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1 Introduction and statement of results

For 0 < a < n and a locally integrable function f on R", we define the Riesz potential
Unf of order a by

Uaf(z) = /R . lz — y|*™" f(y)dy.

Here it is natural to assume that U,|f| # oo, which is equivalent to

| iy < oo (1)
In the present paper, we treat functions f satisfying an Orlicz condition :
[ ®aelif)hay < oo (12

Here ®,,(r) is a positive nondecreasing function on the interval (0, 00) of the form

st‘P (’l") = TP(P(T) )

where p > 1 and ¢(r) is a positive monotone function on [0, co) which is of logarithmic
type; that is, there exists ¢; > 0 such that

(29) cito(r) < o(r?) < crp(r) whenever r > 0.

We set
$p,0(0) =0,
because we will see in the proof of Lemma 2.1 below that

rl_i)r& Dpo(r) =0 = Dp4(0).

For an open set G C R", we denote by L®¢(G) the family of all locally integrable
functions g on G such that

[ @nsllotal) dz < oo,
G
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and define

lglls,., = llglls, ,.c = inf {A 50 /G 8, ,(19(@)l/N) do < 1} |

This is a quasi-norm in L%« (G).
Our first aim in the present paper is to establish integral inequalities for Riesz po-
tentials of functions in L®«. For this purpose, if 1 < p < n/a, then we set

rr 1/p
a0 = | [ ey iia] T o
0

where 1/p+1/p/ = 1; if p=n/a > 1, then we set’

T /7’
@p(r) = [/ {cp(t)}"’"/"t‘ldt] for r > 2,
1

and extend it to be a (strictly) increasing continuous function on [0, co) such that 3(t) =
(t/2)g3(2) for t € [0,2). Following Alberico and Cianchi [3], we consider the Sobolev
conjugate ¥, , of &, , defined by

Upo(r) = (Wm0 (9) 7))  forr 20,

where ¢,(r) = ™ and (p})~! is the inverse of the function ¢}. Note that ¥, ,(r) is
continuous on [0, o) and ¥, ,(0) = 0.

As an extension of Alberico and Cianchi [3, Theorem 2.3], we state our first result
in the following. :

THEOREM A. Let ap < n and G be a bounded open set in R*. Then there exists
go > 0 such that

| /G Uy o (eolal fI(2)) dz < 1

whenever f is a locally integrable function on G such that || f|le,, < 1.

Cianchi [2, Theorem 2] gave a necessary and sufficient condition that the operator
f — U,f is bounded from one Orlicz space L® to another Orlicz space L¥; but our
statement is straightforward and simple. Further Edmunds and Evans [4, Theorems
3.6.10, 3.6.16] discussed the boundedness of Bessel potentials in Lorenz-Karamata space
setting.

Since our function ®,, may not be convex, for the reader’s convenience, we give a
proof of Theorem A different from Cianchi {2] in the next section.

REMARK 1.1 Theorem A implies that
WWeafllep.o < gotl flle,., whenever f € L% (G),

where the quasi-norm || - ||g,, is defined in the same way as || - |lo,.,-
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EXAMPLE 1.2 Consider ®,4(r) = rP(logr)? for large r > 0, where p = n/a > 1 and
g<p-1 Ifg<p-1, then
@, (1) > C exp(nr?/®=179)

and if ¢ = p— 1, then
U,4(r) = Cexp(nexp(r?))

for » > 1. Hence we have the exponential integrability obtained by Edmunds, Gurka
and Opic [5, Theorem 4.6], {6, Theorems 3.1 and 3.2] and the authors [12, Theorems A
and BJ.

COROLLARY 1.3 Let ap = n and G be a bounded open set in R™. Let ®,4(r) =
rP(logr)? for large r > 0.

(1) If ¢ < p— 1, then there exists g9 > 0 such that
[ {empteatial i@ - 1}ds < 1
G

whenever f is a locally integrable function on G such that | fl|ls,, < 1, where

B=p/lp—1-9q).
(2) If q =p— 1, then there exists €3 > 0 such that

fG {exp(exp(eolul fI(z)) — e}dz < 1

whenever f is a locally integrable function on G such that ||f|le,, < 1, where
B=p/(p-1).

In the case ¢ > p— 1, U, f is shown to be continuous in G; see Remark 1.5.
Denote by p* the Sobolev conjugate of p which is defined by '

We also obtain Sobolev’s type inequality for Riesz potentials in the following:

COROLLARY 1.4 Let ap < n. Then

/R AUl fl(@)e(Val Fl@)?Y de < ©

whenever f is a locally integrable function on R™ such that ||f|ls,, < 1, where C is a

positive constant independent of f. ’
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For a measurable function u on R", we define the integral mean over a measurable
set E C R" of positive measure by

L
]{Eu(x) dz = El /Eu(’t) dx.

