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ABSTRACT

We consider fixed-size estimation for a linear function of means from independent and nor-
mally distributed populations having unknown and respective variances. We construct a fixed—
width confidence interval with required accuracy about the magnitude of the length and the
confidence coefficient. We propose a two—stage estimation methodology having the asymptotic
second—order consistency with the required accuracy. The key is the asymptotic second-order
analysis about the risk function. We give a variety of asymptotic characteristics about the esti-
mation methodology, such as asymptotic sample size and asymptotic Fisher-information. With
the help of the asymptotic second-order analysis, we also explore a number of generalizations
and extensions of the two-stage methodology to such as bounded risk point estimation, multiple
comparisons among components between the populations, and power analysis in equivalence
tests to plan the appropriate sample size for a study.

Keywords: Bounded risk; Confidence interval; Efficiency; Equivalence tests; Fisher informa-
tion; Multiple comparisons; Sample size determination; Second—order consistency; Two—stage
estimation.

1. INTRODUCTION

Suppose that there exist k independent and normally distributed populations m; : N(u;,02),
i=1,...,k, where u;’s and 0?’s are unknown. Let Xj;, Xy, ... be a sequence of independent and
identically distributed random variables from each ;. Having recorded Xj, ..., Xin, for each
m;, let us write X, = 2?—1—1 Xij/ni and n = (ny,...,nx). We are interested in estimating the
linear function y = Zi;l biu;, where b;’s are known and nonzero scalars. Let T, = Zf=1 bi X in,-
We want to construct a fixed—width confidence interval such that

Po(Ta—pl<d)21-a (1.1)
for all @ = (uy, ..., ptg, 0%, ...,0%), where d (> 0) and a € (0,1) are both prespecified. Since

k

Po(ITa—pl<d)=G | & (Z %) (1.2)
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with G(-) the cumulative distribution function (c.d.f.) of a chi-square random variable having
one degree of freedom (d.f.), requirement (1.1) is satisfied if

k 19 2\ 7!
& (bei) >q, (13)

where a is the constant such that G(a) = 1 — a. It is easy to see that the sample sizes n which
minimize the sum Z1=1 n; subject to (1.3) are given as the smallest integer such that

k
a
n; > az-lbiloiz:'lbﬂaj (= Ci, say) (1.4)

Jj=1

for each m;. However, since o;’s are unknown, the optimal fixed—sample-sizes C;’s should be
estimated by using pilot samples from every ;. It should be noted from Dantzig (1940) that
any fixed—sample-size design cannot claim requirement (1.1).

Takada and Aoshima (1997) gave a two—stage estimation methodology in the spirit of Stein
(1945) to satisfy requirement (1.1) for all the parameters. For the two-sample problem, see
Banerjee (1967), Schwabe (1995) and Takada and Aoshima (1996). However, it tends to be
oversampling especially when the pilot sample is fixed small campared to the size of C;. Later,
Takada (2004) gave a modification of the Takada—Aoshima procedure so as to make it asymp-
totically second-order efficient, i.e., imsup,_,, Eg(N; — C;) < oo. Such a modification had
been created and explored for the one-sample problem and the other problems by Mukhopad-
hyay and Duggan (1997, 1999), Aoshima and Takada (2000), and Aoshima and Mukhopadhyay
(2002) among others. One may also refer to Aoshima (2005) for a review of this field.

Here, we summarize a modified two—stage procedure due to Takada (2004): Along the lines
of Mukhopadhyay and Duggan (1997) and Takada (2004), we assume that there exists a known
and positive lower bound o;, for o; such that

0i >0y, t1=1,..,k. (15)
(T1) Having mg (> 4) fixed, define

m= ma.x{ [d2 min. |b; |a,,,2 |b; |a,*] + 1} (1.6)

where [z] denotes the largest integer less than z. Take a pilot sample X, ..., Xim of size m and
calculate S? = e (X — Xim)?/v for each m;, where X;m = diey Xij/m and v = m — 1.
Define the total sa.mple size of each m; by

k
u
N; = max {m, [?ﬁlb,ls, z IbJIS]jI + 1} , (1.7)

j=1

where the design constant u (> 0) is chosen as

u=a(1+“—i-2-'f-"—1). | (1.8)
2v

Let N = (Ny,..., Ni).
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(T2) Take an additional sample Xim+1, ..., Xin, of size N;—m from each ;. By combining the
initial sample and the additional sample, calculate X;y, = ‘1 23—1 Xi; for each ;. Finally,
construct the fixed-width confidence interval with Ty = Zi=l bi XN,

