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INTRODUCTION TO A THEORY OF »-FUNCTIONS

MORIHIKO SAITO

We give an introduction to a theory of b-functions, i.e. Bernstein-Sato polynomials.
After reviewing some facts from D-modules, we introduce b-functions including
the one for arbitrary ideals of the structure sheaf. We explain the relation with
singularities, multiplier ideals, etc., and calculate the b-functions of monomial ideals
and also of hyperplane arrangements in certain cases.

1. D-modules.

1.1. Let X be a complex manifold or a smooth algebraic variety over C. Let Dy
be the ring of partial differential operators. A local section of Dy is written as

Y venn @Ot - O5r € Dx  with a, € Oy,

where §; = 8/0z; with (z,,...,z,) a local coordinate system.
Let F' be the filtration by the order of operators i.e.

FpDX — {ZIVISP auaid ‘e a:n},
where |v| = 3, u;. Let & = Grf §; € Gri Dx. Then

GrfDy := @pGrfDx = @pSym”GX (= Ox[&1,...,&n] locally),

1.1.1
( ) SpecXGrFDx =T*X.

1.2 Definition. We say that a left Dx-module M is coherent if it has locally a
finite presentation
@PDx - @Dx — M — 0.

1.3. Remark. A left Dx-module M is coherent if and only if it is quasi-coherent
over Ox and locally finitely generated over Dx. (It is known that Grf Dy is a
noetherian ring, i.e. an increasing sequence of locally finitely generated Gr¥Dx-
submodules of a coherent GrfDx-module is locally stationary.)

1.4. Definition. A filtration F' on a left Dx-module M is good if (M, F) is a
coherent filtered Dx-module, i.e. if F,DxFyM C My, and Gr* M := @®,Gr; M

is coherent over Grf Dy.

1.5. Remark. A left Dx-module M is coherent if and only if it has a good filtration
locally.
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1.6. Characteristic varieties. For a coherent left Dx-module M, we define the
characteristic variety CV(M) by

(1.6.1) CV(M) = SuppGrfM Cc T*M,

taking locally a good filtration F' of M. |

1.7. Remark. The above definition is independent of the choice of F. If M =

Dx /T for a coherent left ideal T of Dx, take F; € Fj,Z such that the p; := Grf',P,-
generate Grf'T over GrfDx. Then CV(M) is defined by the p; € Ox[£;, ..., &n).
1.8. Theorem (Sato, Kawai, Kashiwara [39], Bernstein [2]). We have the inequal-
ity dim CV(M) > dim X. (More precisely, CV(M) is involutive, see [39].)

1.9. Definition. We say that a left Dx-module M is holonomic if it is coherent
and dim CV(M) = dim X.

2. De Rham functor.

2.1. Definition. For a left Dx-module M, we define the de Rham functor DR(M)
by

(2.1.1) MoQk®o, M- = QX g0 M,

where the last term is put at the degree 0. In the algebraic case, we use analytic

sheaves or replace M with the associated analytic sheaf M®" := M ®o, Oxe in
case M is algebraic (i.e. M is an Ox-module with Ox algebraic).

- 2.2. Perverse sheaves. Let ij(X , C) be the derived category of bounded com-
plexes of Cx-modules K with H7K constructible. (In the algebraic case we use
analytic topology for the sheaves although we use Zariski topology for constructibil-
ity.) Then the category of perverse sheaves Perv(X, C) is a full subcategory of
D¥(X, C) consisting of K such that

(22.1) dimSuppH 7K <j, dimSuppH /DK < j,

where DK := RHom(K, C[2dim X)) is the dual of K, and H’K is the j-th coho-
mology sheaf of K.

2.3. Theorem (Beilinson, Bernstein, Deligne [1]). Perv(X, C) is an abelian cate-
gory.

2.4. Theorem (Kashiwara). If M is holonomic, then DR(M) is a perverse sheaf.
Outline of proof. By Kashiwara [19], we have DR(M) € DJ(X,C), and the first
condition of (2.2.1) is verified. Then the assertion follows from the commutativity
of the dual D and the de Rham functor DR.

