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Abstract.

This paper considers Nash equilibria of the unique-price supply ffinction auction for a

homogeneous good. We discuss different estimates and indices of the market power with respect

to an electricity market and show that standard criteria of the market competitiveness are too soft

for this market. We obtain the more strict conditions that provide a sufficiently small deviation

of the market price $\theta om$ the Walrasian price. The second part studies the problem of multiple

Nash equilibria for the network supply hnction auction in the electricity market. We show that

under typical parameters of the market, its equilibria may be approximated by the equilibria of

the market without transmission losses. This result permits to reduce the number of possible

equilibria and simplifies the analysis ofthe market.

1. Introduction.

An important economic tendency of the last 30 years was the development of markets for

electricity and natural gas in several countries. The creation of a market includes forming of

several private generating companies, and determination of the market mechanism for their

interaction with consumers. In many existing wholesale markets, the most important part of this

mechanism is a regular supply hnction or a double auction that determines the market price and

the production volume for each company. Typically this auction is organized as a unique price

auction (though some studies show that Vickrey auction might be the more efficient form of the

interaction, see Vasin, Vasina (2005).
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Creation of the market structure concerns the following problem. On one hand, in order to

reduce the market power and prevent a large increase of the market price over the competitive

equilibrium price, it seems reasonable to split th$e$ generation sector into many small companies.

On the other hand, the scale effect and the reliability of the electricity supply (that is very

important for Russia) require creation of sufficiently large generating companies. Thus an

important question is what minimal degree of the splitting provides the sufficiently small

deviation ofthe market price ffom the competitive equilibrium price.

Our previous study (Vasin and Vasina, 2005) shows that stable rational behavior of agents at

the supply ffinction auction corresponds to the Coumot equilibrium outcome. So the question

about splitting implies the following theoretical problems.

The first one is evaluation of the Cournot price deviation $\hslash om$ the Walrasian price under

given market structure and available information on the parameters of the market. It is important

to discuss the known indices of the market competitiveness (in particular, Concentration ratio

and Herfindahl-Hircshman index, see Hircshman, 1963, Tirole, 1997) in context of such

evaluation. In Section 3 we obtain an estimate of deviation of the Cournot price ffom the

Walrasian price depending on the demand elasticity and the share of the largest company in the

market. We also discuss standard criteria of the market competitiveness related to Concentration

ratio and Herfindahl-Hircshman index and show that they are too soft for the electricity market.

We obtain the more strict conditions that provide a sufficiently small deviation of the market

price $fi\cdot om$ the Walrasian price.

Another important problem relates to the network structure of electricity and gas markets.

Below we show that in context ofthe imperfect competition study, the losses under transmission

are not so important since the loss coeffcient usually does not exceed 0.1. However,

transmission capacity constraints essentially influence the properties of the market in many

cases. Our study (2005) shows that, even for the simplest network market with two nodes, there

exist 5 possible variants of the Nash Equilibrium (NE below), moreover, 3 NE may coexist
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under some parameters. This makes the analysis of the market a complicated problem. Below we

develop an approach to reduce the number of possible equilibria under consideration. We

employ two ideas. First, we show that some equilibria are incompatible, and provide a simple

rule that distinguishes one of three variants as a possible $NE$ under given parameters of the

market. Then we show that an equilibrium of any market with losses may be approximated by

some equilibrium of the similar market without losses. Thus we reduce to 3 the number of

possible variants of $NE$ for a two-node market and show that at most two $NE$ may coexist for a

market without losses. We also give an example where two $NE$ coexist, so in general it is

impossible to improve the result.

2. Survey ofliterature.

The problem of imperfect competition in the markets for homogeneous goods (gas,

electricity etc) is widely discussed in the literature. For the empirical investigation see Sykes and

Robinson (1987). The corresponding theoretical models consider a local market without network

structure. Static one-period models (Baldick et al. (2000), Green (1992), Klemperer and Mayer

(1989)) describe a sealed bid unique-price auction as a normal form game and characterize its

Nash equilibria. The latter paper studies a model of competition via arbitrary supply ffinctions set

by producers. For a given demand function they show that for any price above the Walrasian one

there exists the corresponding Nash equilibrium. Green and Newbery (1992) consider a

symmetric duopoly with linear supply and demand functions and obtain the explicit expressions

for computation of the Nash equilibrium. Baldick et al. (2000) generalize their result for an

asymmetric oligopoly. Abolmasov and Kolodin (2002) and Dyakova (2003) apply this approach

for a study of the electricity markets in two Russian regions. They use affine approximations of

the actual supply functions.

Let us note that the assumption on the affine structure of supply hnctions does not

correspond neither to the actual cost structure of generating companies, nor to the rules of supply

functions auctions. Typically every producer can make a bid corresponding to the non-

189



decreasing step supply function. The project of the Russian wholesale electricity market permits

up to 3 steps in a bid of one firm for each hour (see The Model of the Russian Wholesale

Market). The step structure of a bid approximately corresponds to the actual structure of

variable costs of generating companies. Usually every such company owns several generators

with limited capacities and approximately fixed marginal costs. The main part of these costs is

the hel costs.

Our previous paper Vasin, Vasina (2005) studies properties ofNash equilibria for the supply

function auction, where a bid is a non-decreasing step function. We start with investigation ofthe

local market. We show that there exists a unique Nash equilibrium in the Coumot model for any

non-increasing demand Mctlon with the non-decreasing demand elasticity under mild

assumptions on the demand asymptotics as the price tends to infinity. We develop a descriptive

method for computation of the Coumot outcome under any affine demand $\Phi nction$ and piece-

wise constant marginal costs of producers. In the general case, we obtain an explicit upper

estimate of the deviation of the Coumot outcome from the Walrasian outcome proceeding ffom

the demand elasticity and the maximal share of one producer in th$e$ total supply at the Walrasian

price.

