (c(tot(S)) ® (h(S —T) - h(T))) o A

The following proposition is a direct consequene of Proposition 4.3.

Proposition 4.6. 1. Under the notation as above, we have

(41) dh(S)—hr(S)d= D (-1)*E-Dsign(S,S — T)h(S - T) - h(T).
O;éTSS

2. The ﬁghthand side of (4.1) is a homomorphism of complezes.

4.4. Patching differential graded algebra. Let o < 7 be simplices of K
of codimension n > 2. We define a homogeneous linear map h(c, 7) : Q*(0) —
Q°(7) of degree —n + 1 by
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@)= & Ko Ul
(a,B)EMor(c)

= 03¢ K2 5 ® Chain} . ® Q*(U(0))s,
(a,8)EMor(c)—Mor(c,T)

1an(s ® K2p® K3, Q" U())s,
) (x,8)EMor(o)~Mor(o,T)

— X K3 ® Q" UT))b,
(a,ﬂ)EMOT(d‘)—MOT(U,T)

~ 1% Kis® @ K00 UMD,
(a,B)€Mor(c)—Mor(o,r)=Mor(T) (a,8)EMor(T)

o ®  Kipeawm), =&
(a,8)EMor(r)
Using d,,» and h(o, ), we define a complex 2°*(X) and a homogeneous linear
map dx : Q°(X) — Q*(X) as follows:

Q(X) = ©rexf~Um)(0),

dx = (-1)%s- ( ) 5ign(0)80,r

o<T is codimension one

+ 2 sign(o)h(o, 'r)) ,

codimension of (c<7)>2

. _ tot(K) .
where sing(c) = ( tot(c), tot(K — a))' Now we can state the main theorem

Theorem 4.7. We have
dx odx = 0.

This is a direct consequence of Proposition 4.6.
4.5. GT-adimissible varieties.

Definition 4.8. Let K be a simplical complex. A contravariant functor Y
Jfrom K to the category (Fund) is called a GT-admissible variety.

Let # = B or DR. By attaching fundamental algebroid, we defined a func-
tor U# from the category (Fund) to the category (Hopfq) of Hopf algebroid
space over Q. Then the composite Y# oY is functor from K to the category of
Hopf algebroids. We aplly the construction of the last section to the functor
X =U# oY and get a complex Q°(X).

Definition 4.9. The cohomology Hy(Y) of Y is defined by the cohomology
H{(Q*U* oY) of Q*(U* 0 Y).

Theorem 4.10. 1. For a GT varieytY, the cohomology H}(Y) is a GT*-
module.



TOMOHIDE TERASOMA ( UNIV. OF TOKYO )

2. Let @ be an associator. Then there exists an object
HYY) = (H5(Y),Hpr(Y),comp) € Vecq Xvecs Vecq
such that the first and the second factors are functorially isomorphic to
B(Y) and Hp 5 (Y), respectively.
3. Moreover if the associator ® is Drinfeld associator, the third factor in
2 is equal to the comparison map.

Remark 4.11. We fiz an inclusion Q — C. If a GT-admissible variety
Y comes form a covering of an algebraic variety Y, Hy,p(Y) (resp. Hy(Y),
Hy(Y)®Qu) is canonically isomorphic to the classical cohomology Hy (Y, Q)
(resp. Hy(Y/Q), H:(Y,Qi)). Moreover the action of Gal(Q/Q) factors
through the natural homomorphism Gal(Q/Q) = GT®(Q,).
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