2.5. Example. DR(Ox) = Cx[dim X].

2.6. Direct images. For a closed immersion i : X — Y such that X is defined
by z; =0 in Y for 1 <14 < r, define the direct image of left Dx-modules M by

i+M = M[al,...,a,-].
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(Globally there is a twist by a line bundle.) For a projection p: X xY — Y, define
p+M = Rp,DRx(M).

In general, f, = p,i, using f = pi with ¢ graph embedding. See [4] for details.
2.7. Regular holonomic D-modules. Let M be a holonomic Dx-module with
support Z, and U be a Zariski-open of Z such that DR(M)|y is a local system up
to a shift. Then M is regular if and only if there exists locally a divisor D on X
containing Z \ U and such that M(xD) is the direct image of a regular holonomic
D-module ‘of Deligne-type’ (see [11]) on a desingularization of (Z,Z N D), and
Ker(M — M(*D)) is regular holonomic (by induction on dim Supp M).

Note that the category M,,(Dx) of regular holonomic Dx-modules is stable by
subquotients and extensions in the category M;(Dx) of holonomic Dx-modules.

2.8. Theorem (Kashiwara-Kawai [24], [22], Mebkhout [28]).
(i) The structure sheaf Oy is regular holonomic.
(ii) The functor DR induces an equivalence of categories

(2.8.1) DR : M,,(Dx) = Perv(X, C).
(See [4] for the algebraic case.)

3. b-Functions.

3.1. Definition. Let f be a holomorphic function on X, or f € I'(X, Ox) in the
algebraic case. Then we have ’

Dx[s]f® C Ox[%][s]f" where 8;f° = s(8;f) f*1,
and bs(s) is the monic polynomial of the least degree satisfying
by(s)f* = P(z,0,s)f** in Ox[}][s]f*,
with P(z, 8, s) € Dx[s]. Locally, it is the minimal polynomial of the action of s on
Dx[s]f*/Dx[s] f***.
We define by ;(s) replacing Dx with Dx,;.

3.2. Theorem (Sato [38], Bernstein [2], Bjork [3]). The b-function exists at least
locally, and ezists globally in the case X affine variety with f algebraic.

3.3. Observation. Let iy : X — X := X x C be the graph embedding. Then
‘there are canonical isomorphisms

(3.3.1) M := i1, Ox = Ox[8)6(f — t) = Oxxc[74]/Oxxc,
where the action of 9; on 6(f —t) (= &) is given by
(332) B(f —t) = —(&if)B:d(f — B).

Moreover, f* is canonically identified with d(f — ¢) setting s = —6,t, and we have
a canonical isomorphism as Dx[s]-modules

(3.3.3) Dx[s]f* = Dxls]6(f —1).
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3.4. V-filtration. We say that V is a filtration of Kashiwara-Malgrange if V is
exhaustive, separated, and satisfies for any a € Q:

(i) V"M is a coherent Dx[s]-submodule of M.

(if) tV“M C V°‘+1M and = holds for a > 0.

(ili) 8,V°M C VelM.

(iv) 8;t — « is nilpotent on Gra M.
If it exists, it is unique.
3.5. Relation with the b-function. If X is affine or Stein and relatively compact,
then the multiplicity of a root « of bs(s) is given by the minimal polynomial of
s—aon
(3.5.1) Gr$(Dx[s]f*/Dx[s] f*1),
using Dx[s]f* = Dx/[s]o(f —t) with s = —6;¢.

Note that VM and Dx|[s]f*** are ‘lattices’ of M,ie.
(3.5.2) VeM C Dxls|f*™ c VM fora>i> 8,

and VeM is an analogue of the Deligne extension with eigenvalues in [o, o + 1).
The existence of V' is equivalent to the existence of bs(s) locally.