As an application of Theorem A, we discuss continuity properties for Riesz potentials
of functions in L*+(R"), as an extension of Adams and Hurri-Syrjéanen [1, Theorem
1.6} and the authors [14, Theorems A and B|.

Our main result is now stated as follows:

THEOREM B. Let f be a locally integrable function on R" satisfying (1.1) and (1.2).
Set )

B = {o€R: [ fo—yl"If()] dy = oo},

E, = {zeR":limsupr®p(r )" [ &,,(f(¥)l) dy > 0},
r—0 B(z,r) '

E* = {z€R":limsup r"‘”"”/ ®, . (|f(y)]) dy > 0}.
r—0 . B(x,r)

Ifzg e R\ (Ex U E, U E*), then

lim U, o(AlUsf(2) = Usf(20)]) dz =0 (1.3)

T‘—P0+ B(ZO,’I‘)

holds for all A > 0.

We discuss the size of the exceptional sets after proving this theorem, in the final
section.

REMARK 1.5 Suppose
o0
/ {toPmp(t)} P /Ptldt < oo (1.4)
1
and set
00 , 1/p’
ontr) = ([t ety o)
Then it is known (see [9, Theorem 1] and [10, Corollary 3.1]) that U, f is continuous on
R” and
[Uaf (@) — Uaf(@o)| = o(0p(1/|z — 20])) a8z — 2o

for all zo € R", whenever f satisfies (1.1) and (1.2). On the contrary, if (1.4) does not
hold, then we can find an f satisfying (1.1) and (1.2) such that U, f is not continuous
(see [13, Remark 3.3]).
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2 Proof of Theorem A

In spite of the fact that ®, ., may not be convex, Theorem A must be a consequence of
Cianchi [2] in spirit. But we here give a proof of Theorem A, because our method is
straightforward and several materials are also needed for a proof of our main Theorem
B. In fact, our proof is based on the boundedness of maximal functions, by use of the
methods in the paper by Hedberg [7].

Throughout this paper, let C, C;, Cs, ... denote various constants independent of
the variables in question.

First we collect properties which follow from condition (1) (see [11] and [13}).
(¢2) o satisfies the doubling condition, that is, there exists ¢ > 1 such that
cro(r) < p(2r) < cp(r) whenever r > 0.
(¢3) For each v > 0, there exists ¢ = ¢(vy) > 1 such that
clp(r) < p(r?) < cgo.(r) whenever r > 0.
(¢4) If v > 0, then there exists ¢ = ¢(y) > 1 such that

sTp(s) < ct”(t) whenever 0 < s < t.

(¢5) If v > 0, then there exists ¢ = ¢(y) > 1 such that

t77(t) < esT7p(s) whenever 0 < s < t.

LEMMA 2.1 Letl<p; <p <'p2. Then there exists C > 1 such that
c™iaAm Dpp(T) < @pp(Ar) < CAP @y (1)
whenever r > 0 and A > 1.

COROLLARY 2.2 Let ap < nand1l < p; < p < p, . Let G be a bounded open set in
R"™. Then there exists a positive constant C such that

C {1 flls,., )7 < L o (1F )y < CLlFllay o}

whenever f is a locally integrable function on G such that ||f|ls,, < 1.
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LEMMA 2.3 (cf. [13, Lemma 2.5]) Let G be a bounded open set in R™ and € > 0. Let
po be given so that pyp = p if ¢ is nondecreasing, and 1 < py < p if ¢ Is nonincreasing.
Ifx € G, § >0 and f is a nonnegative measurable function on G, then

/G_B(Z’J) |z = y|I* ™ f(y)dy < Cyp(87Y) {€+c (/ Ppp f(y))dy>1/po},

where C and c(€) are positive constants such that C is 1ndependent of € but c(e) may
depend on €. In case ap < n,

lz —y|* " fly)dy < Cep(67) {1+ @0 (f(y))dy o ,
R"—B(z,0) R"

for all z € R™ and nonnegative measurable functions f on R".

For a locally integrable function f on R", define the maximal function by

Mf(z) = sup |f@)ldy,

IB("L‘ T)! GNB(z,r)

where |B(z, )| denotes the n-dimensional Lebesgue measure of the ball B(z, ) centered
at z of radius r > 0.

We denote by c(e) various constants which may depend on e.

LEMMA 2.4 Let ap = n and G be a bounded open set in R"*. Then, for each n > 0,
there exist €9 > 0 and c(eo) > 0 such that

() (Uaf () < cleo){ pp(Mf(2))}™ +1

for all nonnegative measurable functions f on G satisfying / @, (f(y)dy < &.
G

In case ap < n, we find from (p4) and (¢5) that
O Do (1)} P < g(r) < Cre e fp(r)} 2.1)
so that
b naB) (o ()} 5=08) < (1)7(r) < O/ oD {p(r)}/=en  (2.9)
for r > 0.
LEMMA 2.5 Let ap < n. Then

(¢3) 7 (Uaf (2)) < C{@p (M f(z))}"

for all nonnegative measurable functions f on R"™ satisfying / Qoo (fly))dy < 1.
R"»
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Note that

14
C‘lm——él”:(t) < / s d®, ,(s) < C-'q)p‘:f(t) (2.3)
0

for all t > 0 by (¢4) and (¢5).

