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A Fast Algorithm for Computing Jones Polynomials of Montesinos Links
Masahiko Murakamit Masao Hara! Makoto Yamamoto$ Seiichi Tani!

Abstract

We give a fast algorithm for computing Jones polynomials of Montesinos links. Given the
Tait graph with n edges of a Montesinos diagram, the algorithm runs with O(n) additions
and multiplications in polynomials of degree O(n), namely in O(n?logn) time.

1 Introduction

Knot theory is a subfield of topology. A knot is a simple (non-self-intersecting) closed curve
embedded in R3. More generally, one may study links. A link is a finite collection of disjointly
embedded knots. Works on knot theory have led to many important advances in other areas
of topology, biology, chemistry and physics {1]. For classifying and characterizing links, various
invariants have been defined and well studied in knot theory. The Jones polynomial [4] is a
powerful invariant. L. H. Kauffman [5] gave a combinatorial method for calculating the Jones
polynomial by means of the Kauffman bracket polynomial. We denote the number of the edges of

the Tait graph of a link diagram L by ¢(L). It takes O (20(“(“)) additions and multiplications in

polynomials of degree O(c(L)) to compute a Jones polynomial by Kauffman’s method. Actually,
F. Jaeger, D. L. Vertigan and D. J. A. Welsh showed that computing the Jones polynomial is
generally #P-hard (3, 11]. It is expected to require exponential time in the worst case.

Recently, it has been recognized that it is important to compute Jones polynomials for links
with reasonable restrictions. J. A. Makowsky [6] showed that Jones polynomials are computed
from a Tait graph in polynomial time if the treewidth of the Tait graph is bounded by a
constant. J. Mighton [7] showed that Jones polynomials are computed from the Tait graph of
a link diagram L with O(c(L)4) operations in polynomials of degree O(c(L)) if the treewidth
of the Tait graph is at most two. M. Hara, S. Tani and M. Yamamoto [2] showed that Jones
polynomials of arborescent links are computed from the Tait graph of a link diagram L with
O(c(L)3) operations in polynomials of degree O(¢(L)). T. Utsumi and K. Imai [10] showed
that Jones polynomials of pretzel links are computed from the Tait graph of a link diagram L
in O(c(L)?) time. M. Murakami, M. Hara, M. Yamamoto and S. Tani [9] showed that Jones
polynomials of 2-bridge links and closed 3-braid links are computed from the Tait graph of a
link diagram L with O(c(L)) operations in polynomials of degree O(c(L))

In this paper, we propose a fast algorithm for computing Jones polynomials of Montesinos
links. Montesinos links consist of rational tangles, were introduced by J. M. Montesinos [8].
Montesinos links are a generalization of pretzel links in the sense that every Montesinos link
all of whose rational tangles are integer integer tangles is a pretzel link. Montesinos links are a
generalization of 2-bridge (or rational) links in the sense that every Montesinos link consisting
of two rational tangles is a 2-bridge link. Montesinos diagrams, which are defined below, are
standard link diagrams of Montesinos links. Our algorithm computes Jones polynomials of
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Montesinos links from the Tait graph of a Montesinos diagram L with O(C(L)) additions and
multiplications in polynomials of degree O(c(L)) namely in O(C(L)2 log c(L)) time. Although
treewidths of the Tait graphs of Montesinos diagrams are two, our algorithm is faster than
Mighton’s algorithm. Every rational tangle is represented by an integer sequence. Moreover,
every Montesinos diagram is represented by a sequence of integer sequences.

Given a Montesinos diagram, our algorithm analyses the structure of the Montesinos dia-
gram, constructs a sequence of integer sequences of the Montesinos diagram and computes the
Kauffman bracket polynomial of the Montesinos diagram. We show the following:

(i) A sequence of integer sequences of a Montesinos diagram L can be constructed from the
Tait graph of L in O(c(L)) time.

(i) The Kauffman bracket polynomial of a Montesinos diagrams L is able to be computed
from a sequence of integer sequences of L with O(c(L)) additions and multiplications in
polynomials of degree O(c(L))

Our algorithm computes the Kauffman bracket polynomial of a Montesinos diagram from a
sequence of integer sequences of the Montesinos diagram by a way similar to ones for 2-bride
links and closed 3-braid links [9]. On the other hand, we investigate a linear time algorithm
to construct a sequence of integer sequences for a Montesinos diagram, which is different from
algorithms to compute integer sequences for 2-bridge diagrams and closed 3-braid diagrams.

This paper is organized in the following way. Section 2 contains some basic notations and
definitions of knot theory. In Section 3, we provide an algorithm for computing sequences of
integer sequences of Montesinos diagrams. Section 4 deals with an algorithm for computing
the Kauffman bracket polynomial of a given Montesinos diagram from a sequence of integer
sequences of the Montesinos diagram.