Then, it holds as d — 0 that

Po(|[Tw — | <d) >1—a+o0(d?) forall 6. (1.9

In this paper, we give a different method to choose the constant » in (1.7). This method
aims at making it asymptotically second-order consistent with the required accuracy as d — 0,
i.e.,

Po(|Tn —p|l <d) =1—a+o(d?) - for all 6. (1.10)

With such the constant u, the required sample size is drastically reduced when compared with
(1.8). The key is the asymptotic second—order analysis about the risk function. In Section 2,
we show the asymptotic second—order consistency for such the modified two—stage procedure
along with its asymptotic second-order characteristics. Also, we discuss asymptotic Fisher—
information in the modified two-stage estimation methodology. In Section 3, with the help of
the asymptotic second-order analysis, we explore a number of generalizations and extensions
of the modified two-stage methodology to such as bounded risk point estimation, multiple
comparisons among components between the populations, and power analysis in equivalence
tests to plan the appropriate sample size for a study.

2. ASYMPTOTIC SECOND-ORDER CONSISTENCY

Throughout this section, we write that

k “'1
7= min |b|a.,,2|b |Gy fi = |bilos (Zw,-w,-) (G=1,..k).

j=1 j=1
Theorem 2.1. Choose u in (1.7) as u = a(l + v™13) instead of (1.8), where
-1) Ef—l b2S? —
2(X i 16l S: )2

with S2’s calculated in (T1). Then, the modified two-stage procedure (1.6)-(1.7) is asymptoti-
cally second-order consistent as d — 0 as stated in (1.10).

§=1+ (2.1)

Proof of Theorem 2.1. We have from (1.2) that

kg2 -1
Po(|Try — | < d) = ( (Z *") )}
ko -1
(Zf.N:) : (2.2)

Now, let us define a new function as follows. We write

g(ur,ux) = Glav™), v=fiu7'+ -+ foug! foru; >0, i=1,..,k
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Denoting G'(w), G"(w) for the first and second derivatives of G(w) respectively, one can verify
the following expressions of the partial derivatives of g(u,...,ux). For all 1 < ¢ # j < k, we
have that

%9 _ .o =2, —2
O =aG (a/'U)f,'l) u; -,
2
0 = a{aG"(a/v) fiv~4u;* + 2G'(a/v) fRv~3u* — 2G' (a/v) fiv~2u%},
2
3331 = a{aG"(a/v) fifjv*u;?u;? + 2G' (a/v) fifjv~%u]u; %},
10U

From (2.2), we use the Taylor expansion to claim that

N, N,
Po([Tw — p| < d) = Eg {g (5} . F:)}

k N: — C:
=1-—a+aG'( f[iE : -
a+aG'(a) ; 6 ( i )
k 2 .
+5 (00" +26'(@)fF - 26" @) o { (%59) }

+5 Y_(aG"(a)f:f; +2G'(a) fif;) Eo { (Nic_z Ci) (Njgj Cj) }

i#j
+Ee(R), : (2.3)
where
1 Bag N,'—C,' N; - C; Ne—Cg
=) T nattld(50) (6%) (459} e
~ 6 ) (KJZQ <k 6u,8uj6ug| ¢ C; C; C,

with suitable random variables ¢;’s between 1 and N;/C;, i = 1,...,k, u = (uy,...,ux) and

€ = (&,...,&). With the help of Lemmas 5 and 6 in Appendlx we obtain the following
expansion from (2.3):

Po(lTn —p|<d)=1—a

“G'(“) ( —1+5 ZLB +Zf2 G (a) Efz) +o(v™), (2.5)

1—1 i=1

where B; = C;'v and s is a constant such that Eg(sz = s + 0(1). Combining the results that
aG"(a)/G'(a) = (-~a —1)/2 and Z i = k(300 |biloi) "2 + O(d?) with (2.5), we claim
assertion (1.10) as d — 0. o

Remark 1. From Lemma 2 in Takada (2004), the constant u given by (1.8) is coincident
with the one originally given by Takada and Aoshima (1997) upto the order O(v~1). For the

modified two-stage procedure (1.6)-(1.7) with (1.8), by putting s = (a + 2k — 1)/2 in (2.5),
one has as d — 0 that

Po(ITn —pl <d)=1-a
,.9G'(a) kr, + (1 —a)F  b20?
2v (Ei:l ALK

(a +2k -3+ ) + o(d?) for all 6. (2.6)
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Note that § < (a + 2k — 1)/2 w.p.1. The use of (2.1) saves more samples when k is large.

