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The group configuration theorem for stable theories [6] plays impor-
tant roles in solving deep problems in geometric stability $th\infty ry$. The
theorem roughly says that one can get the canonical non-trivial type-
definable homogeneous space (i.e. a group with its transitive action on
a set, all type-definable) from a group configuration, a certain geomet-
rical configuration, in stable theories. Recently fruitful achievements
of the generalization of the theorem into the context of simple theories
were made. In their topical paper [1], I. Ben-Yaacov, E. Tomasic and F.
O. Wagner generalize the group configuration theorem by obtaining an
invariant group from the group configuration in simple theories. How-
ever the group they produce does not completely fit into the first-order
context. On the other hand, T. de Piro, B. Kim and J. Millar succeed
in getting the canonical hyperdefinable group from the group config-
uration under 4-amalgamation in simple theories [5]. The element of
the group is a hyperimaginary, an equivalence class of a type-deflnable
equivalence relation, and the group operation is typedefinable, hence
the group belongs to the domain of the standard first-order logic. The
former result is for all simple theories but the group obtained is non
hyperdefinable, where as the latter producing the desirable hyperdefin-
able group has a pay-off of an assumption of generalized amalgamation.

In this small note, we will review the latter result of de Piro, Kim and
Millar, together with the notions around generalized amalgamation.
(There is a nice expository paper on the former result appeared in the
Bulletin of Symbolic Logic [2].) Kim recently continue the construction
and complete the group configuration theorem [13]. Namely, under 4-
amalgamation, he is able to construct a hyperdefinable homogeneous
space equivalent to the given group configuration. This will be reviewed
too. Next, we will speak about its applications. In particular we mainly
pay our attentions to the open problem whether pseudolinearity implies
linearity, which is known to be true for stale theories.

We assume that the reader is familiar with basics of simplicity the-
ory [19]. Throughout the paper, $T$ is a complete simple theory. We
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work in a saturated model $\mathcal{M}$ of $T$ with hyperimaginaries, and $a,$ $b,$
$\ldots$

are (possibly infinitary) hyperimaginaries, $M,$ $N$ are small elementary
submodels. (Note that tuples from $\mathcal{M}^{eq}$ are also hyperimaginaries). As
usual, $a\equiv Ab(a\equiv LAb)$ means $a,$ $b$ have the same type (Lascar strong
type, resp.) over $A$ . We point out that usually $bdd(a)$ denotes the
set of all countable hyperimaginaries definable over $a[19,3.1.7]$ . Here,
depending on the context, it can be either a specific sequence which
linearly orders the set $bdd(a)$ ; or, since a sequence of hyperimaginaries
is again a hyperimaginary (of a large arity), a fixed hyperimaginary
interdefinable with the sequence.

1. GENERALIZED TYPE-AMALGAMATION

As well-known, in [14], B. Kim and A. Pillay prove the following form
of type-amalgamation (or the independence theorem) for all simple
theoriae.

Type-Amalgamation 1.1. If $a_{1}^{\lambda_{B}}a_{2},$ $d_{i}^{\lambda_{B}}a_{i}(i=1,2)$ , and $d_{1}\equiv^{L}B$

$d_{2}$ , then there is $d$ such that $d\equiv^{L}d_{i}Ba$
: and $\{d, a_{1}, a_{2}\}$ is B-independent.

Before Kim and Pillay’s work, the original type-amalgamation is
stated and proved to be held in some simple algebraic structures in a
couple of papers by Hrushovski [8] [10]. In particular, the one stated in
[8] (which is written earlier than [14] but published later) is as follows.

Type-Amalgamation 1.2. Suppose that there are complete types
$r_{i}(x_{i})(i=1,2,3)$ and $r_{jk}(x_{jk})(1\leq j<k\leq 3)$ , all over a set $B$ , where
$x_{i}$ is possibly an infinite set of variables, such that

(1) $x_{j}\cup x_{k}\subset x_{jk}$ and $r_{j}\cup r_{k}\subset r_{jk}$ , and
$r_{jk}(x_{jk})$ says

(2) $x_{j}$ and $x_{k}$ are B-independent,
(3) $x_{jk}$ is as a set $bdd(x_{j}x_{k}B)$ .

