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Abstract

In this reportﬁ, we state limit theorems for the number of edges, the number of
triangles and the clustering coefficients of a generalized threshold network model.
We also give examples of these limit theorems.

1 | Introduction

The threshold network model is a type of finite random graphs that is generated on
n vertices labeled 1,... ,n with independent and identically -distributed (i.i.d.) random
variables X1,... ,X,. We connect a pair of vertices 7 and j with 7 # j by an edge when
' X;+X; > 6 for a given threshold . The threshold network model is a subclass of so called
_ hidden variable models, and its mean behavior {1,2,5,7, 8] and limit theorems {4, 6] have
been analyzed. Recently, a generalization of the threshold network model was formulated
and several limit theorems werc studied [3]. Here we review the generalized model. Let R¢
be the d-dimensional Euclidean space. We prepare an i.i.d. sequence of R%valued random
variables X3,..., X, and associate the random variable X; with vertex i. Let B(R) be
the Borel o-field of R. Now we introduce Borel measurable functions f™ : (R%)? — R
with f™(z,y) = f™(y,z) for all m € {1,...,l}. For a given finite collection of Borel
measurable sets C. = {B,..., B;} with B,, € B(R) for all m € {1,...,l}, we connect
vertices ¢ and j (¢ # 7) if f™(X,, X;) € By, forallm € {1,...,1}. In other words, we form
an edge (1,7) if H‘lm=1 I, (f™(X;, X;)) =1 for i # j, where I4(z) denotes the indicator
function, i.e., I4(z) = 1 for z € A and I4(z) = 0 otherwise. Thus we obtain a random
graph Ge(Xi, ..., X,). References and more details are found in [3].
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2 Limit Theorems
In this section, we state the limit theorems that are suitable modifications of the theorems
proved in [3]. Hereafter, we only consider the one-dimensional (d = 1) and [ = 1 case.

" Extensions of the following results to general d and | are straightforward. For simplicity,
we may write f, = f! and B =C = {B;}.

2.1 Edges and Triangles

When we choose hp(z,y) = Ia( f,(a: y)), as the kernel function, we define the following

two statistics: ' : ‘
> ho(Xi,X;), and Da(i))= Y hp(Xi,X;).

1<i<j<n 1<5<n

. , - , i#i

Here D, is the number of edges in the random graph Gp(Xi,...,X,) and D,(i) is

the number of edges connected to vertex i, i.e., the degree of vertex i. Using another

kernel function hr(z,y, 2) = Ig(fe(z,y))- IB(fc(y, z))-Ig(fe(z,2)), we define the following

statlstlcs for the number of triangles:

T T= Y ho(Xi, X5, Xe), and T = Y hp(Xi, Xj, Xe)-
1<i<j<k<n 1<]::é§n
: J.RF

Here T, denotes the number of triangles in the random graph and T, (i) is the number of
triangles including vertex i. Limit theorems for the statistics are the following:

Theorem 1. Asn — oo,
() for‘ anyz €R, - —l—)f-(—’—f—) — D(1;z) = P(hp(x, X3) = 1) almost surely,

(i) 2 @) ) — D =E[D(1;X,)] = P(hn(X1,Xz) = 1) almost surely,
o Ta(1; z)
("2)

(i) % — T = E[T(1; X1)] = P(hp(X,, Xz,ng) =1) almost surely,
3 : | : -

(iii) for any x € R, - T(1;z) = P(hr(z, X2, X3) = 1) almost surely,

~ where

D.(i;z)= ) ho(z,X;), and Tn(i;2)= hr(z, X;, X5).
1<5<n 1<j<k<n
» J# Gk
2.2 Clustering Coefficients

The local clustering coefficient C,,(i) of vertex i is defined by
. T (2) : ‘
Ca(d) = zﬁ%,—((_)l) ipa@zay +w - Iipu@=0a}s
2 .
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for an indeterminate w. The global clustering coefficient C,, is defined by

1<
= —TI—, izzlcn(z)

The following limit theorems for the local and g‘lobal clustering coeflicients were proved:

Theorem 2. Asn — oo,

. T :
- () for anyz €R, C “(1;2) = C(1;z) = ——((Z—-x—)); I{D(i;z)>0y W1 (D(i;z)=0}  almost surely,
(ii) Cn — C =E[C(1; X;)] almost surely,
where
. T.(i;z :
Ca(tiz) = (Tfﬁ% I{Dntiz)22) + W - I{Dp(isz)=0,1}-
2 .

3 Examples

In this section, we give several examples for D(1;z), T(1;z), C(1;z), D, T, C and the
distribution of D(1) = D(1; X;). Let f and fpq) denote the dlstnbutlons of X; and D(1),
respectively. Note that domain of fD(l)\k) is always 0<k<1

Case 1 : When we choose f.(z,y) = z +y and B = (#, 00) for § € R, the random graph
becomes the original threshold network model. First, we give a table of examples for the
Bernoulli distribution. For simplicity, we omit trivial cases (8 < 0,2 < 6).

distribution Bernouili
f(=z) p-6i(z) + (1 —p)-bo(z) : p€(0,1)
fom (k) p-6i(k)+(1—p)-6,(k) if 0<0<1,
PR p-Sy(k)+(1—p)-So(k) if 1<O<2.
1) = .0) = ; <
D1;2) | D(1;1) =1, D(1;0) i 0<0<1,
D(1L;1)=p, D(1;0)=0 i 1<#<2
: T(1;1)=p(2-p), T(1;0)=p* if 0<6<1,
T(1;z) .
T(1;1)=p% T(1;0)=0 if 1<f<2.
: = - J(1: = i <
o(tiz) (1) =p(2-p), C(1;0)=1 i 0<0<1,
C(1;1) =1, C(1;0) = w if 1<6<2.
DT C D=p2-p), T=p*3-2p), (,—1-1)(1—p)2 if 0<6<1,
> o D=p?2, T=p% C=p+(1—p) - w : if 1<f0<2.