3.6. Theorem (Kashiwara [21], [23], Malgrange [27]). The filtration V ezists on
M =i, M for any holonomic Dx-module M.

3.7. Remarks. (i) There are many ways to prove this theorem, since it is essen-
tially equivalent to the existence of the b-function (in a generalized sense). One
way is to use a resolution of singularities and reduce to the case where CV(M) has

normal crossings, if M is regular.
(ii) The filtration V is indexed by Q if M is quasi-unipotent.

3.8. Relation with vanishing cycle functors. Let p : X; — X{ be a ‘good’
retraction (using a resolution of singularities of (X, Xo)), where X; = f~1(t) with
t # 0 sufficiently near 0. Then we have canonical isomorphisms
(3.8.1) ¢fo = Rp,Cxt, ‘PfCX = 'waX/CXo;
where 9¥;Cx, ¢sCx are nearby and vanishing cycle sheaves, see [13].

Let F, denote the Milnor fiber around z € X,. Then
(3.8.2) (Hi9;Cx): = HI(F,,C), (H;Cx), = Hi(F,,C).

For a Dx-module M admitting the V-filtration on M= t«+ M, we define Dx-
modules

(3.8.3) VM = @ongrgH , oM = @osaqcr?/M .

3.9. Theorem (Kashiwara [23], Malgrange [27]). For a regular holonomic Dx-
module M, we have canonical isomorphisms
DRx 9y (M) = ¥sDRx(M)[-1],
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and exp(—2mi0it) on the left-hand side corresponds to the monodromy T on the
right-hand side.
3.10. Definition. Let
Ry = {roots of bs(—s)},
ay = min Ry,
mg : the multiplicity of o € Ry.
(Similarly for Ry, etc. for bsz(s).)
3.11. Theorem (Kashiwara [20]). Ry C Qso.
(This is proved by using a resolution of singularities.)
3.12. Theorem (Kashiwara [23], Malgrange [27]).
(i) e~2mRs = {the eigenvalues of T on H’(F,,C) for z € Xo,j € Z},
(ii) mqe < mm{z I Niwf,)‘Cx = 0} with A = e‘2"""",
where 5 = Ker(T, — X) C ¢y, N =1logT, with T =T,T,,.
(This is a corollary of the above Theorem (3.9) of Kashiwara and Malgrange.)

4. Relation with other invariants.

4.1. Microlocal b-function. We define Ef,Fr'za,&'f with bs(s) replaced by the
microlocal (or reduced) b-function

(4.1.1) bs(s) := bs(s)/(s + 1).
This Z,e(s) coincides with the monic polynomial of the least degree satisfying
(412)  bi(s)d(f —t) = PO;6(f —t) with P € Dxls, 8,1

Put n = dim X. Then
4.2. Theorem. Ry C [@;,n — &;], Mo <n—a&5—a+1.
(The proof uses the filtered duality for ¢y, see [35].)
4.3. Spectrum. We define the spectrum by Sp(f,z) = >_, not* with
(4.3.1) | Na = Y_;(~1Y "1 dim G} H/(F;, C)»,
where p = [n — o], A = e72™* and F is the Hodge filtration (see [12]) of the mixed
Hodge structure on the Milnor cohomology, see [44]. We define
(4.3.2) E; = {a | nq # 0} (called the exponents).
4.4. Remarks. (i) If f has an isolated singularity at the origin, then a; . coincides

with the minimal exponent as a corollary of results of Malgrange [26], Varchenko
[45], Scherk-Steenbrink [41].

(ii) If f is weighted-homogeneous with an isolated singularity at the origin, then
by Kashiwara (unpublished)

(4.4.1) R; = Ey, maxR;=n—&;, Ma=1(ac Ef)
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If f =73, then &; = n/2 and this follows from the above Theorem (4.2).
By Steenbrink [42], we have moreover

(4.4.2) Sp(f,z) = IL;(t —¢*)/(* - 1),
where (w1, . ..,wy) is the weights of f, i.e. f is a linear combination of monomials
-z with 3 wym,; = 1.