Amir (1996) and Amir and Lambson (2000) study existence and uniqueness of the Nash

equilibrium in the Cournot model for logconvex and logconcave inverse demand ffinctions.

(Note that $D^{-- 1}(v)$ is concave (convex) if $p|D^{l}(p)|$ increases (decreases) in $p.$) Thus, the first

property is stronger than increasing of the demand elasticity while the second may hold or not

hold in our case. A typical example of the demand ffinction with increasing elasticity that does

not meet the both properties is the demand for a necessary good with the low elasticity for low

prices and the high elasticity for high prices, such that consumers prefer some substitute.

Vasin and Vasina (2005) consider also a model where the market price is determined from

the balance of the demand and the actual supply of the sealed bid auction and producers set

arbitrary non-decreasing step supply functions as their strategies. We show that, besides the
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Cournot outcome, there exist other Nash equilibria. For any such equilibrium the cut price lies

between the Walrasian price and the Coumot price. Vice versa, for any price between the

Walrasian price and the Coumot price, there exists th$e$ corresponding equilibrium. However, we

show that only the Nash equilibrium corresponding to the Coumot outcome is stable with respect

to some adaptive dynamics ofproducers’ strategies under general conditions.

This result echoes Moreno and Ubeda (2002) who obtained a similar proposition for a two-

stage model where at the first stage producers choose production capacities, and at the second

stage they compete by setting the reservation prices. The difference is that in our model the

Coumot type equilibrium always exists under fixed production capacities since the agents set the

production volumes as well as the reservation prices.

Our results differ from Klemperer and Meyer (1989) who study competition with arbitrary

supply functions reported by producers. Under similar conditions, they obtain an infinite set of

Nash equilibria corresponding to all prices above the Walrasian price. Our constraint that permits

only non-decreasin$g$ step functions is reasonable in context of studying electricity markets. The

step structure of the supply function is typical for generating companies and corresponds to the

actual rules and the projects ofthe markets in different countries (see Hogan, 1998).

The second part of Vasin and Vasina (2005) considers a simple network market-the market

with two nodes. As above, each local market is characterized by the demand $\Phi nction$ and the

finite set of producers with non-decreasing marginal costs. For every producer his strategy is a

reported supply hnction that determines his supply of the good depending on the price. The

markets are connected by a transmitting line with fixed share of losses and transmission capacity.

Under given strategies of producers, the network administrator first computes the cut prices for

the separated markets. If the ratio of the prices is sufficiently close to one then transmission is

unprofitable with account of the loss. In this case, the outcome is determined by the cut prices for

the isolated markets. Otherwise the network administrator sets the flow to the market with the

higher cut price (for instance market 2). This flow reduces the supply and increases the cut price

191



at the market 1. Simultaneously it increases the supply and reduces the cut price at the market 2.

If the transmitted volume does not exceed the transmission capacity, the network administrator

determines this volume so that the ratio of the final cut prices corresponds to the loss coefficient.

Otherwise, the administrator sets the volume to be equal to the transmission capacity. Thus, he

acts as if perfectly competitive intermediaries transmit the good from one market to the other. It

is easy to show that such strategy maximizes the total welfare if the reported supply hnctions

correspond to the actual costs.

We consider Coumot competition model for this market. Our study shows that there exist

three possible types ofNash equilibrium: 1) an equilibrium with zero flow between the markets

and the ratio of the prices close to 1; such equilibrium is determined as if there are two separated

markets; 2) an equilibrium with a positive flow and the ratio of the prices corresponding to the

loss coeffcient; 3) an equilibrium with a positive flow equal to the transmission capacity and the

ratio ofthe prices exceeding the loss coefficient.

Proceeding Rom the first order condition, we defme local equilibria of each type and show

how to compute them. Then we study under what conditions the local equilibrium is a real Nash

equilibrium. For the market with constant marginal costs and affine demand functions, we

determine the set ofNash equilibria depending on the parameters. One interesting finding is that,

in the symmetric case with equal parameters ofthe local markets and a small loss coefficient, the

local equilibrium corresponding to the isolated markets is not a Nash equilibrium, but there exist

two asymmetric Nash equilibria with a positive flow ofthe good.

Then we consider a standard network auction of supply functions (with unique nodal prices)

and generalize the results obtained for the local auction: stable Nash equilibria correspond to the

Coumot outcomes.

3. Evaluation of the market power and Cournot competition.

According to the previous results, the expected outcome ofthe unique-price supply hnction

auction under rational behavior of agents corresponds to the Cournot equilibrium. Hence it is

192



reasonable to consider deviation ofthe Coumot price $p^{t}$ from the Walrasian price $\tilde{p}$ as a

measure of the market inefficiency related to the market power of the agents. Below we obtain

an estimate ofthis deviation depending on the demand elasticity and the share of the largest

company in the market. We also discuss the known market indices with respect to analysis ofthe

supply function auction at the electricity market.

Consider a market with a homogenous good and a finite set of producers $A$ . Each producer

$a$ is characterized by his cost ffinction $C^{a}(v)$ with the non-decreasing marginal cost for

$v\in[0,V^{a}]$ , where $V^{a}$ is his production capacity. The precise form of $C^{a}(v)$ is his private

information. The practically important case is where the marginal cost is a step ffinction:

$C^{a}(0)=0,$ $C^{a’}(v)=c_{j}^{a}$ for $v \in(\sum_{/=0}^{j- 1}V^{a},\sum_{=0}^{i}V^{a}),$ $V_{0}^{a}=0,$ $i=1,..,m,$ $\sum_{\iota}^{m}V^{a}=V^{a}$ . Consumers’

behavior is characterized by the demand $\Phi nctionD(p)$ , which is continuously differentiable,

decreases in $p$ , tends to $0$ as $p$ tends to infinity, and is known to all agents.