2 Preliminaries

In this section, we give some basic notations and definitions of knot theory. For details, see
C. C. Adams [1].

A link of n components is n simple closed curves in R3 that are mutually disjoint. A link
of one component is a knot. An image of a link by an orthogonal projection from R3 to a
plane is regular if it contains only finitely many muitiple points, all multiple points are double
points and these are traverse points. A regular image of a link is called a link diagram if the
overcrossing/undercrossing information is marked at every double point in the image (see Fig.

1). Furthermore, the double points are called crossings. For any link diagram L, we denote
the number of the crossings of L by c(L) A trivial link diagram is a link diagram without a
crossing. A link is trivial if the link has a trivial link diagram. A link is oriented if each of its
components is given an orientation.

A continuous bijection f from R3 to R? is called homeomorphism if f has a continuous
inverse mapping. Let I be the closed interval [0,1]. A Link L is equivalent® or ambient isotopic
to a Link L’ if there exists a homeomorphism h; from R3 to R3 for any t € I satisfying the
following:

(i) hg is the identity.
(i) hi(L) = L'
(iii) For any z € R3, the mapping f, from I to R3 satisfying fz(t) = hs(z) is continuous.

*Intuitively, a link L is equivalent to a link L’ if L can be continuously deformed to L’ without ever having
any one of the loops intersect itself or any of the other loops in the process. Therefore, we can regard a knot as
a “rubber band”, and, deform it topologically.
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Fig. 1: A link, a regular image and a link diagram.

Definition 2.1 The Kauffman bracket polynomial is a function from link diagrams to the Lau-
rent polynomial ring Z[A*'} with integer coefficients in an indeterminate A. It maps a link
diagram L to (L) € Z[A*'] and is characterized by

@ O =1,
(i) (LuQ) = (-A~2 - A2)(L) and
@) (X)) =A0)()+A7Hx).

Here, O is the trivial knot diagram and L LI Q is the disjoint sum of L and . In (iii), the
formula refers to three link diagrams that are exactly the same except near a point where they
differ in the way indicated.

Note that for any link diagram L, the degree of (L) is O(c(L)) and the coefficients of (L) are

o (2°(L)) The writhe w(L) of an oriented link diagram L is the sum of the signs of the crossings
of L, where each crossing has sign +1 or —1 as defined (by convention) in Fig. 2. The Jones
polynomial V(L) of an oriented link L is defined by

V(L) = (—A)~3E)T)

t/2=4-2"

where L is an oriented link diagram of L. It is known that V(L) is well-defined and V(L) €
Z[t*1/7),

A tangle is a portion of a link diagram from which there emerge just four arcs pointing in
the compass directions NW, NE, SW, SE (see Fig. 3). The tangle consisting of two vertical
strings without a crossing is called 0-tangle. The O-tangle twisted k times is called k-tangle
and is denoted by Ii. They are called integer tangles (see Fig. 4).

-------

Fig. 2: Signs of crossings. Fig. 3: A tangle. Fig. 4: Integer tangles.

Given any link diagram f,, we can color the faces black and white in such a way that no two
faces with a common edge are the same color. We color the unique unbounded face white. Such
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a coloring is called the Tait coloring of L. As shown in Fig. 5, we can get an edge-labeled planar
graph G of L. Its vertices are the black faces of the Tait coloring and two vertices are joined
by a labeled edge if they share a crossing. The label of the edge is +1 or —1 according to the
(conventional) rule shown in Fig. 6. We may call the label the sign. We call G the Tait graph
of L. Note that the number of the edges of G is ¢(L). A Tait graph G is isomorphic to a Tait

graph G if there exists a bijection f from the vertex set of G to the vertex set of G’ satisfying
the following:

(i) For any pair of vertices u and v of G, the number of the edges in G that joins u and v and
are labeled “41” is equal to the number of the edges in G’ that joins f(u) and f(v) and
are labeled “+1”. '

(ii) For any pair of vertices u and v of G, the number of the edges in G that joins » and v and

are labeled “—1” is equal to the number of the edges in G’ that joins f(u) and f(v) and
are labeled “-1”.

Such a function f is called an ispmorphism from G to G'.

+1 -1
Fig. 6: Signs of edges.

Fig. 5: A Tait coloring and a Tait graph.

