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Continuity properties for logarithmic potentials of
functions in Morrey spaces of variable exponent
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Hiroshima University

1 Introduction

Let R" be the n-dimensional Euclidean space and B(z,r) denote the open ball
centered at  with radius 7.

Following Kové¢ik and Rékosnik [1], we consider a positive continuous func-
tion p(-) on R", which is called a variable exponent. For 0 < v < n, a real
number 3 and a locally integrable function f on an open set 2 in R", we define

the LPO*# pnorm by
p(y)
dy<1ly,

where 3 > 0 when v = 0 and 8 < 0 when v = n. We denote by LPO)¥8(()
the space of all measurable functions f on Q with || f||z().,0 < 0o. This space
LPOMB(Q) is referred to as a generalized Morrey space of variable exponent. In
particular, LP()99(Q) is equal to the generalized Lebesgue space LP)(Q).

In the second section, we consider a function p(-) satisfying a log-Holder
condition such that p(0) = pg > 1,

alog(log(1/r)) b
log(1/r) ' iog(1/r)
for 0 < r < rp and p(r) = p(rg) for r > rg, where the numbers a, b and 7o

are chosen so that p(r) is nondecreasing on [0,75). For a compact set K in a
bounded open set G, we define

)

| Fllp)pe,0 = inf {/\ >0: sup r~(log(2+ r"l))ﬁ/ }\
QN B(z,r)

z€Qr>0

p(r) =po+

K(r)={z € G:dk(z) <r},

where dx(x) denotes the distance of z from K. For 0 < a < n, we say that the
Minkowski (n — a)-content of K is finite if

|K(r)] < Cr®  for small r >0,

where |E| denotes the Lebesgue measure of a set E. Note here that if K is a
singleton, then its Minkowski O-content is finite, and if K is a spherical surface,
then its Minkowski (n — 1)-content is finite. As another examples of K, we
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may consider fractal type sets like Cantor sets or Koch curves. Now we define
a variable exponent p(-) by

p(z) = p(0x(z))

for x € G; set p(z) = pp on K.

In the case v = 0 and § = 0, we know the following fact (see [3, Remark
4.4]): if the Minkowski (n—a)-content of K is finite, then there exists a constant
C > 0 such that

fG |F(@)[ (log(1 + | £()]))*/" dz < C

for all measurable functions f on G with || f||pc),¢ £ 1. Our first aim in this
paper is to give an extension of the above fact to the generalized Morrey space
of variable exponent.

In the third section, we consider the logarithmic potential of a locally inte-
grable function f on R", which is defined by

Li(@) = [ (tos(1/ls - u) Fw)dy.

Here it is natural to assume that

[ togtz + )l wlay < , Ry

which is equivalent to the condition that —oo < Lf # oo (see [2, Section 2.6]).
If f is a locally integrable function on R" satisfying (1.1) and

[11@ltog2 + 17wy < o

then it is known that Lf is continuous on R™ (see [2, Theorem 9.1, Section
5.9]). Our second aim is to study the continuity for logarithmic potentials in
Morrey spaces. :

In the final section, we consider a positive continuous function p(-) such tha
po = 1. Our final aim is to study the continuity for logarithmic potentials in
Morrey spaces of variable exponent.

2 Morrey spaces of variable exponent

Throughout this paper, let C' denote various constants independent of the vari-
ables in question.
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We say that a positive function ¢ on (0, 00) is quasi-increasing if there exists
a constant C > 1 such that

e(s) < Cp(t) whenever 0 < s < ¢.