Theorem 2.2. The two-stage procedure (1.6)-(1.7) with (2.1) has as d — 0:

(i) Eo(Ni — Ci) = (25) " Ibilos X5y [bslog + (@ — 1) fi 35—, b2o? + b2o? }
+3(L—kfi) +0(1) fori=1,..,k,

(i) Bo(iy Ni = Xy G) = (2n) H{(Z s Ibilow)* + a i, Bio? } + o(1).

Proof of Theorem 2.2. The results are obtained by Lemma 5 in Appendix straightforwardly.
a

Now, we evaluate the Fisher information in the statistic Ty that is calculated in (T2) with
the constant u given by (2.1). We write the Fisher information in Tiy about u as Fry(u).

Theorem 2.3. The modified two-stage procedure (1.6)-(1.7) with (2.1) has the Fzsher infor-
mation in Ty asd — 0:

FrgW) _ |, Pla+1)TE bo?
Fre(p) 2a7, (8, |biloy)?
where C = (Ch, ..., Ck) 13 defined by (1.4).
Proof of Theorem 2.3. In a way similar to Theorem 2.1 in Mukhopadhyay (2005), we have

that
k262 -1
Frn(w) = {(Z N.t) } - @8

Then, one has that Fr, () = (35, b20?/Ci)~! = ad~2. So, we may write that

-1
Fry (1)
Fal) = {(Zf’N ) } >

From (2.9), we use the Taylor expansion to claim that

21 (159) B -om (25

-+ o(d?), (2.7)

i=1 i=1

+Y b {(B52) (B52) } + s, (210)

i#]

1 83v1 N; — C,' N C Cz
6 1<i<j<t<k 6u.-3uj6u¢ £ Ci Cj C¢ '
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with v = Zl_ fiu7! for u; > 0, i = 1,...,k, suitable random variables &;’s between 1 and
N;i/C;, i =1,..,k, u = (uy,...,ux) and 5 (&1, .--,&k). With the help of Lemmas 5 and 6 in
Appendix, we obtain the following expansion from (2.10):

Frn (1) -1 2 -1
=1+4v s—1+4+ i +o(v™"), 2.12
D Z i+ Z=: £iBy | + o) (212
where B; = C;'v and s is a constant such that Fg(8) = s + o(1). Combining the result that
S, fiBi= kT*(Z,_l |bi|os) 2 + O(d?) with (2.12), we claim assertion (2.7) as d — 0. o

Remark 2. For simplicity, we let k = 1 (b = 1). Then, C = ao?/d?. Under the assump-
tion that Fx, (u) exceeds Fx(u) for every fixed (u,0?), Mukhopadhyay (2005) proposed to
determine the pilot sample size m for Stein’s (1945) two-stage estimation methodology as

m = smallest positive integer such that Fx, (u)/Fx (u) <1+¢ (2.13)

for a prespecified quantity ¢ (> 0) which is free from (u,0?). Mukhopadhyay showed that
Fx, (1) = 072E,2(N) and suggested that one may determine the pilot sample size m as

m = smallest positive integer such that E,:(N)/C <1+¢+o(m™!). (2.14)

Let us write that E;2(N)/C =1+ z/m + o(m™!) with the design constant u = a(l + s/m) +
O(m~2) where z is a constant free from m and s = (a + 1)/2 for Stein’s methodology. If m
is completely free from o2, we should choose m in order O(d®) with ¢ € (—1,0) in order to
specify quantity e free from o2. Then, we have that z = s, so that m = s/e which is exactly
the one given by (3.7) in Mukhopadhyay (2005). Now, let us say ¢ = —0.5 and choose m in
order O(d~'/2). Let us simply write 7 = sd~/2. Then, we have that € = s/m = d!/2. When ¢
is specified as € = 0.1 (0.01), we have that d = 1072 (10™4), so that C should be very large. It
would cause oversampling in the two—stage estimation methodology.