4.5. Malgrange’s formula (isolated singularitiés case). We have the Brieskorn
lattice [5] and its saturation defined by

(4.5.1) HY = Q% /df AdQ%2, Hf =Y 50(t8) HY ¢ HIt™Y).
' These are finite C{t}-modules with a regular singular connection.

4.6. Theorem (Malgrange [26]). The reduced b-function gf(s) coincides with the
minimal polynomial of —8it on HY JtHY

(The above formula of Kashiwara on b-function (4.4.1) can be proved by using
this together with Brieskorn’s calculation.)

4.7. Asymptotic Hodge structure (Varchenko [45], Scherk-Steenbrink [41]) In
the isolated singularity case we have

(4.7.1) FPH"Y(F,,C), = Gi2 HY,
using the canonical isomorphism
(4.7.2) H" Y(F,;, C)x = Gr Hf[t ™Y,

where p = [n — a], A = e™?™*, and V on H{[t™1] is the filtration of Kashiwara and
Malgrange.

(This can be generalized to the non-isolated singularity case using mixed Hodge
modules.)

4.8. Reformulation of Malgrange’s formula. We define

(4.8.1) FPH"™(F,,C)) = Gr&HY,
using the canonical isomorphism (4.7.2), where p = [n — o, A = e~2"@_ Then
(4.8.2) fie = the minimal polynomial of N on Gr%H"~(F, C),.
~ 4.9. Remark. If f is weighted homogeneous with an isolated singularity, then
(4.9.1) F=F, R,;=E; (by Kashiwara).
If f is not weighted homogeneous (but with isolated singularities), then
(4.9.2) R¢ C Uren(Er — k), @ = min Ry = min Ey.

4.10. Example. If f = 25 + y* + z3y?, then

Ef—{5+— 1<1L4, 1<J<3} Rf—EfU{ }\{
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More generally, if f = g + h with g weighted homogeneous and A is a linear
combination of monomials of higher degrees, then Ey = E; but Ry # R if f is a
non trivial deformation.

4.11. Relation with rational singularities [34]. Assume D := f~1(0) is
reduced. Then D has rational singularities if and only if &y > 1. Moreover,

wp/pwp =~ Fi_npsOx, where p D—Disa resolution of singularities.

In the isolated singularities case, this was proved in 1981 (see [31]) using the
coincidence of &y and the minimal exponent.

4.12. Relation with the pole order filtration [34]. Let P be the pole order
filtration on Ox(*D), i.e. P, =Ox((:1+1)D) ifi >0, and P, =0 ifi < 0. Let
F be the Hodge filtration on Ox(*D). Then F; C P; in general, and F; = P; on a
neighborhood of x for i < oy, — 1.

(For the proof we need the theory of microlocal b-functions [35].)

4.13. Remark. In case X = P", replacing oy, with [(n — r)/d] where r =
dim Sing D and d = deg D, the assertion was obtained by Deligne (unpublished).

5. Relation with multiplier ideals.

5.1. Multiplier ideals. Let D = f~1(0), and J(X, aD) be the multiplier ideals
for a € Q, i.e.

(5.1.1) J(X,aD) = puwg,x(—Llami Dy)),

where p : (X, D) — (X, D) is an embedded resolution and D = > miD; := p*D.
There exist jumping numbers 0 < ap < a; <+« such that
(5.1.2) J(X,a;D) = J(X,aD) # J(X,a;js1D) for a; <a < oji1.
Let V denote also the induced filtration on
Ox C Ox[6)6(f — ).

5.2. Theorem (Budur, S. [10]). If a is not a jumping number,

(5.2.1) J(X,aD) =V*Ox.
For a general we have for 0 < e < 1
(5.2.2) J(X,aD) =V*+0x, V°Ox =J(X,(a-¢)D).

Note that V is left-continuous and J(X, aD) is right-continuous, i.e.
(5.2.3) VeOx =V**0x, J(X,aD)=J(X,(a+¢€)D).