Recall basic definitions.

Combination $(v^{a},a\sim\in A)$ ofproduction volumes is a Walrasian equilibrium (WE) and $\tilde{p}$ is a

def
Walrasian price of the local market if, for any $a,$ $\sim v^{a}\in S^{a}(\tilde{p})=Arg\max_{v^{a}}(v^{a}\tilde{p}-C^{a}(v^{a}))$

,

$\sum_{a}v^{a}\sim=D(\tilde{p})$ .

Note. The theoretical supplyfunction $S^{a}(p)$ determines the (generally non-unique) optimal

production volume ofthe firm $a$ under a given price $p$ . Formally, it is a non-decreasing closed

upper semi-continuous point-set mapping with convex values. A trivial result is that the unique

Walrasian price exists under the specified assumptions on the demand function.

For a game $\Gamma=<A,X^{a},f^{a}(x),x\in X,a\in A>$ with the set of players $A$ , the set $X^{a}$ of

strategies and the payofffunction $f^{a}$ for each player $a$ , strategy combination $x^{n}=(x^{a^{*}},a\in A)$
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is a Nash equilibrium (NE) if $f^{o}(x^{*})\geq f^{a}(x^{*}||x^{a})$ for any $a,$ $x^{a}\in X^{a}$ . Existence of NE for

the models under consideration is established below.

Cournot competition. Consider a model of Coumot competition for the given market. Then a

strategy of each producer $a$ is his production volume $v^{a}\in[0,V^{a}]$ . Producers set these values

simultaneously. Let $\vec{v}=(v^{a},a\in A)$ denote a strategy combination. The market price $p(\overline{v})$

equalizes the demand with the actual supply: $p( \overline{v})=D^{-1}(\sum_{o\in A}v^{a})$ . The payoff function of

producer $a$ determines his profit $f^{a}(\overline{v})=v^{a}p(varrow)-C^{a}(v^{a})$ . Thus, the interaction in the Coumot

model corresponds to the normal form game $\Gamma_{C}=\{A,[0,V^{a}],f^{a}(\overline{v}),\overline{v}\in\bigotimes_{a\in\Lambda}[0,V^{a}],a\in A\}$ ,

where $[0,V^{a}]$ is a set of strategies $a\in A$ .

Combination $(v^{a^{l}},a\in A)$ of production volumes is a Cournot equilibrium (CE) if it is a NE

in the game $\Gamma_{C}$ .

Let $(v^{a*},a\in\Lambda)$ denote Nash equilibrium production volumes and $p=D^{-1}( \sum_{aeA}v^{a}")$ be the

corresponding price. A necessary and sufficient condition for this collection to be a Nash

equilibrium is that, for any $a$ ,

$p^{*}\in\Lambda rgp\in[D^{-1}(\begin{array}{l}m\sum_{b\cdot a}v^{b}+V^{o}\end{array}),)]$

$\# D(p)-D(p)+v^{\theta})p-C^{a}(D(p)-D(p)+v^{a^{*}})\}$

Then the F.O.C. for Nash equilibrium is

$v^{a^{r}}\in(p-C^{a’}(v^{a}))|D$‘ $(p^{r})|$ , for any $a$ s.t. $C^{a}$ ‘ (0) $<p$ (1)

$v^{a^{l}}=0$ if $C^{a’}(0)\geq p^{\iota}$ , (2)

where $C^{a’}(v)=[C_{-}^{a’}(v),C_{+}^{a^{1}}(v)]$ in the break points ofthe marginal cost function.

In particular, $C_{+}^{a’}(V^{a})=\infty$ .
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Combination $(p,v^{a^{l}},a\in A)$ is called a local Coumot equilibrium if it meets the necessary

conditions (1), (2).

Let us define the Coumot supply Rnction $S_{C}^{a}(p)$ of a producer $a$ for $p>0$ as a solution of

the system (1),(2). This function determines the optimal production volume of producer $a$ if $p$

is a Coumot equilibrium price. The function is uniquely defined for any cost function $C^{a}$ . In

particular, consider the case with piece-wise linear cost functions and affne demand function

$D(p)= \max$($O$, D-dp). Then

$S_{C}^{a}(p)=\{\begin{array}{ll}0, p<c_{I}^{a},(p c_{1}^{a})d if (p-c_{1}^{a})d<r_{1}^{a},V_{1}^{a} if (p-c_{2}^{a})d<\nabla_{1}^{a}<(p-c_{1}^{a})d,(p c_{2}^{a})d if V_{1}^{a}\leq(p-c_{2}^{a})d\leq V_{1}^{a}+V_{2}^{0} , .V_{1}^{a} V_{2}^{g} if (p-c_{2}^{a})d<V_{1}^{g}+V_{2}^{a}<(p-c_{3}^{a})d,V^{a} if (p-c_{m}^{a})d>V^{a}.\end{array}$

Figure 1 shows a typical form of this hnction. The Coumot price $p$
’

is determined by the

equation $\sum_{a}S_{C}^{a}(p^{t})=D(p^{n})$ .

$c_{1}$ $c_{2}$ $c_{3}$ $p$

Our paper Vasin, Vasina (2005) provides the following estimate of the Coumot price

deviation from the Walrasian price, proceeding from the demand elasticity

$e(p)=p|D’(p)|/D(p)$ and the maximal share of one firm in the total production at the Walrasian

equilibrium.
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Proposition 1. Let $e(p)\geq\overline{e}$ for any $p\geq\tilde{p}$, $\max_{a}S^{a+}(\tilde{p})/S^{+}(\tilde{p})\leq 1/m$ , and $en>1$ . Then

$\tilde{p}/p\geq 1-1/(\overline{e}n)$, $\sum_{a}v^{a}/D(\tilde{p})\geq(1-1/(\overline{e}n))^{\overline{e}}$ .