A positive function ¢ is quasi-decreasing if ¢(¢)~! is quasi-increasing and a
positive function ¢ is quasi-monotone if ¢ is quasi-increasing or quasi-decreasing.
Our typical example of ¢ is of the form

p(r) = a(loggy(1/r)) (log (1/r))°

for r > 0, where a > 0 and b,c € R and log)t = ¢, logyyt = log(e + t) and
10g (s 11yt = log(e +1log,y,) t) for m = 1,2, .... From now on we assume that ¢ is
quasi-monotone on (0, 00) and there exists a constant C; > 1 such that

(p1) C5lo(r) < ¢(r?) < Cap(r)  whenever r >0,

which implies the doubling condition on ¢; that is, there exists a constant C' > 1
such that

(¥2) Clp(r) < p(2r) < Cp(r)  whenever r > 0.

LEMMA 1 [2, Lemma 3.1, Section 5.3]. Ify > 0, then t"¢(t) is quasi-increasing
on (0,00).

LEMMA 2 There exists a constant ko > 0 such that (log(2 + t1))™"0(t) is
quasi-increasing on (0, co).

LEMMA 3 (cf. [3, Lemma 2.3]). Suppose 0 < a < n and the Minkowski (n—a)-
content of K is finite. If 4(t) is a quasi-increasig function on (0,00) satisfying
the doubling condition, then there exists a constant C > 0 such that

' 4r
IR ORI O
GnB(z,r) 0

forallz € R™ and r > 0.

Consider a positive continuous nonincreasing function k on (0, co) for which
there exist g > 0 and r¢ > 0 such that

(k) (log(1/r))~%°k(r) is nondecreasing on (0, 7o).
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Further we assume that
k(rg) > e°.

By (k) we see that
CYk(r) < k(r?) < Ck(r) whenever 0 < r < g, (2.1)
which implies the doubling condition on k. Our typical example of k is of the

form
k(r) = a(logy(1/r))* (logy(1/r))°"

for r € (0,70), where a > 0 and the numbers b, c and g are chosen so that k(r)
is nonincreasing on (0, ro).

LEMMA 4 [3, Lemma 2.1]. There exists 0 < r* < rq such that log k(r)/log(1/r)
is nondecreasing on (0,*).

In this paper, consider a positive continuous function p(-) such that

_ log k(dx (z))
Pe) =Pt (e T /ox@)

for 6k (z) < ro and p(z) = po+1log k(ry)/ log(1/re) for 8x(z) > 7o, where py > 1
and the number 7y is chosen so that log k(r)/log(1/r) is nondecreasing on [0, 00)
(see Lemma 4).

For 0 < v < n and a locally integrable function f on G, we define the LPChwe

norm by
(%)
dy < 1} ,

where ¢(r) is quasi-decreasing on (0, 00) when v = 0 and limsup,_,, ¢(r)™! > 0
when v = n. We denote by LPO*¢(G) the space of all measurable functions f
on G with || f{lp()uec < 00

@)

| fllp() e = inf {A >0: sup 77Yp(r) S

z€G,r>0 GNB(z,r)

The following theorem is an extension of [3, Remark 4.4].

THEOREM 5 (cf. [3, Lemma 2.4]). Suppose 0 < v < a < n and the Minkowski
(n — a)-content of K is finite. Then there exists a constant C > 0 such that

f F@)PR(F @)D Pody < Crvip(r)t
GNB(z,r)

for all z € G, r > 0 and measurable functions f on G with || f||p()uec < 1.
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REMARK 6 We set Wy(t) = tPok(t~1)(@)/Po for 0 < t < rp; otherwise set
Uy (t) = tPok(rgt)@=)/Po_ For 0 < v < n and a locally integrable function f on

G, we define the LY*"¥ norm by
f(y)
A dy — 1 b

where o(r) is quasi-decreasing on (0, c0) when v = 0 and limsup,_,q¢(r)™* >0
when v = n. We denote by LY**#(Q) the space of all measurable functions f
on G with || fllw, 0,6 < 00. We see that ¥, (t) satisfies the doubling condition.
This implies that || - ||g, v,c I8 & quasi-norm. Then it follows from Theorem 5
that

| fllw,p,pc = Inf {A >0: sup 'r"”cp(r)f Uy (
GNB(z,r)