The proof of (5.2) uses the theory of bifiltered direct images [32], [33] to reduce
the assertion to the normal crossing case.

As a corollary we get another proof of the results of Ein, Lazarsfeld, Smith and
Varolin [16], and of Lichtin, Yano and Koll4r [25]:
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5.3. Corollary.
(i) {Jumping numbers < 1} C Ry, see [16].
(ii) @y = minimal jumping number, see [25].
Define o}, = minyx-{csy}. Then
5.4. Theorem. If£f = f for a vector field £, then
(5.4.1) Ry N (0,a%,) = {Jumping numbers} N (0, 0} -

(This does not hold without the assumption on § nor for [}, 1).)

For the constantness of the jumping numbers under a topologically trivial defor-
mation of divisors, see [14].

6. b-Functions for any subvarieties.

6.1. Let Z be a closed subvariety of a smooth X, and f = (f1,..., f;) be generators
of the ideal of Z (which is not necessarily reduced nor irreducible). Define the action

of t; on
Ox [f_ll_f:] [81,-- -, '97']Hifi8iv
by ti(s;) = s; + 1if ¢ = j, and t;(s;) = s; otherwise. Put s;; := s;t;'¢;, s = 3, s;.
Then by(s) is the monic polynomial of the least degree satisfying
- (6.1.1) b (LS = 2kt Petel 1. £,
where P, belong to the ring generated by Dx and s, ;.

Here we can replace [],; fi* with ], 6(ti — fi), using the direct image by the
~ graph of f: X — C". Then the existence of b;(s) follows from the theory of the
V-filtration of Kashiwara and Malgrange. This db-function has appeared in work of
Sabbah [30] and Gyoja [18] for the study of b-functions of several variables.

6.2. Theorem (Budur, Mustats, S. [8]). Letc = codimxZ. Then bz(s) := bs(s—c)
depends only on Z and is independent of the choice of f = (fi,..., fr) and also of
7.

6.3. Equivalent definition. The &-function b¢(s) coincides with the monic poly-
nomial of the least degree satisfying

(6.3.1) by (S)[Lif* € Xjejmr Dx[8] Teyco (L) [T ST,

where ¢ = (c1,...,¢r) € Z" with |¢| := >, ¢; = 1. Here Dx[s] = Dx[s1,--- , 5]
This is due to Mustaté, and is used in the monomial ideal case. Note that the
well-definedness does not hold without the term [T, o ().
We have the induced filtration V' by ‘ '

Ox C is4.Ox = Ox[0h,..., 0/ [1;6(: — f).

6.4. Theorem (Budur, Mustata, S. [8]). If o is not a jumping number,
(6.4.1) J(X,aZ) =V2Ox. :



97

INTRODUCTION TO A THEORY OF b-FUNCTIONS

For o general we have for 0 < e <« 1

(6.4.2) J(X,aZ) = VerOyx, VeOx=J(X,(a—e)2).
6.5. Corollary (Budur, Mustata, S. [8]). We have the inclusion
(6.5.1) {Jumping numbers} N [ay, a5 + 1) C Ry.

6.6. Theorem (Budur, Mustata, S. [8]). If Z is reduced and is a local complete
intersection, then Z has only rational singularities if and only if oy = r with
multiplicity 1.

7. Monomial ideal case.

7.1. Definition. Let a C C[z] := C[zy,...,Z,] a monomial ideal. We have the
associated semigroup defined by

Fo={ueN"|z"€a}
Let P, be the convex hull of 'y in R%,. For a face Q of P,, define
Mg : the subsemigroup of Z" generated by u —v withu € 'y, v € ', N Q.
Mg =vo+ Mg forvy€l,NQ (this is independent of vy).

For a face @ of P, not contained in any coordinate hyperplane, take a linear
function with rational coefficients Lg : R® — R whose restriction to @ is 1. Let

Vg : the linear subspace generated by Q.
e=(1,...,1).

Rq = {Lo(u) | u € (e + (Mg \ Mp)) NVa},
Ry = {roots of by(—s)}.