The given upper bound of deviation from the Walrasian price may be inconvenient for

practical use since the shares of firms and the demand elasticity at the Walrasian price are

typically unobservable, while the actual values under rational behavior of agents correspond to

the Coumot outcome. Below we focus on the case where $D(p)$ is linear in the practically

important interval ofprices.

Proposition 2. Let the maximal share of one firm in the total production at the Cournot

equilibrium meet inequality $\max_{a}v/a\sum_{be\Lambda}\mathcal{V}^{b}\leq/_{n}^{1}$
and the demand elasticity at this price

$e=^{dp}/l(\overline{D}-dp)^{meet}$ condition $ne>1$ . Then

$\frac{p}{\tilde{p}}-1\leq\frac{1}{(e^{l}n-1)}$ . (3).

This estimate becomes a strict equalityfor a symmetric oligopoly with aftxed marginal cost

$c=\tilde{p}$ and unbinding capacity constraints. This case also gives the maximal possible loss of the

total welfare: $w/_{\tilde{w}}=1-(1- \frac{D(p)}{D(c)})^{2}=1-\frac{1}{(n+1)^{2}}$ .

Proof. Consider a fixed profile $(v^{a},a\in A)$ of production volumes at the Coumot

equilibrium. First, we determine the maximal deliation of the Walrasian price $\tilde{p}$ from the

Cournot price $p$ under this profile. Note the following relation betmeen the Coumot and

Walrasian supply functions: for any $p$ and $a,$ $S_{-}^{a}(p-S_{C}^{a}(p)/d)\leq S_{C}^{a}(p)$ . In particular, for any

$a$ , $S_{-}^{a}(p-v^{f}/d)\leq v^{a^{*}}$ , $S_{C}^{a}(p)>v’$ . Hence, for $\overline{a}=\arg\max_{a}v^{a}$ and otherwise

$\overline{p}=p-v^{\overline{a}}/d$ , $S_{-}(\overline{p})\leq S_{C}(p)=D(p)<D(\overline{p})$ . Thus $\tilde{p}\geq\overline{p}$ . Moreover, $\tilde{p}=\overline{p}$ under
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sufficiently large $S_{+}^{\overline{a}}(\overline{p})$ , and the maximal deviationdeviation

$p/ \tilde{p}-1=\frac{v^{\overline{a}}/d}{p-v^{\overline{a}}/d}=\frac{1/n}{dp/D(p)-1/n}=\frac{1}{e(p)n-1}.$ Q.E.D.

Note. Another interesting example that provides the same ratio between the Coumot and the

Walrasian prices is where a large firm with the market share $/1n$
’ a fixed marginal cost $c$ and

unbounded capacity interacts with the competitive fringe with lower costs and maximal capacity

$V_{F}=(1- \frac{1}{n})D(p)$ . Then $\tilde{p}=c$ , the Coumot price meets the same condition

$d(p-\tilde{p})=(\overline{D}-dp^{l}/)n$ The lower bound for deviation of the Coumot price from the

Walrasian price under given conditions is $0$ . Figure 2 provide$s$ the corresponding example.

Figure 2.

$V$

Now consider the following regulation problem. Assume that under transition to the

deregulated market a state regulated monopoly that provided electricity for some region is

splitted in $n$ companies with the same constant marginal co$stc^{a}=c$ . How large should be $n$ in

order to prevent the increase of the market price more than 500/0 of the cost? It depends on the

demand elasticity. Consider a moderate estimate of this value for the electricity market:

$e(p)=0.2$ . Proceeding from proposition 2, we obtain $n=15$ . Even if we take the more
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favorable value $e(c)=0.2$ then we obtain $n= \frac{c}{(p-c)e(c)}-1=9$ . Thus a standard assumption

that the 20% barrier for the large$st$ company provides a sufficiently competitive market (see, for

instance, Dyakova, 2003) seems to fail in this case.

Now consider another popular measure of the market competitiveness –the Herfindahl-

Hircshman index (Hirschman, $1963$) $HHI= \sum_{a}(y_{a}\cdot 100)^{2}$ where $y_{a}=^{V}/a_{V}$ is the market share

of company $a$ .

Proposition 3. Under any fixed $HHI=^{10}/4n$ and market elasticity $e(p)=e$ for the

Cournot outcome, such that $e\sqrt{n}>$ ], the ratio ofthe Walrasian and the Cournot prices meets

the inequality:

$p/*\tilde{p}^{-1\leq(e\sqrt{n}-1)^{-1}}$ (4)

This estimate becomes a strict equality in the case where a largefirm with the market share

$/\iota_{\sqrt{n}}$ , a fxed marginal cost $c$ and unbounded capacity interacts with the competitive fiinge

with lower costs and maximal capacity $V_{F}=(1- \frac{1}{\sqrt{n}})D(p)$ .

Under the symmetric oligopoly with the same $HHI$, the price deviation meets (3) as an

equality.

Proof. Under the given HHI, the share of one firm in the total production does not exceed

$n^{-1/2}$ . So the inequality (4) follows from Proposition 2. The latter two statements of the

proposition relate to the examples considered in the note and proposition 2 respectively.