Let @11,...,81my,---,0l1- - -+ Glm, and a be integers. We denote the link diagram consisting
of integer tangles I, ,. .., 1oy, Y P Ia,,,., and I, as shown in Fig. 7 by
M(ayi,. 53 aimy |- lan, .- , Glm, ||a) and its Tait graph by Gu(ai,...,q1m " law, ..., aim;|a).
We call M(ai1,...,a1m,| " lan,--.,6im,||a) a Montesinos diegram if I > 3, m; 2 3, m; is an

odd number and a;; #0fori=1,...,land j=1,...,m; (see Fig. 8). A link is called a Mon-
tesinos link if there exists a Montesinos diagram representing the link. A Montesinos link that
consists of two rational tangles is a 2-bridge link. A Montesinos link all of whose rational tangles

are integer tangles is a pretzel link. For convenience, M(ai11,...,81m,} " lai1,. .., aim,) denotes
M(ay,...,81m, | - lan,. .., aim||0). For any non-zero integer n, we set sign(n) = n/|n|.
Remark 2.2
M(ay,. .., 01m |- lau, . .., aimylla)
]L/I’(au,...,alm,]---|au,...,a¢m,) ifa=0
= { M(ays....auml-+la, - Gimy| —sign(a)] - | ~ sign(a)) ifa#0
lal
For any Tait graph G = Gpy(a11,- .., 01m, |-+ lan, .-, aim, ||a) of a Montesinos diagram, we

call the path of the Tait graph corresponding to I, the special path of G and a the special path
number of G if a # 0. We call the contraction by the edges of the special path of the Tait graph
G of a Montesinos diagram the special contraction of G (see Fig. 9).

Let G = (V, E, s) be a Tait graph, where V is the vertex set of G, F is the edge set of G and
3 is the edge-labeling function from E to {—1,+1}. For any vertex v € V, degg(v) denotes the
degree of v in G and Ng(v) denotes the set of the neighbors of v in G. For any subset V' of V,
G[V'] denotes the subgraph of G induced by V’. We define a function edge-sumg from V xV
to Z such that for any pair of vertices u and v of G, edgesumg(u,v) is the sum of the signs of
the edges of G that join u and v. For a set S, we denote the size of S by |S|.
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Fig. 7: M(a11,...,01m| - lau, .. o amylla).
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Fig. 9: The Tait graph of a Montesinos diagram and its special contraction.

3 Constructing sequences of integer sequences

In this section, we show that a sequence of integer sequences of a Montesinos diagram L can
be constructed from the Tait graph of L in O(c(L)) time.

Lemma 3.1 Let G = (V, E,s) be the Tait graph of a Montesinos diagram, P = (V',E’,s’) a
path of G and vy and vy the endvertices of the path P (|Ng(w1)| < |Ng(v2)|). P is the special
path of G if and only if P satisfying the following:

(@) |V'| 2 2 and G[V'] = P.
(i) |Ng(v1)| =3.
(iii) Ng(v)n Ng(v) C V.

(iv) There ezists no path P' which is not P and every vertex of P’ except for v, has at most
three neighbors.

Theorem 3.2 Let G = (V, E, s) be the Tait graph of a Montesinos diagram. We can determine
whether there exists the special path of G in O(|E|) time. If there exists the special path of G,
then we can construct the graph obtained by the special contraction from G and obtain the special
path number of G in O(|E|) time.

Given the graph G by the special contraction from the Tait graph of a Montesinos diagram,
Procedure seq.montesinos constructs a sequence of integer sequences (a1, . . ., 81m,| -+ |au, - - - , Gim,;)
such that Gp(a11,...,81m,| - |au,...,a1m,) is isomorphic to G.
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Procedure seq-montesinos
Input: The graph G = (V, E) by the special contraction from the Tait graph of a Montesinos
diagram,
Output: A sequence of integer sequences (ai1,...,81m;| - |@n,- .., @im,;) such that
Gumlair, ..., a1mel - lau, . .., Gim,) I8 isomorphic to G.
Compute all of the values in {edgesumg(u,v) : u,v € V are adjacent};
Construct Ng(v) at most four vertices for all v € V;
Set V! = {v eV :|Ng(v)| 24} and Il = |V'|;
Construct Ng(v) = {u € Ng(v) : |[Ng(u)| = 2} for all v € V’;
Index a vertex of V' vg;;
Set vgr. as a vertex of Ng(vo1);
Initialize vpry 88 Varc and ¢ as 1;
repeat
Initialize vy, as the vertex of Ng(vprv) — {vi—11} and flr as 0;
repeat
if there exist multiple edges connecting vp, and ver, vi—11 € Ng(Upry) and | Ng(vpry)| = 3
or vi_11 ¢ Ng(vprv) and the two edges incident to vy, have different signs then
begin Vpry := v € Ng(vo1) — {Varc}: Initialize i as 1; flr :=1; end;
else if |Ng(verr)| < 3 then
begin Vimp 1™ Verr; Vorr := ¥ € Ng(Verr) — {Vi1, Upru}; Vprv :™ Utmp; end;
until |[Ng(verr)| 2 4 or flr=1;
if flr =0 then
begin Index vi1 Uerr aNd Vi2 Vpry; Upry =V € Ng(vi1) — {vprv}; Increment i; end;
wtili=[+1;
for i :=1tol do begin
Initialize vy a8 v5; and m; as 1;

repeat
{ m; is an odd number }
Set aim; = —edgesumg(vi—11, Verr);