7.2. Theorem (Budur, Mustat, S. [9]). We have R, = {Jg Rg with Q faces of
P, not contained in any coordinate hyperplanes.

Outline of the proof. Let f; = [, 27", £i(s) = 3_; @i 3s;. Define

’ 2;(8)+4
gc(s) = Hc.'<0 (-—-c.-)].-.[l,-(c)>0( (se),-{c) (C))'
Let I, C C[s] be the ideal generated by g.(s) with c € Z",% . ¢; = 1. Then

7.3. Proposition (Mustatd). The b-function by[s] of the monomial ideal a is the
monic generator of C[s] N I,, where s =7 _,s;.

Using this, Theorem (7.2) follows from elementary computations.

7.4. Case n = 2. Here it is enough to consider only 1-dimensional @ by (7.2).
Let @ be a compact face of P, w1th {v®,v@} = 8Q, where v® = (v®, vP) with
(1) < v§2), 'u.‘(,l) > v(z) Let
G : the subgroup generated by u — v with u,v € @ N T,.
v® € Q N N2 such that v® — v generates G.
Sq={(,3) e N*|i <o, 5 <of’}.
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SBl =5n My, S5 =250\8Y.
Then

Ro={Lo(u+e) —k|ue Sy (k=0,1)}.
In the case Q C {z =m}, we have Rg = {i/m |i=1,...,m}.
7.5. Examples. (i) If a = (2*y, zy%), with a,b > 2, then

R, = {(b—l)“’ ‘1"1)3 1<i<a, 1$j§b}.

(ii) If a = (zy®, 23y, %), then 5[11 = { and
19 j
= < <
R,= {13 L (r<i<1n), =, 6(351_9)}.

(iii) f a = (zyb,23y? %), then S [1] = {(2,4)} for 0Q = {(1,5),(3,2)} with
Lg(v1,v2) = (3v1 + 2v3)/13, and
: i : J .
=d{— <1< = < '
Ro={g 6<is), {@<i<e)}

Here 19/13 is shifted to 6/13.

7.6. Comparison with exponents. If n = 2 and f has a nondegenerate Newton
polygon with compact faces @, then by Steenbrink [43]

E;n(0,1] =UgES' with E3Z' ={Lo(u)|ue{0}UuQnZ2,},
where {0} U Q is the convex hull of {0} U Q. Here we have the symmetry of E;
with center 1.
7.7. Another comparison. If a = (27",...,2%), then
= {E,Pz/az |1<p < ai}-
On the other hand, if f = Z, z;*, then

Ry=E;={Yipi/a;| 1 <pi <a;—1}.

8. Hyperplane arrangements.

8.1. Let D be a central hyperplane arrangement in X = C™. Here, central means
an affine cone of Z C P™*~1. Let f be the reduced equation of D and d := deg f > n.
Assume D is not the pull-back of D’ C C¥(n’ < n).

8.2. Theorem. (i) max Ry < 2 — %. (ii) my = n.

Proof of (i) uses a partial generalization of a solution of Aomoto’s conjecture
due to Esnault, Schechtman, Viehweg, Terao, Varchenko ([17], [40]) together with
a generalization of Malgrange’s formula (4.8) as below:
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8.3. Theorem (Generalization of Malgrange’s formula) [36]. There exists a pole
order filtration P on H" 1(Fy, C), such that if (¢ + N)N R = 0, then

(8.3.1) a € Ry & Gt H" }(Fp, C), # 0,
with p = [n — a), A = e7*™ where R = UzgoRyz.

This reduces the proof of (8.2)(i) to
(8.3.2) P H™ Y (Fy, C)a = H™}(Fp, C)s,
fori=n—1if A =1 or /4 and ; = n — 2 otherwise.