Consider again the regulation problem. Now, the question is: how low should be the $HHI$ in

order to prevent the increase of the market price more than 50% of the cost? The US govemment

agencies propose (see Report of Office of Economic, 2000) that $HHI\leq 1000(n\geq 10)$ means

that no firn obtains the market power, and the market is sufficiently competitive. Consider
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favorable demand electricity $e(c)=0.2$ . Under the symmetric oligopoly, we obtain the desirable

result. However, in the case of a large firm with the competitive fringe,

$p/_{c}-1= \frac{1}{(\sqrt{n}+1)e(c)}>1$ , that is, the market price exceed the marginal cost more than two

times.

Note2. The value $e(c)=0.2$ means that $e(p)\geq 0.5$ in the latter example. For the demand

with the constant elasticity $e(p)=0.2$ , the result would be essentially worser.

4. Empirical study.

In this section we compute NE of the unique-price auction for several variants of the

electricity market in the Central economic region of Russia. The paper by Dyakova (2003) based

on the data from the RAO UES provides the following values of marginal costs and production

capacities of the generating companies in this region. (See Table 1.)

Table 1.
Generator Marginal cost Capacity

$(Rub/mwth)$ (bln kwth per year)

$Mosener_{-}zo$ :

$Rosener_{-}goatom$ :

GC1:

GC2:
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GC3:

We consider several demand functions $D(p)=N-\wp$ corresponding to the consumption

and the price in 2000:

For the local market model, we find the Coumot outcome and Vickrey outcome for two

variants ofthe market structure:

a) 5 independent companies,

b) 3 independent companies (Mosenergo, Rosenergoatom and UGC including all the rest

generators).

For each slope ratio $\gamma$ , we evaluate th$e$ deviations of the Coumot price from the Walrasian

price.

Table 2. Walrasian $(\tilde{p})$ and Coumot $(p)$ prices for the electricity market in the Central

economic region ofRussia. The cases with 5 and 3 generating companies.

Our results show that deviation of the Coumot price from the Walrasian price strongly

depends on the slope ofthe demand curve and practically interesting values $\gamma=0.1-0.2,$ .
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5. Network markets and the problem of multiple Cournot equilibria.

Consider two local markets connected by a transmitting line. Every local market $l=1,2$ is

characterized by the finite set $A^{l}$ of producers, $|A^{l}|=n_{l}$ , the cost functions $C^{a}(v),a\in A^{l}$ , and

demand function $D^{l}(p)$ , in the same way as the local market in Section 3: each cost hnction is

a private information of agent $a$ , the demand function and other market parameters are a

common knowledge. Let $k\in(O,1)$ be the loss coefficient that shows the share of the lost good

(in particular, the electric power) under transmission from one market to the other, $Q$ is the

maximal amount of the transmitted good. Consider Coumot competition in this model. Then

each producer sets $v^{a}\in[0,V^{a}]$ . The interaction is as follows.

1. Each firm finds out its cost function.

2. Simultaneously and independently each firm reports the auctioneer its strategy.

3. For a given strategy combination nodal cut-off prices $C\sim l$ and transmitted volume $q$ are

determined as follows.

Let $\overline{c}^{l}(v),l=1,2$, denote the cut-off prices for isolated markets, such that $D^{l}(c \lrcorner)=\sum_{a\in\Lambda}v_{l^{q}}$ ,

$\lambda=(1-k)^{-1}$ . If $\lambda^{-\downarrow}\leq\overline{c}^{2}(\overline{v})/\overline{c}^{1}(\overline{v})\leq\lambda$ then $q=0$ , the final prices are $c^{l}\sim(\overline{v})=\overline{c}^{l}(\overline{v}),$ $l=1,2$ ,

that is, the markets stay isolated. If $\overline{c}^{2}(\overline{v})/\overline{c}^{1}(\overline{v})>\lambda$ then $q$ (the transmitted volume fiom

market 1 to market 2) is a solution of the system

$D^{2}(c^{2}\sim)=a^{\mathcal{V}^{a}+\overline{q};}\Lambda$
(5)

$D(c^{1})= \sum_{A^{1}}v^{a}-\overline{q}$
; (6)

$c^{2}\sim=A_{C}^{\sim 1}$ , until $\overline{q}>Q$ .

The unique solution of the system exists because the involved functions are monotonous and

continuous. If $\overline{q}>Q$ then $q=Q,$ $C\sim i$ are determined Rom (5),(6) with $\overline{q}=Q,$
$\sim c^{2}>A_{C}^{\sim 1}$ . The
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capacity constraint is binding in this case. The case $\overline{c}^{1}(\overline{v})/\overline{c}^{2}(\overline{v})>\lambda$ is treated in the symmetric

way. This section aims to study these 3 types ofNash equilibria of the auction.

a). The first-order conditions for the type a) outcome with prices

$p_{1}^{r},$ $p_{2}^{l}$ $s.t$ . $\lambda^{-1}<p_{2}^{l}/p_{1}^{l}<\lambda$ , (7)

to be a Coumot equilibrium are quite similar to the conditions (1), (2) for the local market:

$v^{a}’\in(p_{i}-C^{a’}(v^{a*}))|D^{j_{1}}(p_{i}^{l})|$ , for any $a\in A^{j}$ s.t. $C^{a_{1}}(0)<p_{i}$

$v^{a*}=0$ if $C^{a\prime}(0)\geq p_{i}^{l}$ ,

where $C^{a}$ ‘ $(v)=[C_{-}^{a\prime}(v),C_{+}^{a\prime}(v)]$ in the break points ofthe marginal cost hnction.

Besides that,

$\sum_{A^{i}}v^{a*}=D(p_{j}^{l})$, $l=1,2$ .

b). For the type b) outcome with

$q\in(0,Q),$ $\Phi i=p_{2}^{s}$ ,

the first-order conditions of the Coumot equilibrium are obtained in a similar way. Note that, for

any small change of the strategy $v^{a*}$ , producer $a\in A^{1}$ stays in the market with the demand

function

$D^{1}(p_{1}( \overline{v}))+\lambda(D^{2}(\psi_{1}(\overline{v}))-\sum_{A^{2}}v^{a})$

where the price $p_{1}(\overline{v})$ meets equation $\sum_{A^{1}}v^{a}=D^{1}(p_{1})+\lambda(D^{2}(\phi_{1})-\sum_{A^{2}}v^{a}))$ .