Then there is a complete type $r_{123}(x_{123})\supseteq r_{12}\cup r_{13}\cup r_{23}$ over $B$ saying
that $\{x_{1}, x_{2},x_{3}\}$ is B-independent, and $x_{123}$ is $bdd(x_{1}x_{2}x_{3}B)$ .

It is not difficult to see that the two statements 1.1 and 1.2 are equiv-
alent. However this equivalence no longer holds if tbe index increaees.

Generalized Type-Amalgamation 1.3. For B-independent $A=$
$\{a_{1}, \ldots, a_{n-1}\}$ and $d_{i^{\backslash }}L_{B}A_{i}$ where A $=A\backslash \{a_{i}\}$ for $i=1,$ $..,n-1$ ,
whenever $d_{i}\equiv^{L}BA:fd_{j}$ where $A_{ij}=A_{i}\cap A_{j}$ , then there is $d$ such that
$d\equiv LBA_{i}d_{i}$ and $\{d, a_{1}, \ldots, a_{n-1}\}$ is B-independent.

Generalized Type-Amalgamation 1.4. Let $W$ be a collection of
subsets of $\{1, \ldots,n\}=u_{n}$ , closed under subsets. For each $w\in W$ ,
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complete type $r_{w}(x_{w})$ over $B$ is given where $x_{w}$ is possibly an infinite
set of variables. Suppose that

(1) for $w\subseteq w’,$ $x_{w}\subseteq x_{w’}$ and $r_{w}\subseteq r_{w’}$ .
Moreover for any $a_{w}\models r_{w}$ ,

(2) $\{a_{\{i\}}|i\in w\}$ is B-independent,
(3) $a_{w}$ is as a set $bdd(\bigcup_{i\in w}a_{\{i\}}B)$ (and the map $a_{w}arrow x_{w}$ is a

bijection).
Then there is a complete type $r_{u_{n}}(x_{u_{*}},)$ over $B$ such that (1),(2),(3)
hold for all $w\in W\cup\{u_{n}\}$ .

An example shows that the two propositions do not coincide even
when $n=4$ .
Example 1.5. In the random graph $M$ in $\mathcal{L}=\{R\}$ , choose distinct
$a_{i},b_{i},c_{i}\in M$ and imaginary elements $d_{i}=\{b_{i}, q\}(i=1,2,3)$ . We
additionally assume that $R(a_{1}, c_{3})\wedge R(a_{2}, b_{3})\wedge\urcorner R(a_{1}, b_{3})\wedge\neg R(a_{2},c_{3})$ ,
and $tp(a_{1}a_{2};b_{3}c_{3})=tp(a_{2}a_{3};b_{1}c_{1})=tp(a_{1}a_{3};b_{2}c_{2})$ . Now it follows
that for $\{i,j, k\}=\{1,2,3\},$ $d_{i}\equiv_{a_{j}}^{L}d_{k}$ . But it iv easy to see that
Lstp$(d_{1}/a_{2}a_{3}),$ $Lstp(d_{2}/a_{1}a_{3})$ , and Lstp$(d_{3}/a_{1}a_{2})$ have no common re-
alization. Namely, $M$ does not satisfy 1.3 for $n=4$ (and larger).

However, due to elimination of weak imaginaries (and elimination
of hyperimagnaries) of the random graph, for any hyperimaginary $B$ ,
$bdd(B)=dc1(A)$ for a set $A$ in a home sort. Hence to check 1.4, it
suffices to examine the amalgamation in the home-sort. It follows that
$M$ satisfies 1.4 for every $n$ . The reader may wonder why the above
arrangement of $a_{i},$ $b_{i},q$ does not raise a trouble as before. If we put
$r_{\{i\}}=tp(a_{i})(i=1,2,3)$ , and $r_{\{4\}}=tp(b_{i}c_{i})$ , then we should let $r_{\{1,4\}}=$

$tp(a_{1}; b_{3}c_{3})=tp(a_{1}; b_{2}c_{2}),$ $r_{\{3,4\}}=tp(a_{3};b_{2}c_{2})=tp(a_{3};b_{1}c_{1})$ (note
that $ac1(d_{i})=dc1(b_{i}c_{i}))$ . But then $r_{\{2,4\}}$ must be either $tp(a_{2};b_{1}c_{1})$

or $tp(a_{2};b_{3}c_{3})$ , which are distinct!, i.e. the arrangement does not give
a compatible system of types $r_{w}(x_{w})$ .

