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Heteroclinic Jumps for Whiskered Tori
in Nearly Integrable Hamiltonian Systems
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1 Introduction
We consider three-degree-of-freedom Hamiltonian systems of the from
&= JD,Hy(z,I) + eJD,Hy(z,1,6),
I = —eDgHy(z,1,6), (z,1,6) € R? x R? x T?, (1)
6 = DyHy(z,I) + €D Hy(z, 1, 6),

where ¢ is a small parameter such that 0 < ¢ < 1, H = Hy(z,I) + eH(z,1,0) is a real
analytic function and J is 2 x 2 symplectic matrix, i.e.,

Jz(_ol ;).

& = JDyHo(zx,I), [=0, 6=D;Hy(z,I), (2)

When € = 0, Eq. (1) becomes

which is integrable. Hence, Eq. (1) represents nearly-integrablc Hamiltonian systems.

For such a class of Hamiltonian systems, since the pioncer work of Arnold (1] there
has been great intcrest in global instability known as Arnold diffusion [2-4): If there
is a sequence of invariant tori such that they are connected by heteroclinic orbits, then
there cxists an open sct of trajectories which visit their neighborhoods in succession and
go far from the initial points. A torus having stablc and unstablc manifolds are said
to be whiskered and such a sequence of whiskered tori is called transition chain. The
fact that these tori may be subjected to resonance raised a serious problem, which had
been actually unsolved for many years, for complete understanding of the mechanism for
Arnold diffusion. Recently, for a special case of (1) in which particularly DyHo(z,I) is
independent of z, Delshams et al. [4] overcame the difficulty and showed that diffusion is
more intense near resonant tori.
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Fig. 1. Unperturbed phase space

In this paper we arc interested in the size of jumps of heteroclnic orbits connecting
whiskered tori in (1). We show that the jumps can be €(1/€) for resonant tori while
they are €(¢) for nonresonant tori. This is a contrast to the result of [4] in which the
jumps of heteroclinic orbits arc &'(¢) even for resonant tori. Thus, in a general case where
D;Hy(z, I) is not independent of z, diffusion near resonant tori can be cven more intense.
The proofs and technical details will be given clsewhere {5).

2 Unperturbed and perturbed phase space structures

Let £ be a non-empty open set of R? and let £ = # U 8.F. Denote w(l) =
D;Ho(zo(I),I). We make the following assumptions on (2).

(A1) There exists a function zo : & — R? such that for any I € # the point
z = zo(I) is a hyperbolic saddle in the z-component of (2) and has a homoclinic orbit

z!(t).
(A2) For any I € .# we have

det D;w(I) = det D;[D; Ho(zo(I), I)] # 0. (3)

In the unperturbed system (2)
My = {(z,1,0) e R?* x & x T? |z = zo(I)}

is a four-dimensional, normally hyperbolic, invariant manifold whose stable and unstable
manifolds, W*(.#) and W"(.#), coincide along a five-dimensional manifold

{(z,1,0) e R?> x # x T?|z = z(t),t € R}.
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See Fig. 1. The invariant manifold .#; consists of a two-parameter family of invariant
tori F; = {(zo(I),1,6) |6 € T?} which satisfies a resonant condition

k-w(I)=0 forsome k € Z%/{0}

or not, where ‘-’ represents the inner product. These invariant tori are whiskered in the
meaning that they have stable and unstablc manifolds.

For € # 0 sufficiently small it follows from the invariant manifold theory [6,7] that
there exists a four-dimensional, normally hyperbolic, locally invariant manifold .4, in
an O(e)-neighborhood of .#,. Moreover, .#, has local stable and unstable manifolds

e (.#o) and W2 (), from which the global stablc and unstable manifolds W*(.#p)
and W"(,) are obtained, near W*(.#;) and W" (). Define the Melnikov function as

MI(8) = / "~ D.Ho(z!(8), I) - JD.Hy (2 (8), I, 6°(2) + 0)dt, (4)
where

6'(t) = /0 t Dy Hy(z'(t), I)dt. (5)

Using a standard argument in the Melnikov method (see, e.g., [8]), we can prove the
following result.

Theorem 1. Supposc that for some point (I,8) = (Ip, ) in R? x T?
M1(6) =0, DyM'(6) #0.

Then for € > 0 sufficiently small the stable and unstable manifolds W*®(#) and W"(.#,)
of .#, intersect transversely in a four dimensional manifold.

We can show that on .#, there still exist many whiskerced tori near the unperturbed
nonresonant or resonant whiskered tori. The transverse intersection between W*(.£,)
and W"(.,) implics that the whiskercd tori have homoclinic or heteroclinic orbits. The
existence of such heteroclinic orbits is especially of importance since they provides a
mechanism for Arnold diffusion, as stated in Section 1.