Increment m;;
{ m; is an even number }
Initialize aim; 88 0;
repeat
Vtmp += Vcrrs
if Vo = Vi1 then Vo 1= ;2 018 Uorr := U € NG(Verr) — {Vi-11,Vpro }$
Uprv = Utmp)
Gim, ™ Qim, + edgesumg(Vpry, Verr);
until v;_11 € Ng(Verr) ;
Increment m;;
until |Ng(verr)| = 2;
Set aim; = —edge-sumg(vi-11,Verr);
end; '

Theorem 3.3 Procedure seq.montesinos constructs a sequence of integer sequences
(a11y...,01mye| - -lan, . .., aim;) such that Gpm(a11,...,01m,] - |an,...,aim,) is isomorphic to
G in O(|E)) time.

Theorems 3.2, 3.3 Remark 2.2 imply the following.

Corollary 3.4 Given the Tait graph G of a Montesinos diagram L, one can construct a sequence
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of integer sequences (ay, . . -;almxl colan, .-y aim,) such that Gy(a1y, ..., a1my | -+ lan, - . ) Glmy )
is isomorphic to G in O(c(L)) time.

4 Computing Kauffman bracket polynomials
In this section, we show that the Kauffman bracket polynomial of a Montesinos diagram L
is able to be computed from a sequence of integer sequences of L with O(c(L)) additions and
multiplications in polynomials of degree O(c(L)).
We denote the link diagram consisting of integer tangles Ig,,. .., /s, as shown in Fig. 10
by I~i(a1, ...,0m) and the link diagram consisting of integer tangles I,,; as shown in Fig. 11 by

N(ai1,.. ©y@1m, |- lan, . . ., Gim,). For an integer n, we set
1~ (A% 14 (A + -+ (—AYH"? if n >0,
e ToEa T o
(=AY - (mAH 72— ...~ (-AH" fn<O.

m is odd m is even —
Fig. 10: R(ay,. .., am). Fig. 11: N(aws,. .-, 1my |-+ lait, -, Gimy)-

Lemma 4.1 For any sequence of integer sequences
(a11,--,81m, |-+ lans, - - -, Gim,), the following recurrence formula holds.

(M(ally- --)a1m1| et la'llv-- yalmg))

[ (=A%) ifl=1m =1,
(_.A“i)an (R(alg, . ,alml)) zfl =1,m; 22,
A (N(a11,...,01m ) |@1-11, . .+, G1—1my_y))

~(_A)—3a‘1+2Qa;1
X (M(ally s ﬁl?ﬂdl e Ia'l—ll’ vy al—1m¢_1)> 1fl 22,m =1,

= (—1)en A-3anten(M(ayy, ..., G1my | -+ G111, - s B1-1myy )

—(- AI%12+2Q a2 :

x{(M(ai1,.-.,01my |- a1=11y - - - s B1—1my_, l011)) ifl 2 2,m =2,
(=1)%m-1 A~ 38im —1+01m, :

x(M(a11,- .-y 01my ] -+ lan, - - - Gimy—2))

"(—A)_&lm‘+2Qazml
\ X<M(au)'"1almll'"lalla"',alml-l)) tf122am123'

(N(alla sy alm;i et lally oo aalmz))
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( (f{(an,...,alml)) ifl= 1,
(A% (A2 — A%) — (~A)3t2Qq, )
x(N(a11,... ,ahﬁll oo lai—11y e Glm1mgy) ifl>2,m =1,
(__1)011A—-3au+a12 (N(a’lla sy almv1| ot 'al—lly AR al—lm;_l))
= | AT,
><<]V(all9 ceay @imy l TeT ]a'l—lh vy al-—lmz_l'all)) Zfl 2 27ml = 2a
(_l)azm,-—1A-3azm,—1+azm,
X(N(ally vy a1m1| v Ialla v 9alm1-—2))
—(—A‘.)"Sa""l +2Q01m,

{ x(N(a11,...,81my| |G, .., Clmy-1)) ifl >2,m >3
Theorem 4.2 Procedure bra_montesinos computes the Kauffman bracket polynomial
(M(a11,---,81my |-+ lat1,- .., Gim;)) with O(c@!(am ey @imy |- lai, - -, Qm;))) additions and
maultiplications in polynomials of degree O(c(M(a11,...,81my] -~ lau,. .. am;)))-

Corollary 4.3 The Jones polynomial of a Montesinos link is computed from the Tait graph of
a Montesinos diagram L_with O(c(L)) edditions and multiplications in polynomials of degree
O(c(L)), namely in O(c(L)?logc(L)) time.
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