zeG,r>0

| fllwxwec < CIf ”p(-),vaqo,G whenever f € L? (.)’V"P(G)-

REMARK 7 For a > 0, let K be a compact subset of G such that
|K(r)| < Cr® foral0 <r <my

and
C™r® < |K(r) N B(zo, t)|
for some zp € K and all 0 < r <t < ry. Set §(z) = Ok (x) for simplicity. Let

alog(log,)(1/4(z)))
) = 1o+ 1)

for a > 0 and an integer m > 0 when 6(z) < ro; otherwise p(z) = po +
alog(log,,(1/70))/ log(1/r¢) and

p(t) = (loggy(1/))°

for an integer £ > 0 and b € R. Then Theorem 5 is the best in the following
sense: if 0 < v < a < n, then we can find f € LPO»#(G) satisfying

/GﬁB(z | | F ()P (10gmy | £ () )**VPody > Cr*(logg(1/7))™

for all 0 < r < 7.
For v =0 and b > 0, we consider the function

5(y) =/ (1og(1/8(y))) =~/ (logmy (1/6())) /%8 if £=1,
Fy) =14 8(y)=*/7(logge) (1/8(y)))~C~1/%° (logmy(1/5(y))) /8
X Hﬁ;i(log(j)(l/é(y)))“l/m f£2>2
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for y € G with 6(y) < rg; set f(y) = 0 when 6(y) > ro. Then we can show that
f € LPO##(G) and

/ £ ()7 (108 F())*/P0dy > C(logey(1/r))™
GnB(zo,r)

for all 0 < 7 < 1p.

PROPOSITION 8 Suppose 0 < v < a < n. Then there exists a constant C > 0
such that ‘

/ |f(y)|Pody < Cr"w(r)"lk(r)"(a—v)/po
GNB(z,r)

for all z € G, r > 0 and measurable functions f on G satisfying the conclusion
of Theorem 5.

REMARK 9 We set ®x(t) = o(t)~1k(t)~(@~¥)/P0 for 0 < t < 79; otherwise set
B (t) = p(t)~1k(rg)~(@¥)/Po. Proposition 8 implies that

HprO)‘ﬁkaG S C”f“‘l’k,V,QO,G Whenever f € LWk,V,‘P(G)'

Moreover, Proposition 8 is seen to be sharp in the following sense: let

k(t) = (log(my(1/t))*
for an integer m > 0 and a > 0 when ¢t < 7 and

o(t) = (loggy(1/1))°

for an integer £ > 0andb e R. f 0 < v < a < n, then we can find f €
LY»#(Q) satisfying

/ |f(y)[Pody > Cr* (logey (1/1)) " (logmy(1 /7))~ *)/P0
GB(O)

forall 0 < r < 7g.
For v = 0, b > 0 and integers 1 < £ < m, we consider the function

|y|=*/7° (log(1/]y])) =@~/ (log my (1/191)) "2/ PxB0r)(¥) if £=1,
Fy) =< ly|~o/P(log gy (1/lyl))~C-1/e (log(m)(l/iyl))*““/Pg
| X Hﬁ;i(logu)(l/ lyD)"l/ PoxBor)(y) if €22

Then we can show that f € L¥**%(G) and

/ fy)Pody > Cloge(1/r)) ™" (loggm (1/7)) "%
GnB(0,r)

forall0 < r < 7p.
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3 Continuity of logarithmic potentials in Mor-
rey spaces

In this section, we deduce the continuity of the logarithmic potential Lf. We

consider a nondecresing function ¢; on (0,1/2] and a nonincresing function s
on (0,1/2] such that

dt

o) = [ o0 md ) = [ o]

A n
for 0 <r <1/2. We set
1 (T) ifv=0,
b(r)=<{ p(r)! f0<v<l,
wo(r) fv=1
REMARK 10 Let ¢(t) = (log(1/t))? for 8 € R. Then

or(r) = o{ (og(1/m) =2+ gg 21

log(log(1/r)) i A=1,

(log(1/r))~#*t if B <1,
p2(r) =C {
1 if 6>1.