The next lemma is an extension of Stein {15, Chapter 1}, whose proof will be done
along the same lines as in Stein [15, Chapter 1].

LEMMA 2.6 For a locally integrable function f on R",
[@utMi@) @o <0 [ @pplls @ da.

PROOF OF THEOREM A. We give a proof of Theorem A only in case ap = n. With
the aid of Lemma 2.4, for n > 0 we find £; > 0 such that

(@) (Uaf () < Cle){@p (M f(@) /™ +1

for all nonnegative measurable functions f on G satisfying / P, ,(f(y))dy < e;1. Hence,
G

in view of Lemma 2.6, we obtain
/G U, (Uaf(z))dz < C(e1) _/G ®, (M f(x))dz + Cn"|G]|
< Ole) [ By +Cr7lC

for all nonnegative measurable functions f on G satisfying / ®,,(f(y))dy < &;. Now,
G
letting Cn™|G| < 1/2 and using Corollary 2.2, we find 0 < &g < &; such that

/(, U, o (Ua f(z))dr < 1

< &. This implies

for all nonnegative measurable functions f on G satisfying || flls,.,
that '

/G U, o (colaf (@))dz < 1

for all nonnegative measurable functions f on G satisfying || flls,, < 1. Now the proof
is completed. O

3 Proof of Theorem B

For a proof of Theorem B, we prepare a series of lemmas.
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LEMMA 3.1 Let ap < n. Then there exist 3 > 1 and C > 0 such that
©n(Ar) < CAPQy(r)
forallT >0 and A > 1.

With the aid of Lemma 3.1, we establish the following result.

LEMMA 3.2 There exist C > 1 and 0 < g9 < 1 such that

LWp,w(Ualf|(y))dy < C{”f”%w}n/g

whenever f is a locally integrable function on G such that || f||s,, < €0, where (3 is given
in Lemma 3.1.

We further need the following result.

LEMMA 3.3 Let ap < n. For a nonnegative measurable function f on R" satisfying
(1.2), set

r—0+4

E, = {x € R™ : limsup r*? "p(r~1)~! / @, (f(y))dy > 0}
B(z,r)
and
E* = {:c e R": limsupr“‘p“"/ ®,,(f(y))dy > 0} .
| r—0+ B(zr)
Ifzo € R*\ (E.U E*), then

lim =" / ®,,(r%f(y)) dy = 0.
B(m0|r)

r—0

For o € R™ and 7 > 0, set fz,r(w) = r*f(zo + rw)XB(0,1), Where xr denotes the
characteristic function of E. Then note that

/ le —y|* " fly)dy = / |z — w|®™™ (r* f (2o + rw)) dw
B(zo.7) B(0,1)
= Uaf:m,r(z) (3.1)

for x = xg + rz.
We are now ready to prove our main Theorem B.

Proor oF THEOREM B. For a nonnegative measurable function f on R” satisfying
(1.1) and (1.2), it suffices to show that (1.3) holds for zo € R™\ (E, U E, U E*). Write

Uaf(z) = Uaf(wo) = /B o 2losal) lz — y|*™" f(y)dy

+ / |z — y|*™" f(y)dy — Uaf(2o)
R\ B(z0,2|z—20])
= U1((I‘) + U2($)
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If y € R® — B(xo, 2|z — 20|), then |zo — y| < 2|z — yl, so that, since Uaf(20) < 00, we
can apply Lebesgue’s dominated convergence theorem to obtain

Since (p})~! is nondecreasing, we have

(03) " (AlUaf (z) — Uaf (x0)]) (3) " (AUL(z) + AlU2()])

<
< (¢5)7H2AUL()) + (93) H(2AIU(2))),
so that

Upo(AlUaf(2) = Uaf (o)) < Ctn((90}) " (2AUL(2))) + Ctn((#}) ™ (24|U2(=)]))
= CU,,(24U,(z)) + CU, (24U (2)))-

In view of (3.2), we have
lim ¥, ,(2A|Uz(z)|) = 0.
20

Note that
Uy(z) < / - y*"F () dy = Uafi(2)
B(xo,r)

for x € B(zo,7/2), where f, = fXp(z,,r- Hence, we have only to show that

lim U, (2AU, fr(x))dz = 0.

r=0+J B(zo,r)

Note that Uy(fr)(2) = Us(fr)zer(2) for £ = 29 + 72 and

[ @) do=r [ @p(rfw)) dy
B(0,1) B(zo,7)

which tends to zero as » — +0 by Lemma 3.3. Hence we have by Lemma 3.2 and
Corollary 2.2

f beave)t < {0,020 @)
B(zo,r) B(0,1)
C{H2A(f"')$0.7'“@p.w}n/ﬁ )
n/(p28
n/B
C(24) ( fB o ¢>p,¢((fr>zo,r(z>)dz)

IA

IA

IN

n/(p28)
C(24)V? ( /| ( )@p,«)(r"f(y))dy) .