The example also says 1.3 is not preserved in the interpreted theories
while 1.4 is. It is generally agreed that 1.4 is the correct definition of
generalized amalgamation.

Definition 1.6. We say $T$ has n-complete amalgamation (n-CA) if 1.4
holds for $n$ . We simply say $T$ has n-amalgamation if 1.4 holds for $n$

with $W=\mathcal{P}(u_{n})^{-}=\mathcal{P}(u_{n})\backslash \{u_{n}\}$ .
Clearly k-CA implies n-CA for $k\geq n$ . Note that 4-CA and 4-

amalgamation are equivalent. For each $n\geq 3$ , there are examples
having n-CA but not having $(n+1)- CA[16]$ . Stable theories satisfy
n-CA over models, but not in general over algebraically closed sets [5].
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This unsatisfactory phenomenon leads to define the so-called model-n-
$CA$ , a variation of n-CA, which all stable theories have. We omit the
description, but for the detail, see [5] or [15].

In this note, as we will concentrate our attentions to 4-amalgamation,
we restate it in the similar manner of 1.3 which seems helpful to con-
ceptualize.

4-Amalgamation 1.7. Let $\{i,j, k\}=\{1,2,3\}$ . Suppose that $a_{0^{-}}$

independent $\{a_{1}, a_{2}, a_{S}\}$ and $d_{i}\downarrow_{a_{0}}a_{j}a_{k}$ such that $a_{0}\subseteq a_{i},$ $d_{i}$ , all bound-
edly closed, are given. Let $\overline{a_{i}\underline{d_{j}}},\overline{a_{i}a_{j}}$ be some enumerations of $bdd(a_{i}d_{j})$ ,
$bdd(a_{i}a_{j})$ , respectively. If $d_{j}a_{i}\equiv_{a;}\overline{d_{k}a_{i}}$, then there is $d(\lambda_{a0}a_{1}a_{2}a_{3})$

with $d\equiv_{ao}d_{i}$ , and enumerations $\overline{da_{i}}$ , such that for $i<j$ ,

$\overline{da_{i}}\overline{da_{j}}\equiv\overline{d_{k}a_{i}}\overline{d_{k}a_{j}}\overline{h^{a}j}$

Before closing this section, we point out the notion of n-simplicity,
initially introduced by A. Kolesnikov [16] and further modifications
were made in [15]. Recall that, 1.1 is proved by the use of the following
fact.

Fact 1.8. $\int T$ simple.) Assume that $I=\langle a_{n}|n\in\omega\rangle$ is a Morley
sequence over $b$ . If $c^{L_{b}}\backslash a_{0_{f}}$ then there is $d\equiv ba0c$ such that $I$ $i^{q}$ db-
indiscemible and $d\backslash L_{b}I$ .

The property 1.8 proved in [12] is indeed a special case of type-
$amalg_{\bm{t}1}ation$ ( $=3$-amalgamation). In other words, the particular amal-
gamation property implies full 3-amalgamation. Thus it $is$ natural to
ask whether a higher dimensional variation of 1.8 can imply general-
ized amalgamation. Indeed Kolesnikov proved in [16] that the following
proper.ty, a particular case of 1.3 for $n=4$, implies it.

Property 1.9. Assume that $I=$ \langle $a_{n}$ I $n\in\omega\rangle$ is a Morley sequence
over $b$ . If $c^{L_{b}}\backslash a_{0}a_{1}$ and $a_{0}\equiv^{L}a_{1}bc$

’ then there is $d\equiv ba0a_{1}c$ such that $I$

is db-indiscernible and $d\backslash L_{b}I$ .