LEMMA 11 Suppose 0 < v < 1 and ¢1(1/2) < oo when v = 0. Then there
exists a constant C' > 0 such that

1(6) ifv=0,
/. ., G861z =) Sy < © L e

for all z € R™ 0 < § < 1/2 and nonnegative measurable functions f with
Hf“l,l/,(p,R" < 1.

LEMMA 12 Suppose 0 < v < 1. If f is a nonnegative measurable function
satisfying (1.1) and || fll1yers < 1, then

- 8 lp(8)"t f0<v<1
— 1 duy < C{ 14 - ’
./Rn\B(z,s) =y )y < p2(0) ifv=1

forallre R" and 0 < § < 1/2.

Our aim in this section is to establish the following result, which deals with
the continuity of logarithmic potentials in Morrey spaces.
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THEOREM 13 Assume that 0 < v <1 and ¢;1(1/2) < oo whenv = 0. If f is
a nonnegative measurable function on R™ satisfying (1.1) and ||f|liverr < 1,
then Lf is continuous on R" and satisfies

|Lf(z) — Lf(2)| < Clz — 2" ®(|z — 2])
whenever 0 < |z — 2| < 1/2.

REMARK 14 In the case v = 0, we need the condition ¢;(1/2) < oo for the
Holder continuity of Lf.
For this, consider the functions

_ { Gog/9)® ifm=1,
o0 = { (ogy () T oy 0/8) > 2
and

fo) { 91 (1og(1/[y1)) x50/ ¥) ifm =1,
ly| =" (log(1/1y])) "2 T Tj=2 (log 5, (1/1y)) ' xBO,1 /2 (¥) M > 2.

If a < 1, then we see that

(1) / (log(1/|y])) f (w)dy = oo;

(2) /( )f(y)dy < C’]:I(logu-)(l/r))"1 < Cyp(r)™ for all z € R™ and 0 <
B(z,r -
r<1/2. =

This implies that Lf is not continuous at the origin.

REMARK 15 Theorem 13 is seen to be sharp in the following sense: let

p(t) = (logmy(1/%))*
for an integer m > 0 and @ € R. If 0 < v < 1, then we can find f € L'*¥(R")
satisfying :
ILf(0) — Lf(z:)| 2 Clas"@(|z:l)
for some sequence {z;} which tends to the origin.
et (t) — { (log(l/t))“ if m=1,
? (10gmy(1/£))° T3 (logyy(1/£)) i m > 2
for a > 1 and an integer m > 1. If v = 0, then we can find f € L'**(R™)

satisfying
|LF(0) — Lf(x:)| = C(loggm(1/lz:])) ™"
for some sequence {z;} which tends to the origin.
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4 Continuity of logarithmic potentials in Mor-

rey spaces of variable exponent
We set

o(r)tk(r)—(¥) if0<v<l,

Jo o) k()& if v =0,
Si(r) = {
frl p(®) k() "(e"DE ifpy =1,

By Theorems 5, 13 and Proposition 8, we have the following result, which
deals with the continuity of logarithmic potentials in Morrey spaces of variable

exponent.

THEOREM 16 Assume that0 < v <1l,v<a<n and

1/2
/ o) h(E) % < oo
0

when v = 0. Let the Minkowski (n — «a)-content of K be finite. If f is a
nonnegative measurable function on R" satisfying (1.1) and || fllp()perr < 1,

then Lf is continuous on R™ and satisfies
|Lf(z) — Lf(2)] < Clz — 2|"®x(|z — 2|)

whenever 0 < |z — 2| < 1/2.