Thus,

$v^{a*}\in(p_{1}-C^{a_{l}}(v^{a*}))|D^{1_{\dagger}}(p_{1})+\lambda^{2}D^{2\iota}(\psi_{1}^{l})|$

for any

$a\in A^{1}$ $st$ . $C^{a*}(0)<p_{1}^{l},$ $v^{a_{*}}=0$ if $C^{a\uparrow}(0)\geq pi$ .

Similarly, producers in the market 2 face the demand $D^{2}( \psi_{1})+1/\lambda(D^{1}(p_{1})-\sum_{A^{1}}v^{a})$ , and
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$\mathcal{V}^{a*}\in(\lambda pi-C^{a_{1}}(v^{a*}))|D^{2\uparrow}(\psi_{1}^{l})+D^{1_{1}}(p])/\lambda^{2}|$

for any

$a\in A^{2}$ st. $C^{a_{\dagger}}(0)<p_{2}^{l},$ $v^{a*}=0$ if $C^{a\uparrow}(0)\geq p_{2}^{t}$ .
c). Finally, ifthe capacity constraint is binding

$q=Q$, $\phi_{1}^{l}<p_{2}^{l}$ ,

then the F.O.C.$s$ are

$v^{a}\in(p_{i}^{l}-C^{a^{1}}(v^{a^{*}}))|D^{j}$ ‘
$(p_{j})|$ , for any $a\in A^{j}$ s.t. $C^{a’}(0)<p_{j}^{l}$

$v^{a^{t}}=0$ if $C^{a’}(0)\geq p_{i}^{l}$ ,

$\sum_{\Lambda^{1}}v^{a^{l}}=D(p_{1}^{t})+Q$

$\sum_{A^{2}}v^{a}=D(p_{2}^{l})-\lambda Q$ .

Thus, even in the simplest variant of the network market there exist 5 possible local

equilibria. The following proposition shows that some of them are incompatible, and reduces the

set of variants for examination.

Proposition 4. Underfixedparameters ofthe two-node market, only one local equilibrium of
the types a) or c) may exist. More precisely, if the Cournot equilibrium prices $\overline{p}_{j},$ $i=1,2$ , for

separated markets meet condition (7) then only a local equilibrium of the type a) exists in the

market, otherwise if $\overline{p}_{i}>\Phi_{j}^{-}$ then only a local equilibrium ofthe type c) with theflowfrom the

market $j$ to the market imay exist (but does not necesserely exist), $i=1,2,$ $j=\{1,2\}\backslash i$ .

Proof. Consider a system that determines the price$s$ for a local equilibrium of the type c)

with the flow ffom 1 to 2:

$\sum_{A^{1}}S_{c}^{a1}(\overline{\overline{p}}_{1})=D^{1}(\overline{\overline{p}}_{1})+Q,\sum_{A^{2}}S_{c}^{a2}(p_{2}=)=D^{2}(\overline{\overline{p}}_{2})-Q,$
$p_{2}>\phi_{1}==$ . (8)

Let $p_{i}(Q)=,$ $i=1,2$ , denote a solution of the equations for any $Q\geq 0$ . Note that $\overline{p}_{i}=\overline{\overline{p}}_{i}(0)$ ,

$i=1,2,$ $p_{1}=(Q)\uparrow Q,$ $p_{2}(Q)=\downarrow Q$ . If the equilibrium a) exists then $p_{2}=(Q)<\overline{p}_{2}<\Phi_{1}^{-}<\overline{\Phi}_{1}(Q)$ for
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any $Q>0$ , so the system (8) is incompatible and, similarly, a symmetric equilibrium with the

flow Rom 2 to 1 does not exist. Otherwise if $\overline{p}_{2}>\Phi_{1}^{-}$ then a solution of (8) exists if $Q$ is

sufficiently small, that is $p_{2}=(Q)>\phi_{1}^{=}(Q)$ . A solution to the symmetric system does not exist in

this case. $0$

This result simplifies analysis of the market. However, our paper (2005) shows that a typical

case is where three different local equilibria of the types a) and b) exist, some of them are true

NE, the other are not stable with respect to the large change of the production volume by some

agent. As the number of local markets in the network increases, the number of possible local

equilibria of the network market grows with the exponentical rate. The problem of their careful

computation and analysis for the actual markets $s$eems to be hopeless.

This section aims to develop an altemative approach to analysis of such markets. Since the

loss coefficients in the actual networks are usually less then 0.1, we show that NE of a market

with the losses may be approximated by the NE of the similar market without losses and evaluate

the error. Then we consider a problem of the Coumot equilibrium search and analysis for a

network market without losses.

Below we study these issues for the market with affine demand functions and constant

marginal costs. We also assume that capacity constraints in production are not binding. Formally

we assume that $D^{t}(p)=\overline{D}_{l}-dp,$ $C^{a}(v)=c_{j}v$ for $a\in A^{j},i=1,2$ . First let us show that the

deviation of the type b) equilibrium for the market with losses from a similar equilibrium for the

market without losses smoothly depends on the loss coefficient and is small for a typical value

$k\leq 0.1$ . Under a flow from market 1 to market 2, the equilibrium price $pi$ at the market 1 meets

equation

$\sum_{A_{1}}(pi-c_{1})(d_{1}+\lambda^{2}d_{2})+\sum_{A_{2}}(\phi_{1}^{l}-c_{2})(d_{1}+\lambda d_{2})=D^{1}(p_{1})+\lambda D^{2}(\Phi i)$ .