But as 1.4 is the correct notion of amalgamation, not 1.3, 1.9 has to
be modified appropriately indicating a special case of 4-amalgamation.
The modified property, whicb we call 2-simplicity, is equivalent to 4-
amalgamation as Kolesnikov’s idea goes through in this contut [15].
But the question remains whether it keeps holding for larger $n$ . Sur-
prisingly, it is not unless n-simplicity for $n\geq 3$ should be defined in
terms of finite Morley sequences rather than infinite ones. For details,
see [5] or [15].
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2. THE GROUP CONFIGURATION THEOREM

Definition 2.1. By a group configumtion we mean a 6-tuple of hy-
perimaginaries $C=(f_{1}, f_{2}, f_{3}, x_{1}, x_{2}, x_{3})$ over a hyperimaginary $e$ such
that, for $\{i,j, k\}=\{1,2,3\}$ ,

(1) $f_{i}\in bdd(f_{j}, f_{k};e)$ ,
(2) $x_{i}\in bdd(f_{j}, x_{k};e)$ ,
(3) all other triples and all pairs from $C$ are independent over $e$ .

$f_{2}x_{1}\#^{x_{2}}x_{3}f_{1}f_{3}$

If it has the property that $bdd(f_{i};e)=bdd(Cb(x_{j}x_{k}/f_{i}e);e)$ , we caJl
such $C$ a bounded quadmngle. In particular, we call $(f_{1}’, f_{2}’, f_{3}’,x_{1},x_{2},x_{3})$

where $f_{i}’=Cb(x_{j}x_{k}/ef_{i})$ , an induced bounded quadrangle fram $C$ over
$e$ . Now if additionally $f_{i}\in bdd(x_{j}, x_{k};e)$ , we call the the group
configuration $C$ over $e$ principal. We say two group configurations
$C=(f_{1}, f_{2}, f_{3}, x_{1}, x_{2}, x_{3})$ over $e$ and $C’=(f_{1}’, f_{2}’, f_{3}’, x_{1}’,x_{2}’, x_{3}’)$ over $e’$

are equivalent (over d) if for some $d\supseteq ee’,$ $Cd,$ $C’\backslash$ and each
pair of $(f_{i}, f_{i}’),$ $(x_{i},x_{i}’)(i=1,2,3)$ is interbounded over $d$ . Its transitive
closure is an equivalence relation among the group configurations.

The reason why the configuration is said to be a group configuration
is that it is canonically obtained from a given hyperdefinable homo-
$gen\infty us$ space. More precisely, let $((G, 0),$ $X,$ $.$ ) be a hyperdefinable
homogeneous space (i.e. the hyperdefinable action, of the group $G$ on
the set $X$ is transitive) over $e$ . We say $a\in X$ is generic (over $e$), if
for $g\in G$ with $g\lambda_{e}a,$ $g.$ $a$ $\lambda_{e}g$ holds. For notational convenience, we
suppress $e$ to $\emptyset$ . Similarly to the group case, if $x(\in X)$ is independent
with generic $f\in G$ , then $f.x$ is generic. Hence a generic element of $X$

exists. Moreover generic $f(\in G)$ is generic with respect to $X$ as well.
Namely, for $y(\in x)\lambda_{f,y\backslash }Lf.y$ holds. We have the following.

Observation 2.2. A hyperdefinable homogeneous space $(G, X)$ (over
$\emptyset)$ is given. We can choose $f_{2},$ $f_{3}\in G$ and $x_{1}\in X$ , all gene$r\dot{v}c$ , such
that $\{f_{2}, f_{3}, x_{1}\}$ is independent. Then $C=(f_{1}, f_{2}, f_{3}, x_{1}, x_{2}, x_{3})$ foms a
group configuration where $f_{1}=f_{2}o(f_{3})^{-1},$ $x_{2}=f_{3}.x_{1},$ $x_{3}=f_{2}.x_{1}$ . Note
that $f_{i},$ $x_{i}(i=1,2,3)$ are all genenc. We call $C_{f}$ $a$ group configuration
obtained from the homogeneous space $(G, X)$ .
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The group configuration theorem is a theorem about the reverse
process. The theorem says that a given group configuration, one can
construct a homogeneous space $(G, X)$ having an equivalent group con-
figuration. In [5], de Piro, Kim and Millar obtained the first step of
the theorem. Namely, given a group configuration, a canonical group
whose generic elements are equivalent to the first triple of the con-
figuration. Then recently Kim [13] completes the group configuration
theorem under 4-amalgamation.