We set A =a(n —v)+ 3,

[ (log(1/r))~4** if v =0,
(log(1/r))™4 if0<v<],

U(r) =< (log(1/r)) 4*! ifv=1and A<1,
log(log(l/r)) ifv=1and A=1,
1 fr=1and A>1

in case n > 2 and
(log(1/r))~4*! ifv =0,
U(r)=¢ (log(l/r))™* if0<v<],
{ (log(1/r))™4*! ifv=1and B<0

in case n = 1. '
By Theorem 16 and Remark 10, we have the following result.

COROLLARY 17 Let

alog(log(1/jzo ~al) , b

p(z) =1+ log(1/|zo — z|) log(1/|zo — )

=1+ wap(|zo — z|)
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for z € B(zo,m0) and p(z) = 1 + wap(ro) for z € R™ \ B(zo,70), Where the
numbers a,b and Ty are chosen so that w,;(r) is nondecreasing on (0,7¢) and
p(z) > 1. Assume that 0 < v <1 and A > 1 when v = 0. If f is a nonnegative
measurable function on R™ satisfying (1.1) and || f||p()psre < 1, then Lf is
continuous on R"™ and satisfies

|Lf(z) — Lf(2)] < Clz — 2" ¥(|jz - 2|)

whenever 0 < |z — 2| < 1/2.

We have three remarks for Corollary 17..

REMARK 18 When v = 0 and 3 = 0, we showed that

[G £ (w)(log(1 + f(3)))*™dy < oo

for nonnegative measurable functions f € LPO)(R"™) (see Theorem 5). It follows
from [2, Theorem 9.1, Section 5.9] that if v = 0,8 = 0 and an = 1, then Lf is
continuous on R".

REMARK 19 Set zo = 0. In case v = 0 and a > 0, we need the condition
—an + 1 < 3 for the Holder continuity of Lf.
For this, consider the function

f) = |yl Qog(1/1y)) *xB0.1/2(¥)-
If —an +1 > B and an # 1 (see Remark 18), then we see that

1) / (log(1/y)) F (¥)dy = oo

@ [ ferPay <o [ i os /)" dy < Ollog(1/r) for
B(z,r)

B(z,r)

alzeR"and 0 <r < 1/2.

This implies that Lf is not continuous at the origin.
Similarly, in case v = 0 and a = 0, we need the condition 8 > 1 for the
Holder continuity of Lf.

REMARK 20 Set zo = 0. Corollary 17 is seen to be sharp in the following sense:
for 0 < v < 1, we can find f € LPO»P(R™) satisfying

|L£(0) — Lf (ze)| = Clas|"¥(|24))
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for some sequence {z;} which tends to the origin.
Similarly, for v = 0, we can find f € LPO*B(R™) satisfying

|L£(0) — Lf ()] = C(log(1/|z:]))~**
for some sequence {z;} which tends to the origin.

By Theorem 16, we have the following remark.

REMARK 21 We consider a positive continuous function p(-) such that

alog(log(1/|zn|)) b
log(1/|za|) log(1/|zn)
for z € L(ro) = {z = (21,%2,- -+, %) € R™ : |z,| < 70} and p(x) = 1 + wap(To)
for z € R™\ L(rp), where the numbers a,b and ry are chosen so that we(r) is
nondecreasing on (0,7¢) and p(z) > 1.
We set A, =a(1l —v) + G,

[ (log(1/7))~4r+! if v =0,
(log(1/r))~ 4t f0<v<],

Ur(r) = (log(1/r))~ 4+ if y=1and Ay <1,
log(log(1/7)) ifv=1and Ay =1,
1 ifr=1and AL > 1

p(z) =1+ =1+ wop(|Zn|)

\

for n > 2.

Assume that 0 < v < 1 and Ay > 1 when v = 0. If f is a nonnegative
measurable function on R" satisfying (1.1) and || fllp¢)usr < 1, then Lf is
continuous on R" and satisfies

ILf(z) — Lf(2)| < Clz — 2["¥(lz — 2|)
whenever 0 < |z — 2| < 1/2.

But I conjecture that the conclusion of Corollary 17 still holds for this ex-
ponent.
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