Consequently it follows from Lemma 3.3 that the left hand side tends to zero as r — 0+.
Thus the proof is completed. (]
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4 Size of exceptional sets

To evaluate the size of exceptional sets in Theorem B, we introduce the notion of ca-
pacity. For a set E C R™ and an open set G C R", we define

Cay (B G) =it [ @, (0,

where the infimum is taken over all nonnegative measurable functions f on R”™ such
that f vanishes outside G and U,f(z) > 1 for every z € E (cf. Meyers [8] and the first
author [11]). When ¢ = 1, we write C,p for Co9,,,. We say that E is of Co s, ,-capacity
zero, written as Co s, ,(E) = 0, if

Co,,[ENG;G)=0 for every bounded open set G.

The following can be obtained readily from the definition of Cy ¢, ,; See [11, Theorem
1.1, Chapter 2].

LEMMA 4.1 For a nonnegative measurable function f on R" satisfying (1.1) and (1.2),
set

Ex={z€R": /Iw —y|[* " f(y) dy = oo}
Then
Ca.(bp,¢(Eoo) =

As in the proof of Lemma 7.3 and Corollary 7.2 in [10], we can prove the following
results.

LEMMA 4.2 Let ap < n. For a nonnegative measurable function f on R™ satisfying
(1.2), set

E, = {x € R" : limsupr® "p(r~1)~ / ®,.,(f(y)) dy > 0}.

r—0

Then Ca,@p,¢(E*) =0

LEMMA 4.3 For a nonnegative measurable function f in LP(R"), set

E* = {z € R": limsup r"”‘"/ f(y)? dy > 0}.
" J B(z,)

r—0

If ap < n, then C,,(E*) = 0; and if ap = n, then E* is empty.

Finally, in view of Theorem B and Lemmas 4.1 - 4.3, we establish the following
result.
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COROLLARY 4.4 Let ap < n. If f is a locally integrable function on R" satisfying (1.1)
and (1.2), then

lim U, o (AlUaf(x) — Usf(zo)]) dx =0

=0t B(zo.r)
holds for all A > 0 and all zo € R™\ E, where Cy s, ,(E) = 0 when ap = n or ¢ is
nonincreasing and Cy »(F) = 0 when ap < n and ¢ is nondecreasing.

COROLLARY 4.5 Let ap = n and ¢(r) be of the form (logr)®(loglogr)® for large
T > 0, where q, and qo are real numbers. Set ®(r) = ®,,(r) = rPp(r). Suppose f is a
locally integrable function on R" satisfying (1. 1) and (1 2).

(1) If s <p—1, then
lmp f (DA ()= Uaf (20)* (log(1+ Uaf (@) ~Uaf (s0))))~1}do = 0
o,
for every A > 0 and every zo € R" except in a set of C, 9, ,-capacity zero, where
=p/lp-1-q)and Bo=q/(p—1-aq).
(2) If ¢ > p—1, then U, f is continuous on R™ and
U f (x)—Uaf(z0)| = o((log(1/|z—o|))/* (log log(1/|z—o]))"#/%)  asz — 2
. for every zo € R™.

For the continuity of U, f (case (2)), see Remark 1.5. The case ¢; = p — 1 is treated
as follows:

COROLLARY 4.6 Let ap = n, ¢(r) = pp_14(r) = (logr)P~ (loglogr)? for large r > 0
and ®, ,(r) = rPp(r). Suppose f is a locally integrable function on R™ satisfying (1.1)
and (1.2).

(1) Ifg<p-1, then
lim {exp(exp(A|Uaf () = Uaf(20)I")) — e}dz = 0
=0+ JB(2o,r)
for every A > 0 and every xo € R™ except in a set of C,
B=p/lp—1-4q)
(2) If q =p— 1, then
lim {exp(exp(exp(A|Uaf(z) = Uaf(20)|°))) — e*}dz = 0
r=0+/ B(z0,r)
for every A > 0 and every z, € R"™ except in a set of C,
B=p/(p—1).
(3) If ¢ > p— 1, then U, f is continuous on R and
Uaf (z) — Uaf (z0)| = o((log(log(1/|z — zo])))?~179/7)  asz — zo
for every o € R™.

&, ,-Capacity zero, where

&, -Capacity zero, where
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