Theorem 2.3. (The group conflguration theorem) Assume $T$

has 4-CA. After possibly naming a model, we can assume $\emptyset=bdd(\emptyset)$ .
$Give\grave{n}$ an induced bounded quadmngle $C$ from a group configuration
over $\emptyset_{f}$ we can construct a hyperdefinable homogeneous space over $\emptyset$

such that $C$ and a bounded quadrangle obtained fivm the space are
equivalent.

Recall that for any stable $T$ , if the elements of the group configu-
ration is finitary, then a type-definable homogeneous space having an
equivalent configuration is conItructible.

3. APPLICATIONS AND PSEUDOLINEARITY

One application of 2.3 (or just the earlier version of dePiro, Kim, and
Millar) is the following result. This extends the theorem [4, 3.23] that,
in any modular non-trivial $\omega$-categorical simple $T$ , an infinite vector
space over some finite field is definably recovered in $\mathcal{M}^{eq}$ . Recall that
$T$ is said to be $non- t\dot{n}vial$ if there are hyperimaginaries $a_{1},$ $a_{2},a_{3}$ and
$A$ such that for $1\leq i<j\leq 3,$ $a_{i},$ $a_{j}$ are independent over $A$ whereas
$\{a_{1}, a_{2}, a_{3}\}$ is dependent over $A$ .
Theorem 3.1. Suppose that $T$ is modular, $non- t_{\Gamma\dot{b}}\tau\dot{n}al,$ haning 4-CA.
Then there is a hyperdefinable infinite bounded-by-Abelian group $V$ over
a model $M$ of SU-mnk 1 generic types. Moreover for the bounded
subgroup $V_{0}=V\cap bdd(M),$ $V/V_{0}$ forms a vector space over the division
nng $R$ of $bdd(M)$ -endomorphisms of $V$ such that for $b,$ $a_{1},$

$\ldots,$
$a_{n}\in V_{f}$

$b\in bdd(a_{1}\ldots a_{n})$ iff $b+V_{0}=\alpha_{1}(a_{1}+V_{0})+\ldots+\alpha_{n}(a_{n}+V_{0})$ for some
$\alpha_{i}\in R$ .

Theorem 3.1 is important since it shows that from a pure logical con-
dition of independence, we can recover a concrete algebraic structure.
The theory $T$ being modular simply means that the model theoretic
dimension property is similar to that of linear (projective or, affine)
spaces. Namely, we say $T$ modular if $A\backslash \llcorner_{A\cap B}B$ holds for any bound-
edly closed sets $A,$ $B$ . For finite dimensional case, it simply means

$\dim(A\cup B)=\dim(A)+\dim(B)-\dim(A\cap B)$ .
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This is exactly the case when a space is projective or affine. Hence the
group configuration theorem in stable and simple theories is the main
to recover an underlying concrete algebraic structure from a structure
having a pure model theoretic condition. This issue is also related to
the so-called Zilber’s principle. We will get back to this later.

For the rest of this section, we pay our attentions to the possible
application of 2.3 to the pseudolinearity conjecture. Before stating
what it is, let us recall some of necessary definitions. We also restrict
our attentions to a solution set $D$ of SU-rank 1 Lascar strong type over,
for convenience, $\emptyset$ . In a stable theory, $D$ can be (strongly) minimal.

Definition 3.2. Let $k\geq 1$ .
(1) We say $D$ is k-linear (or pseudolinear) if for any two singletons

$a,$ $b\in D$ and parameters $B$ with $SU(ab/B)=1,$ $SU(e)\leq k$

where $e=Cb(ab/B)$ . We say $D$ is linear if it is l-linear.
(2) We say $D$ is k-based if for any indiscernible sequence

$I=(\overline{c}_{i}|i\in\omega\rangle$ from $D,$ $I\backslash I_{k}$ is Morley over $I_{k}$ $:=\{\overline{c}_{i}|i<k\}$ .
Hence $D$ being k-linear means that any curwe in $D^{2}$ , the rank of the

space of its conjugates is bounded by $k$ . It is well-known, in general,
an infinite (rank 1, e.g. algebraically closed) field is not pseudolinear.
For example, if we take a curve defined by

$y=x^{n}+a_{n-1}x^{n-1}+\ldots+a_{1}x+a_{0}$ ,

where $\{a_{0}, \ldots, a_{n-1}\}$ is algebraically independent, then the rank of the
space of the conjugates of the curve is possibly $\geq n$ , thus can be arbi-
trarily large.