Next, we give a table for the exponential distribution [5].
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distribution exponential
f(z) Ae ™, 1€ (0,00) : A>0
_ - 8,(k) - if 6<0,
oy (k) {I(e_,\e,l)(k) X p e gi(k) if 60,
o () s o) 4 050
AR Logy(z) - €202 4 Ip ) (z) if 6>0.
' T(0,00) () o if 4<0, |
T(Lz) | S Loe(x) - eC + Lgp0(z) - M2z — 6) + 1]e™ |
| +16.00)() - (A0 + 1)e™0 if §>0.
T(0,00) (x) if <0,
C(L;7) Tioo/2(2) + Ligja () A2z — 6) + 1]e 2=
+lgocy(z) A0+ 1)e™ - if >0,
- D-;l,Tzl,(J=1 if . §<0,
D, T, C = (A0 + e, T = 4e7330/2 = 3¢=220,
| C=1—2e2/2 1 1(3)0 4 2)e=2¥ if 9>0.

A remarkable feature of fp(y) is existence of the power law k=2 which is referred to as the
scale-free property. Remark that existence of the delta measure §; is always proved for
distributions that are absolutely continuous and have a lower cutoff, i.e., supp f = {a, 00),
where a € R and supp f = {z € R: f(z) # 0} is the support of f. '

Finally, we consider the bilateral exponential distribution. For simplicity, we only
show D(1;z) and the distribution of D(1).

distribution ' bilateral exponential

f(z) Tl N> 0
4 ](0 )(k) + I(‘ 1—-—5)‘9)(,‘:) 1 k)z +e - I(i—%e*”,l)(k) if < 0,
fo(n(k) o 1)(k) if =0,
8. To1e-s0y () + Txgso 1y (k) - Gor + €70 T (k). if 6>0.
D(1; r) ooy (%) - L& 205 1 T g () - (1 = 120))

‘In thls case, fp(i) is mixture of the umform distribution and the power law (k -2

(1 — k)~2). Particularly, when § = 0, the distribution of D(1) becomes the umform_
distribution on (0, 1). Note that when 8 = 0, the same result also holds for distributions
that are absolutely continuous, symmetric, i.e., f(z) = f(~z), and of infinite support,
. i.e., supp f = (—00, 0). ‘

- Case 2 : Next we consider the case fe(z,y) =z +y, B = U;V_I(aj,b] for a finite
- Ne{1,2,...},where0<a; <b <...<a; <b;<ajy1 <...<ay < by. We derlve
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the following distribution of D(1) for the exponential distribution with parameter A:

N —z\bj — S
_ J+1 j+1
fD(l)(k) b ZI(CAbij+1,€Aaj+ISj+1) + Z >‘b-737+1 e 15']) (1 . k)z 3
j= Jj=1 .

where bp = 0 and S; = Zfi] (e7?4 — =) = P(X, € Ui]\;j(ai,_bi]) € [0,1] for j €
{1,... ;N}. The original threshold network model is the case N = 1 with a; = 6 and
by = oo, where we set e = 0. For B = |J72,(a;, b;], we can obtain fp(1) by replacing

N with oo.

Case 3: Let us consider the case in which f.(z,y) = z+y, B = UJ_I(aJ, ;] for a
finite N € {1,2,...},where 0<a; <5 <...<¢; <bh;<aju < ... <ay < by <1,
and the distribution of X, is the uniform distribution on (0,1). We derive the following
distribution of D(1): oL

foy(k) = Io,s,)(k) + (1 = bn) - +Z (as — bi-a) - 05, (K),

o i=l

 where bp = 0 and S; = SN (b — a;) = P(X; € Uz_J(a,,' :]). The uniform distribution

i=j
T, S,)(k,) corresponds to intervals included in B, and the delta measures correspond to

gaps, i.e., sets included in [0,1] \ B. As an ex_ample let us consider the case

_ i 1
B =K EU Za m3n

am=0,2 |m=1
1<m<n

For example, K2 [0,1/3%) U [2/3%,3/3% U [6/3%,7/3% U [8/3% 1]. We obtain

n-—1 . gn-— 1_1

foay(k) = Ioan/3n) (k) + Z52: 1 Z T 3ln e 0 2 (k).

The limit set K =2, K, is the Cantor set. Because the Lebesgue measure of K equals
zero, it is trivial that fD 1)(k) = do(k) for absolutely continuous distributions.

Case 4 : We study the case [.(z,y) = zy, B = (6, 0), 6 > 0 as an example of f. that
is different from addition. The distribution of D(1) for the exponential distribution with
parameter A is the following:

229 . N6/ logk
foay(k) = Iy (k) - " k(logk)?

In this case, the distribution deviates from the power law.
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