The market without losses corresponds to $\lambda=1$ . According to the theorem on the derivative

ofan implicit function,
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Thus $| \frac{dp_{1}}{d\lambda}|/p_{1}|_{\lambda=1}\leq\frac{2d_{2}|A_{1}|+(d_{1}+d_{2})|A_{2}|}{(d_{1}+d_{2})\Downarrow A_{1}|+|A_{2}|-1)}\approx 1$ for $d_{1}=d_{2}$ ; $\frac{p_{1}(1)-p_{1}(\lambda)}{p_{1}(1)}\approx\lambda-1\leq 0.1^{\cdot}$ under

typical values ofthe loss coefficient.

A similar evaluation holds for an equilibrium of the type c) with the binding transmission

capacity constraint. However, an equilibrium of the type a) (with separated markets) does not

exist under $k=0$ , while for $k>0$ a local equilibrium of this type may exist and essentially

differ ffom any equilibrium of the network market without losses. For instance, consider a

symmetric oligopoly with equal parameters for the both local markets. Then the Coumot price

for each separated local market is $\overline{p}=c+\frac{(\overline{D}-dc)}{d(m+1)}$ , where $m=|A_{1}|=|A_{2}|$ . The Coumot price for

the united market with $k=0$ is $p=c+ \frac{(\overline{D}-dc)}{d(2m+1)}$ , that is, $\overline{p}-c\approx 2(p-c)$ .

However, the local equilibrium with separated markets is not a true Nash equilibrium under

typical value$s$ of the electricity market parameters! Let us prove this proposition.

The conditions for the local equilibrium of the type a) take the form: $v^{a^{*}}=v_{j}^{l}=(p_{i}^{l}-c_{l})d$ ,

$a\in A^{j},$ $p_{j}^{*}-c_{j}= \frac{\simeq D_{i}}{d(n_{j}+1)}$ where $\approx D_{i}=\overline{D}_{i}-c_{l}d$ . Hence $f^{a}(\overline{v}^{l})=(p_{i}^{l}-c_{l})^{2}d,$ $a\in A^{j}$ . The

optimal price $\overline{p}_{1}$ for $a\in A^{1}$ in the joint market meets equation

$\overline{p}_{1}-c_{1}=\frac{\overline{D}_{1}+\lambda\overline{D}_{2}-c_{1}(1+\lambda^{2^{*}})d-(n_{1}-1)v_{1}-An_{2}v_{2}^{*}}{2d(1+\lambda^{2})}$.

Condition (7) for existence of the local equilibrium and the conditions of its instability under

the optimal deviation ofagent $a\in A^{1}$ take the form:

$\lambda>p_{2}/p[>\lambda^{-1}\Leftrightarrow\lambda\geq(\frac{=D_{2}}{d(n_{2}+1)}+c_{2})/(\frac{=D_{1}}{d(n_{1}+1)}+c_{1})>\lambda^{-1}$ ; (9)
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$f_{1}( \overline{v})<f_{1}(\overline{v}^{r}\Vert\overline{v}_{1})\Leftrightarrow\frac{2D_{1}^{\sqrt{1+\lambda^{2}}}--}{d(n_{1}+1)}<(’\lambda_{\mathcal{L}_{2}}-\lambda^{2}c_{1}+\frac{2Dl=}{d(n_{1}+1)}+\frac{\lambda D_{2}=}{d(n_{2}+1)})$ (10)

Let us show that condition (10) holds under typical parameters of an electricity market, so

the local equilibrium of the type a) (with separated local markets) is not a true NE. Proceeding

from (9),(10) it suffices to check the following inequality:

$\frac{2\overline{\overline{D_{1}}}(\sqrt{1+\lambda^{2}}-1)}{d(n_{1}+1)}<\frac{\overline{\overline{D}_{1}}}{d(n_{1}+1)}+c_{1}(1-\lambda^{2})$ or

$1< \frac{1}{e(c_{1})(n_{1}+1)}(\frac{3-2^{\sqrt{1+\lambda^{2}}}}{\lambda^{2}-1})$ . (11)

Consider several typical values of the loss coefficient.

Proposition 5. For the loss $coeff\iota cientk=0.1$ , the separated equilibrium does not exist if

$(n+1)e(c)<0.08$ or ne$(p)<1.08$ , where $p= \frac{c+(\overline{D}-dc)}{cd(n+1)}$ is the local equilibrium price. For

$k=0.05$ this proposition holds if $(n+1)e(c)<0.9$ or ne$(p)<1.9$ . In particular, $\iota fe(p)\leq 0.1$

then the equilibrium does not existfor $n<19$ .

Proof immediately follows from inequality (11) and relations

$p=c(1+ \frac{1}{(n+1)e(c)})=\frac{c}{(1-1/ne(p))}o$

Proceeding ffom the given results we expect that in a general case the analysis of Coumot

equilibria for a network market may be reduced to the analysis of a similar market without

losses. For a two-node market without losses, we may consider only local equilibria of the types

b) and c), and there exist at most one equilibrium of each type. It would be nice to show that only

one Coumot equilibrium exists in this market in a general case. The following example shows

that, unfortunately, this is not true.