8.4. Construction of the pole order filtration P. Let U = P!\ Z, and
Fy = f~1(0) c C". Then Fy = U with 7 : U — U a d-fold covering ramified over
Z. Let L™ be the local systems of rank 1 on U such that 7,C = @y, .,L* and
T acts on L) by e=2mk/d, Then -

(8.4.1) H (U, L®) = HI(Fp, C)e(k/a),

and P is induced by the pole order filtration on the meromorphic extension £®) of
L® ®c Oy over P™1, see [15], [36], [37]. This is closely related to:

8.5. Solution of Aomoto’s conjecture ([17], [40]). Let Z; be the irreducible
components of Z (1 < ¢ < d), g; be the defining equation of Z; on P**\ Z, (i < d),
and w := ), , ajw; with w; = dg;/g;, o; € C. Let V be the connection on Oy such
that Vu = du+wAu. Set ag = — Y, , 0;. Then Hpp (U, (Oy, V)) is calculated by

(A wA) with A2 =Y CuwA---Aw,,,

if Zzoﬁ o; ¢ N\ {0} for any dense edge L C Z (see (8.7) below). Here an edge is |
an intersection of Z;.

For the proof of (8.2)(ii) we have
8.6. Proposition. N"1¢;,C # 0 if Gry, _,H" 1(F,, C)\ #0.

(Indeed, N™™' : Gry, _,%5,C — Gr{’9;,,C by the definition of W, and the
assumption of (8.6) implies Gray,_,1;,C # 0.)

Then we get (8.2)(ii), since wi,A-+- Aw;,_, # 0 in Gry, _,H"1(P*1\ Z,C) =
Gry  H" (F,,C),.

8.7. Dense edges. Let D = U,D; be the irreducible decomposition. Then L =
MierD; is called an edge of D (I # 0),

We say that an edge L is dense if {D;/L|D; D L} is indecomposable. Here
C" D D is called decomposable if C* = C" x C"" such that D is the union of the
pull-backs from C™,C*" with n/,n” 0. ‘

Set mp = #{D; | D; D L}. For X\ € C, define

DE(D) = {dense edges of D}, DE(D,A) = {L € DE(D) | \™ =1}.
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We say that L, L' are strongly adjacent if L C L' or L D L' or LN L' is non-dense.

Let
m()\) = max{|S|| S C DE(D, A) such that

any L, L' € S are strongly adjacent}.

8.8. Theorem !37]. m, < m()\) with A = e~?m2,
8-9- CorOIIaryv Rf C ULE'D&‘(D) Zmzl. '

8.10. Corollary. If GCD(mr,my) =1 for any strongly adjacent L, L' € DE(D),
then mq = 1 for any a € Ry \ Z.

Theorem 2 follows from the canonical resolution of singularities 7 : (X,D) —
(P"~1, D) due to [40], which is obtained by blowing up along the proper transforms
of the dense edges. Indeed, mult D(A)eq < m()), where D()) is the union of D;

~

such that A™ =1 and ; = mults D.
8.11. Theorem (Musta@;é [29]). For a central arrangement,
(8.11.1) J(X,aD) = I¥ with k = [do] —n+1if a < o,
where I is the ideal of 0 and o = mingzo{asz}

(This holds for the affine cone of any divisor on P*~1, see [36].)

8.12. Corollary. We have dim F**H"}(Fy, C)e(-i/qy = (¥71) for 0 < k<o,
and the same holds with F replaced by P. ‘
8.13. Corollary. oy = min(a}, ) < 1.

(Note that o coincides with the minimal jumping number.)
8.14. Generic case. If D is a generic central hyperplane arrangement, then
(8.14.1) br(s) = (s + )" T252(s + 4)

by U. Walther [46] (except for the multiplicity of —1). He uses a completely different
method. _

Note that Theorems (8.2) and (8.8) imply that the left-hand side divides the
right-hand side of (8.14.1), and the equality follows using also (8.12).
8.15. Explicit calculation. Let a = k/d, A\ = e~ for k € {1,...,d}. If
o > oy, we assume there is I C {1,...,d — 1} such that |I| = k — 1, and the
condition of [40]

(8.15.1) > z1 % ¢ N\ {0} for any dense edge L C Z,
is satisfied for
(8.15.2) a; =1—aifi € IU{d}, and —oa otherwise.