Remark 3. From (2.7), we have as d — 0 that
Frg(1)/Fre(p) < 1+€+o(m™),

with ¢ = (2a7,)"'(a + 1)d?. On the other hand, from (2.12) with s = (a + 2k — 1)/2, which
is coincide with the one for Stein’s (1945) methodology for k = 1, the modified two-stage
procedure (1.6)—(1.7) with (1.8) has the Fisher information in Ty as d — 0:

Fryg (1) d? (

=1+

2%°% b20? + kT,
+2k—3+ i=1 + o(d?). 2.15
Fro (i) Sar (d%) (2.15)

(Xi- lbilos)?

From (2.15), we have ¢ = (2a7.) !(a+3k—1)d?. It should be noted that the ¢ part (redundancy)
becomes small when we utilize (2.1) instead of (1.8).

Remark 4. If we choose u in (1.7) as u = a(1 + v~13) with

2% 8282 + kT,

=1 "1

2T i 16:15:)?

§=1-

(2.16)
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instead of (2.1), the modified two—stage procedure (1.6)-(1.7) has the Fisher information in Ty
asd — 0O

Frn )/ Fro(w) = 1+ o(m™). (2.17)
Then, it holds as d — O:

(i) Eo(N:i — Ci) = (2m) M { |bilos 5y |bsloy — (2355, B20? + km) fi + b2o?
+3+o0(1) fori=1,..,k,

(i) Eo(Tig Ni— i1 Gi) = 2n) (T [bilos)? — 5, o2} + o(1).

. 3. APPLICATIONS

3.1. Bounded risk estimation

Suppose that there exist k independent and normally distributed populations 7; : N,(u;, %),
i = 1,...,k, where u;,’s € RP and X;’s are both unknown, but X;’s are p x p p.d. matrices.
Let X1, X2, ... be a sequence of independent and identically distributed random vectors from
each m;. Having recorded Xii,..., X, for each m;, let us write X;,, = ;-‘_"__1 Xj/n; and
n = (ny,...,n;). We are interested in estimating the linear function pu = Ele bip;, where b;’s
are known and nonzero scalars. Let T, = Ef:x b X in,. For a prespecified constant W (> 0)
we want to construct T',, such that

b]

Eo(||Ta — ul>) <wW (3.1)

for all @ = (u,, ..., gy, X1, ..., Xg), where || - || is the Euclidean norm. Since

k
Eo(||Tn — ll?) = 3 B3tx(s) /ms, (3.2)

i=1

it is easy to see that the sample sizes n which minimize the sum 3%  n; subject to (3.1) are
given as the smallest integer such that

k
me > ABIVAEED Y Ibly/ie(S)) (= Ci, say) (33)

=1

for each ;. :

When p = 1, Ghosh et al. (1997, Chap. 6) considered a two—stage estimation methodology
to satisfy requirement (3.1). Later, Aoshima and Takada (2002) considered the present problem
and gave a different two—stage estimation methodology. Aoshima and Takada showed that
their procedure satisfies requirement (3.1) with fewer samples than those in Ghosh et al. When
applying the asymptotic second-order analysis to the present problem, we give a modified two—
stage estimation methodology to hold the asymptotic second—order consistency as W — 0 as
stated in (3.8): We assume that there exists a known and positive lower bound o3, for tr(X;)
such that

tr(X;) > 0, i=1,..,k. (3.4)
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(T1) Having mg (> 4) fixed, define

k
1
m = max {mo, [L_’V_ mm |b; IUuE!b Ia,*} + 1} (3.5)

i=1

Take a pilot sample X, ..., X;m, of size m and calculate S = (X~ X, Xim)(Xij—Xim)' v
for each m;, where Xm = 370 X;;/m and v = m — 1. Define the total sample size of each =

7 N--—ma.x{ [--|b|\/tr_—z|b|\/trTs_]+1} (3.6)

where u is chosen as u = 1+ v~ with § given by (3.7). Let N = (N, ..., N).
(T2) Take an additional sample X im+1, .-+, Xin, Of size N; —m from each m;. By combining
the initial sample and the additional sample, calculate Xy, = N;7' "M X; for each .