Consider conditions for local equilibria b) with the united market and c) with the binding

constraint and a flow from market 2 to market 1. Let $\overline{p}$ and $(\overline{p}_{1},\overline{p}_{2})denote$ the corresponding
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prices, $S_{C}^{i,12}$ , and $S_{C}^{i}$ be the Coumot supply functions at the market $i$ under the united market

and under the binding constraint respectively. Then

$S_{C}^{1,12}(\overline{p})+S_{C}^{2,12}(\overline{p})=D^{1}(\overline{p})+D^{2}(\overline{p}),$ $|S_{C}^{2,12}(\overline{p})-D^{2}(\overline{p})|\leq Q$ ,

$S_{C}^{2}(\overline{p}_{2})-D^{2}(\overline{p}_{2})=Q=D^{1}(\overline{p}_{1})-S_{C}^{1}(\overline{p}_{1}),\overline{p}_{1}>\overline{p}_{2}$ .

First, let us show that these conditions are incompatible if $S_{\dot{C}}^{112}(\overline{p})=S_{C}^{1}(\overline{p})$, that is, the

production capacity of the importing market is fully employed at the price $\overline{p}$ . Since

$S_{C}^{2,12}(\overline{p})\geq S_{C}^{2}(\overline{p})$ and $S_{C}^{2,12}(\overline{p})-D^{2}(\overline{p})\leq Q$ then $\overline{p}\leq\overline{p}_{2}$ . Moreover, $D^{1}(\overline{p})-S_{\dot{C}}^{112}(\overline{p})\leq Q$ , so

$\overline{p}\geq\overline{p}_{1}$ under the given condition. This contradicts to $\overline{p}_{1}>\overline{p}_{2}$ .

However, the both local equilibria may exist in the case where $S_{C}^{2,12}(\overline{p})=S_{c}^{2}(\overline{p}_{2})=S_{m\cdot x}^{2}$ .

Consider a symmetric oligopoly with $m$ producers and fixed marginal costs $c^{a}\equiv c$ at the market

1, and $D^{1}(p)=\overline{D}^{1}-pd$ . Then the equilibrium price and the profit of each firm at the

equilibrium c) are

$\overline{p}_{1}=\frac{\overline{D}_{1}-Q+mdc}{d(m+1)},$ $Pr_{1}=d(\overline{p}_{1}-c)^{2}$ , (12)

and similar values for the equilibrium b) are

$\overline{p}=\frac{\overline{D}_{1}+2mdc+d\check{p}_{2}}{2d(m+1)},$ $Pr=2d[(\overline{DI}\tilde{p}22d2^{-C}$ (13)

where $\tilde{p}_{2}$ is the competitive equilibrium and the Coumot price for the separated market 2:

$\overline{D}_{2}-\Gamma p_{2}=S_{\max}^{2}$ . So at each equilibrium the exporting market 2 supplies the same volume $S_{m\cdot x}^{2}$ .

At the equilibrium c), each firm at the market 1 produces less than at the equilibrium b). So the

price is higher and the transmission capacity constraint is binding in the former local

equilibrium. By a sufficiently large increase of the production volume, a firm in the market 1

may reduce the price and make the constraint unbinding (see Fig. 3).
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Figure 3.

Fig. 3. The inverse demandfunction underfixed strategies $v^{b}=\overline{v}^{a}$ for $b\in A^{1}\backslash \{a\},$ $v^{A_{2}}=S_{m\alpha}^{2}$ .

The demand function in this case is

$D(p)= \overline{D_{1}}+\overline{D}_{2}-S_{m*x}^{2}-2dp-\frac{m-1}{m+1}(\overline{D_{1}}-Q-cd)$ ,

the maximal profit for $a$ is

$Pr=(\overline{D_{1}}+\overline{D}_{2}-\frac{m-1}{m+1}(\overline{D_{1}}-Q-cd)-2cd)^{2}\oint d$ , where $\overline{D}_{2e}=\overline{D}_{2}-S_{m*}^{2},$ .

As to the local $\dot{e}$quilibrium b), it may be unstable with respect to sufficiently large decrease

of the production volume by some agent $a\in A^{1}$ , such that the transmission constraint becomes

binding. The demand function and the maximal profit in this case are

$\hat{D}(p)=\overline{D_{1}}-Q-\frac{m-1}{m+1}(+\tilde{p}_{2}d-2cd)$
一

$/2d-pd$ ,

$\hat{P}r=[\overline{D_{1}}-Q-\frac{m-1}{m+1}(+\tilde{p}_{2}d-2cd)$

一

$/2d-cd]^{2}/Ld$ .

The following proposition summarizes the results of our study.

Proposition 6. For the given two-node market, two Cournot equilibria exist ifand only ifthe

profit values determined by (10)$-(13)$ meet inequalities $Pr\geq Pr,$ $Pr_{1}\geq\hat{P}r$ .

An equivalent system is:

$\sqrt{2}(\overline{D_{1}}-Q-cd)\geq(\overline{D_{1}}+\frac{\overline{D}_{2\iota}(m+1)}{2}+\frac{(m-1)}{2}Q-\frac{cd}{2}(m+3)$

ノ
;
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$( \overline{D_{1}}+\overline{D}_{2e}-2cd)\geq\sqrt{2}(\overline{D_{1}}-\overline{D}_{2e}\frac{(m-])}{2}-\frac{Q_{12}(m+1)}{2}+\frac{cd}{2}(m-3))$ .

Consider the following example. Let $\overline{D}_{2e}=1,\overline{D_{1}}=2.5,$ $d=1,$ $c_{1}=1$ . Then we obtain the

following system for $Q$ and $m$ :

$\sqrt{2}(\frac{m+1}{2}I^{Q\geq 1.5(\sqrt{2}}-1)\geq Q(\frac{m-1}{2}+\sqrt{2})$ .

In particular, for any odd $m_{1}=2k+1$ , we obtain an interval

1. $S(\sqrt{2}-1)/(k+\sqrt{2})\geq Q\geq 1.5(\sqrt{2}-1)/(k+1)\sqrt{2}$ where two Cournot equilibria exist in the

market.
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