Let V(I) be the subspace of H""1A;, generated by
PAVARER Awi,_, for {7:1, .o a?:n—l} cl.

8.16. Theorem. Let a = k/d, A=e"?™* fork € {1,...,d}. Then
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(a) Ifk=d—1ord, thena € Ry, a+1 ¢ Ry.
(b) fa<ajf, thena€ Ry =k 2>d. .
(c) If (*71) < dim H™"Y(F,, C)y, then a+ 1 € Ry.
(d) fa <o}, a¢ Ry +Z and (877) = x(U), then a+ 1 ¢ Ry.
e) Ifa > o and V(I) #0, then o € Ry.
f f
(f) If a > o} and V(I) = H" ' A;, then a +1 ¢ Ry.

8.17. Theorem [37]. Assumen =3, mult,Z <3 forany2€ ZCP? andd < 7.
Let vs be the number of triple points of Z, and assume v3 # 0. Then

(8.17.1) bs(s) = (s + D) [Tia(s + §) ITius(s + ),

withr = 2d —2 or 2d — 3. We have r = 2d — 2 if v3 < d — 3, and the converse
holds for d < 7. In case d =7, we have r = 2d — 3 for vs > 4, however, for vz = 4,
r can be both 2d — 2 and 2d - 3.

8.18. Remarks. (i) We have v3 < d — 3 if and only if
(8.18.1) x(U) = Ld;zéd_—élv_ s > gd—s)zgd-—«q _ (d-2-3).

(ii) By (8.4.1) we have x(U) = h?(Fp, C)) — h*(Fo,C)» if A =1 and X # 0.
(iii) Let v} be the number of i-ple points of Z’' := Z N C2. Then by [6]
(8.18.2) b(U)=1, b{U)=d-1, b(U)=uv,+2v;,

8.19. Examples. (i) For (2% —-1)(y%—1) = 0 in C? with d = 5, (8.17.1) holds with
r =7, and 8/5 ¢ R;. In this case we do not need to take I, because (d — 2)/d =
3/5 < oy = 2/3. We have by (U) = by(U) = 4 and h*(Fo,C)y = x(U) = 1if X =1
and A # 1. So j/5 € Ry for 3 < j < 7 by (a), (b), (c), and 8/5 ¢ Ry by (d).

(ii) For (z? — 1)(y? — 1)(z + y) = 0 in C? with d = 6, (8.17.1) holds with r = 9,
and 10/6 ¢ R;. In this case we have by (U) = 5,b2(U) = 6, x(U) = 2, h!(Fo,C)a =
1, h3(Fp, C)s = 3 for X\ = e*?™/3, Then 4/6 € R; by (e) and 10/6 ¢ R; by (f),
where I° corresponds to (z + 1)(y + 1) = 0. For other j/6, the argument is the
same as in (i).

(iii) For (2% — ¥?)(z% — 1)(y + 2) = 0 in C? with d = 6, (8.17.1) holds with r = 10,
and 10/6 € R;. In this case we have b;(U) = 5,b2(U) = 9,x(U) = 5,h}(Fo, C)s =
0, h?(Fp,C)s = 5 for A = e*?™/3. Then 4/6 € Ry by (e) and 10/6 € Ry by (c),
where I¢ corresponds to (z + 1)(y +2) =0.

(iv) For (2% —y?)(z% — 1)(y2 — 1) = 0 in C? with d = 7, (8.17.1) holds with r = 11,
and 12/7 ¢ R;. In this case we have by (U) = 6,b2(U) = 9, x(U) = 4, h*(Fo, C)» =4
if =1 and X # 1. Then 5/7 € Ry by (e) and 12/7 ¢ R; by (f), where I°
corresponds to (z + 1)(y + 1) = 0. Note that 5/7 is not a jumping number.
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