Finally, estimate u by Ty = Ef=1 biYiN.--

Theorem 3.1. Let 7. = min;<i<k |bi|0is 2;;1 |bjloj«, where oy, is given by (8.4). Choose u in
(8.6) as u =1+ v713, where

2% (tr(S2) [(@x(S: ))?) (b2tr(S ) + [6:] /45080 K, 1b,14/4x(S; “) kT,
2 (Th Il VED)

with S;’s calculated in (T1). Then, the modified two—stage procedure (8.5)—(3.6) is asymptoti-
cally second-order consistent as W — 0, i.e.,

Eo(||Twn — p|*) = W +o(W?)  for all 6. (3.8)
Proof of Theorem 3.1. We have from (3.2) that

~

§=

3.7)

Eo(|Tn — pll)* =Eo (Z bftr(zi)/Ni)

i=1

=WE, (Z fire ) ,

i=1

where f; = |b;|\/tr(X;)/ 21_1 |6;]+/tr(2;). Use the Taylor expansion to claim that

E, (Zf,%) =1- Zf,Eg (N C) + if.Eo { (ﬂ—é—g) } +Ep(R), (3.9)

where Eg(R) = — Y fiE, {&*C73(N; — C:)®} with suitable random variables &;’s between
1 and N;/C;, ¢ =1,...,k. One may apply Lemma 6 in Appendix to claim that Eg(R) = o(v~1)

as W — 0. With the help of Remark 12 in Appendix, we obtain the following expansion from
(3.9):

Eg(Zf, )=1+%gﬁ( 2s — B; +A.( >+Ef, ( >)+o(u‘1),

i=1 Jj=1
(3.10)
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where A; = tr(X2)/(tr(%;))?, B; = vC; !, and s is a constant such that Eg(3) = s+0(1). From
(3.10), we obtain (3.8) straightforwardly. O

Remark 5. Aoshima and Takada (2002) gave a two-stage estimation methodology to satisfy
requirement (3.1) without assumption (3.4). In their methodology, the constant u is given by
u=v/(v—2)=1+2/v+0(2). From (3.7), note that § < 2 w.p.1. The use of (3.7) saves
more samples when k is large.

3.2. Multiple comparisons among components
Suppose that there exist k independent and normally distributed populations m; : Np(u;, ),
i=1,..,k where p > 2, and pu,’s € RP and X;’s are both unknown, but X; = (o()rs) (> 0)
has a spherical structure such that
O(yrr + O(i)ss — 20(iyrs = 2(5? (1<r<s<p) (3.11)

with §; (> 0) unknown parameter for each 7;. A special case of such the model is the intraclass
correlation model, that is, £; = 02{(1 — p;)I, + p;J} for some p;, where J denotes a p X p
matrix of all 1’'s. We consider multiple comparisons experiments for correlated components of
U= Zf=1 bips;. Let us write p = (&1, ...,&p). Similarly to Section 3.1, we use Ty, = E?=1 bi X in,
as an estimate of u. Let us write Ty, = (Tin, ..., Tpn). For a prespecified constant d (> 0), we
define three types of simultaneous confidence intervals for (¢, ...,&p):

(MCA) R, = {“' &—& € [Trn"Tsn“da Tin “‘Tan+d]a 1<r<s Sp};

(MCB) R, = {Ml & — max§, € ["(Trn —max Ty, — d)_, +(Trn — max T,n + d)+]1

s#r s#r s#r

r=1, -'-7p}a
where +z7 = max{0,z} and —z~ = min{0, z};
MCC)Ry={u| & —& € Trn—Tpn—d, Trn — Tpn +d), r=1,..,p—1}.

For the details of these multiple comparisons methods, see Aoshima and Kushida (2005) and
its references. For each of them, for d (> 0) and « € (0, 1) both specified, we want to construct
R, such that

Po(u € Ry) 21— a for all @ = (p,, ..., g, 1, ...y Ti) (3.12)

with X;’s defined by (3.11).
It is shown for MCA and MCC that

k -1
Po(p € Ry) =G,y (d’ (E 92-‘?1) ) , (3.13)

i=1 "

where Gp(y) for y > 0 is defined by
Go) =7 [ {#(z) - 8z = VE)PdB(a) (for MCA), (3.14)

G,(y) = f_ " (8(z + VB) - B(z — v/5)}*'d0(z) (for MCC) (3.15)

with ®(-) the c.d.f. of a N(0,1) random variable. It is shown for MCB that

X -1
Po(p € Rp) 2 Gy (d"’ (Z %‘f) ) ) (3.16)

=1
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where
y) = /_ {2z + /7)) dd(). (3.17)

So, the sample sizes n that minimize the sum Zle n; while satisfying requirement (3.12) are
given as the smallest integer such that

n; > dzlb |6; Z |6;16; (= C:, say) (3.18)
for each m;, where a (> 0) is a constant such that G,(a) = 1 — a with Gp(-) defined for each
method by (3.14), (3.15) or (3.17), respectively.