Now, by similar ideas in the proof of [4, 3.6], the following can be
obtained.

Theorem 3.3. (1) The following are equivalent.
(a) $D$ is k-linear.
(b) $D$ is k-based.

(2) The following are equivalent.
(a) $D$ is linear.
(b) $D$ is modular, $i.e$ . for any $A,$ $B\subseteq D,$ A $\lambda_{bdd(A)\cap bdd(B)}B$ .

As mentioned after 3.1, typical examples of $lInear(=modular)$ struc-
tures are vector spaces. Conversely, 3.1 says $D$ being modular is the
same amount of saying that it can be reduced to an underlying vector
space. After having seen examples so far, one may boldly guess that
there is no ‘real’ k-linear examples other than $k=1$ . Namely we have
the following conjecture.
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Pseudolinearity Conjecture 3.4. If $D$ is k-linear, then it is linear.

Indeed Zilber’s principle (or dichotomy) goes a little further. He
conjectured that any non-trivial strongly minimal structure is either
modular (so interpreting an infinite vector space), or interpreting a
field (which has to be algebraically closed). As known, his conjecture
was shown to be false by Hrushovki who constructed counterexamples
[7]. His construction method itself created an important new area in
model theory. After then, he and Zilber together suggested a famous
Zariski condition, and under the constraint on the strongly minimal
structures, they succeeded to show the dichotomy [11]. It turns out
that this dicbotomy plays a great role in the applications of model
theory to other branches of mathematics such as geometry and number
$th\bm{m}ry-[9]$ . Extending the dichotomy to the context of general simple
rank 1 set $D$ is a big open project. Theorem 3.1 can be considered
as an achievement in this direction, as it says at least for concerning
modularity, it is to do with a concrete vector space as in stable case.

Now by the remark after 3.2, if Zilber’s principle holds, then 3.4
easily follows: Nonlinearity of $D$ implies the interpretability of a field
which can not be k-linear.

But, regardless of that Zilber’s principle is false, 3.4 is known to be
true for stable theories [3]. The proof uses the group configuration
theorem for stable theories. Let us briefly review the proof. If stable $D$

is k-linear (for minimal such $k$), then easily a group configuration $C=$
$(f_{1}, f_{2}, f_{3}, x_{1}, x_{2}, x_{3})$ can be obtained where $rk(f_{i})=k$ and $rk(x_{i})=1$ .
Then by the group configuration theorem, there is a type-definable
homogeneous space $(G, X)$ whose group configuration is equivalent to
$C$ . In particular, ranks are preserved. Namely $rk(G)=k$ and rk(X) $=$

1. Then by the general stable group theory [17, 1.6.25], $rk(G)=1,2$ or
3. If 2 or 3, then an infinite field is interpretable from $X$ , which again
is not k-linear (the remark after 3.2). Hence $k$ must be 1, and 3.4 for
stable theories is obtained.

When we try to mimic the ideas under 4-CA, the initial part of
the proof will go through using 2.3, so from that $D$ being k-linear we
have a hyperdefinable homogeneous space $(G,X)$ with $rk(G)=k$ and
rk(X) $=1$ . But we do not have so far the analogous theorem to [17,
1.6.25]. In other words, problem is rather reduced to the theory of
hyperdefinable groups having simple theories. So far no progress was
made in this regards. But we believe that, under 4-amalgamation, one
may develop finer group theory so that many important open problems
including this and supersimple field conjecture (any supersimple field
is pseudo algebraically closed) can be resolved.
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We finally point out that 3.4 is proved to be true for any $\omega$-categorical
simple theories [18]. For an $\omega$-categorical structure, the group con-
structed in [1] is definable, and for this particular case, a finer group
theory exists.
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