3 Heteroclinic jumps
We first treat the case of nonresonant tori. Let
I_{l(ziIvo) = H1($,I,0) - Hl(xO(I)a I,B)

and define o ‘
AI(I,0) = — / Do Hy (' (t), 1,60 (t) + 6)dt. (6)
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Using the averaging method [9], the KAM theorem [10] and Theorem 1, we can prove the
following result. ‘

Theorem 2. Suppose that for some (I,0) = (I, 6y) the hypothesis of Theorem 1
and Diophantinc condition

[k w2 ~lkl™", keZ?\{0}, 7>1 (M

hold. Then for € > 0 sufficicntly small there cxist a pair of whiskered tori in an &(¢)-
neighborhood of I = I, on .#, such that the distance between them is eAI(Iy, 8p) + &(€?)
and they have a heteroclinic orbit.

We next consider the case of resonant tori and assume that

kt . W(I*) = ‘ (8)
for some I, € £ and k, € Z*\{0}. Expand H;(zo(I),1,6) to a Fourier series as
Hy(ao(D),1,0) = 3_ h(D)e™,  hll) = 553 /Ta Hi (wo(1), 1,0)e™*?d8

keZ?

and set

R () =D hie. (L)e7?,
J#0
Define a function Ah(¢) as

AR(9) = b*(Ady + ) — b (Ab- +4), Ads = / k- DiHala (1), L)t (9)

Again, we use the averaging method [9], the KAM theorem [10] and Theorem 1 to prove
the following result.

Theorem 3. Suppose that for some 6, € T? the hypothesis of Theorem 1 with
(1,0) = (I.,6.) and

Ah(k. - 6.) #0. (10)

Then for € > 0 sufficiently small there exist a pair of whiskered tori in an €(\/e)-

neighborhood of I = I, on .#, such that the distancc between them is &(,/€) and they
have a heteroclinic orbit.

4 Example

To illustrate the above theory, we consider the following example:

1 1
Ho(.’l?,]) = —(COS$1 + 2)[1 + Iz + —(l‘g + I12 + Ig),
Hl(a:,I,O) = (008(01’— 02) + 00801 + COSGQ) co8s 2,
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where I, I, > 0. We easily sce that the unperturbed Hamiltonian Hj satisfies assumptions
(A1) and (A2). In particular, in the z-component of thc unperturbed system (2) the point
zo(I) = (0,0) is a hyperbolic saddle and has a pair of homoclinic orbits

i) = (:i:2a.rcsin (tanh\/%t) +7r,:l:2\/1 sech ‘[31 )

Moreover, the frequency vector is given by
w)=(0L+1,L+1) (12)

and satisfies the nondegeneracy condition (3).
We compute (5) as

6L(t) = ((Il + 1)t - g\/-?-l—tanh \/%‘lt, (I + 1)t)

and estimate the Melnikov function (4) as

M!(9) =4 [A ([ I — 12) sin(6; — ;)
| +A (\/?; I+ 1) sinf; — Ag (\/131(15 + 1)) sinﬂg],

A(a,b) =/ tanh 7 sech?r cos (-z-atanh*r) sinabrdt

- / tanh 7 sech?r sin (;

where

a.ta.nhr) cosabrdt,

Ap(v) —-cosch(2)>0 for v > 0.

Hence, the hypothesis of Theorem 1 holds for some 6y = (010, 020) so that W*(.«,) and
W"(.#,) intersect transversely. In particular, if

Ap (\/;3:(12 + 1)) #+A (\/3 I + 1) (13)

then we can take 6y such that ,
610 # B20, 020 + . (14)

Note that for any I; > 0 condition (13) holds for almost all I, > 0.
Now we assume that the frequency vector (12) satisfies the Diophantine condition (7)
for I = I,. We have

Hy(x,1,0) = (cos(6; — 62) + cos 8, + cos 8;)(cosx; — 1)
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and estimate (6) as

ALL(I,6) =2\/% [—-B (\/13'1 I - 12) sin(6, — 6,) — B (@ L+ 1) sinal],
AL(1,6) =2\/IE1 [B (\/% I - 12) sin(6; — 62) — By (\/%(I2 + 1)) sin 92] ,

where

B(a,b) =/ sechz‘rcos(gatanh'r) cosabrdt

+/ sechz'rsin(-gata.nh*r) sin ab T dt,
—00
Byo(v) =mv cosech (%V) >0 forv>0.

By Theorem 2, in an &(¢)-neighborhood of I = I on ., there exist a pair of whiskered
tori which are at distance of eAI(I,6y) + €(€2) and connected by a heteroclinic orbit.

~ Finally, we consider the case in which the unperturbed tori are resonant and assume
that I; = I; so that the resonance condition (8) holds with k. = (1,—1). The Fourier
coefficients hi(I) of Hy(zo(I),I,0) are given by

he(I) = {% if (k1, k2) = (£1,¥F1), (£1,0) or (0,*1);
() =

0 otherwise,

so that
h*(9) = cos ¢,
We estimate
2 /I
Apy = :FEV 3
to obtain '

Ah(¢) = cos (¢-— -g—\/g) — cos (¢+§\/§) .

Suppose that condition (13) holds. Then since as in (14) we can take 6 = 0, for the
hypothesis of Theorem 1 to hold for I; = I, we have (10). Hence it follows from Theorem 3
that in an &(,/€)-neighborhood of I} = I, on .#., there exist a pair of whiskered tori
which are at distance of &(1/€) and connected by a heteroclinic orbit.
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