When applying the asymptotic second—order analysis to this problem, we give a modified
two-stage estimation methodology to hold the asymptotic second—order consistency as d — 0
as stated in (3.23)—(3.24): We assume that there exists a known and positive lower bound o3,
for é; such that

6; > Oir, t=1,...,k. (319)
(T1) Having mg (> 4) fixed, define
a
m = max {mo, [dz mln |b; |a,*; |b; IaJ*] + 1} (3.20)

Take apil_ot samg_l_e X = (Xij1, - Xijp)y § =1, ...,m, and calculate S, » =Yy L Y (X
—Xij. — Xir + X;.)? with v, = (p — 1)(m - 1) for each m;. Here, X, = p™1 3 P_ Xijr,
Xir=m 1Y, Xyjr and X, = (pm) "1 3P, S| Xyjr. Note that 1,5%,/62 is distributed as

a chi-square distribution w1th v, d.f. Deﬁne the total sample size of each m; by

N; = max {m, [%lbilsip Z ijlsjp] + 1} ’ | (321)

j=1

where u is chosen as u = a(1 + v, '3) with a given for each method and 3 given by (3.22). Let
N = (N1, sesy Nk)

(T2) Take an additional sample X;m41, ..., X;n, of size N; —m from each m;. By combining

the initial sample and the additional sample, calculate X;n, = N;! J—1 X; for each ;. Fi-

nally, for each method, construct Ry with the components (Tin, ..., Tyn) of Ty = Zi=1 b; XN,
The following theorem can be obtained similarly to Theorem 2.1.

Theorem 3.2. Let 7, = mini<;<x |b;|0is E;f:l |bjloj., where oy, is given by (3.19). Choose u
in (3.21) as u = a(1 + v, '8) with a given for each method, where

GI’
2“0“2% +1) XL, b2S% + k(p — D)

2(3001 [6:]Sip)?
with S2,’s calculated in (T1). Then, the modified two-stage procedure (8.20)-(8.21) is asymp-
totzcally second-order consistent as d — 0, i.e.,

Ps(pe RN)=1—a+o0(d®) forall 8 (MCA, MCC); (3.23)
Pe(pe RN) 21 —a+o(d®) forall @ (MCB). (3.24)

§=1-

(3.22)
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Remark 6. The two-stage estimation methodology (3.20)-(3.21) was given by Aoshima
and Kushida (2005), but they chose the constant u in (3.21) as u = a(1 + v, 's) with s =
k —1—aG})(a)/G,(a). For a nominal value of a, note that aG},(a)/Gp(a) < —1. Then, from
(3.22), we have that § < s w.p.1. The use of (3.22) saves more samples when k is large.

3.3. Testing for equivalence
We consider the problem to test the equivalence of two independent normal populations
m;: N(ui,02), i = 1,2, with g;’s and 0?’s both unknown. We want to design a test of

Ho:|u| = — pol 2 d against H,:|u| <d (3.25)

which has size a and power no less than 1 — 3 at |u| < 7d for all @ = (u, p2,0%,02), where
a, B8 €(0,1), v € [0,1), and d > O (the limit of equivalence) are four prescribed constants.
So, the two populations are deemed to be equivalent if the mean difference between the two
populations is smaller than d. Let us write 7(—,-,,,. = ;"zl Xij/ny, © = 1,2, similarly to Section

1. If 0?’s had been known, we would take a sample from each 7; of size

2
n; > -3—22—01—203- (=G, say) (3.26)
Jj=1

and test the hypothesis by

_ 2 1/2 2 5 -1/2
rejecting Hy <= |Xin, — Xon,| < (Z gci,) R (d (Z UC—‘) - %@) (3.27)
i=1 * i=1 ¢

Here, the function R(-) is determined uniquely by the equation
P(IN(0,1)+ z| < R(z)) = a (3.28)

with N(0,1) a standard normal random variable, and § = §(¢, 3,7) is the unique solution of
the equation

P(IN(0,1) + 6| < R(8)) = 1 — 8. (3.29)

When o?’s are unknown but common (o7 = 02), Liu (2003) proposed k (> 3)-stage proce-
dure having the size o + o(n™!) and the minimum power 1 — 8 + o(n~'). When applying the
asymptotic second-order analysis to the present problem, we give a modified two—stage pro-
cedure to hold the asymptotic second-order consistency, which has the accuracy of the same
degree as in Liu, as stated in (3.36): We assume that there exists a known and positive lower
bound o;, for o; such that

0i >0, 1=1,2. (3.30)
(T1) Having mg (= 4) fixed, define
52 2
m = max {mo, [ﬁ 1?3%12 Oix ,2; aj*] + 1} . (3.31)
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Take a pilot sample Xj1, ..., X;,,, of size m and calculate S? = Z;n=1(Xij ~Xim)?/v withv = m—1
for each ;. Define the total sample size of each m; by

N; = ma.x{ { i ]+1} (3.32)

where v is chosen as u = 6%(1 + v~13) with § given by (3.34).

(T2) Take an additional sample X, 1, ..., Xin, of size N; — m from each ;. By combining
the initial sample and the additional sample, calculate X; iN, = N; -1 E;——l Xi; for each ;. Then,
test the hypothesis by

rejecting Ho <= |[X1n, — Xong| < VA—— dR(J) (3.33)

where ) is chosen as A = 1 + v~ with £ given by (3.35).

Theorem 3.3. Let 7. = mini<;<2 |b;|0is }:L] |bj|oj., where oy, is given by (3.80). Choose u
in (3.82) as u = 6%(1 + v~13) with

,_152 T,
22,82 (5, 8)

+ (6(e1) + ¢(e2)) (iP(m) + 13 (m2)) — ($(m) + d(me))(e3(e1) + e3d(e2)) 353, 52
(¢(e1) + é(e2))(me(m) + meé(m2)) — (B(m) + B(m2))(e18(e1) + 28(e2)) 2(32, Si)?’

where ¢(-) is the p.d.f. of N(0,1), &, = R(6) =6, ep = R(8)+46, m = R(8)—~6, 2 = R(8)+79,
and S?’s are calculated in (T1). Choose Ain (8.38) as A = (1 + v~1%t) with

¢ = (E19(e1) +€56(€2)) (MP(m) + mep(m)) — (e18(€1) + E29(€2)) (EB(m) + Mb(m)) T3, S?
2R(5) {(8(e1) + p(e2))(me(m) + m20(m2)) — (e16(€1) + 200(e2))(B(m1) + B(m2))} (T2 _(1 ))’
3.35

§=1-

(3.34)

where S}’s are calculated in (T1). Then, the test (3.38) of (3. 25), with (3.31)~(3.32), is asymp-
totically second-order consistent as d — 0, i.e.,

size=a + o(d®) and minimum power=1— 8+ o(d®) for all 6. (3.36)

Proof of Theorem 3.3. From (3.33), we have the size at |u; — ua| = d that

{ ((IR(J) ? (; "% )‘1/2) } ~ Eo {‘I’ (—(\/XR(cs) + ) (22: f%) _1/2) }

=@ (e1) — <I>(—€2)+——51¢(51) (2 4+ 280) R(5) 2+z 1B, +Z 52 +€1a; ((el)))

+ -‘:—V€2¢(€2) (2 + 2——- -2+ Zf,B + Zf, + &2 ¢(52))) + Eg(R), (3.37)
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where ¢'(-) denotes the first derivative of ¢(-). Similarly, we have the minimum power at
|1 — pa| = ~d that

2 o -1/2 c. -1/2
E.,{@(m(a)—m(szf) )}-E{ (Mmama)(zf. ) )}
i=1 t i=1

=& (m)—®(-m) + Zl;nub(m) ( (6)t -2+ }:f,B + Efz +m z((”l)))

1 2R(6 )
+ ;4—1;772¢(772) (23 + —n-i-—)-t -2+ ;1 f:B; + ; 2+ 7]2%-(%’-22)2) + Eg(R). (3.38)

Here, in both (3.37)—(3.38), s and t are constants such that Eg(3) = s+0(1) and Eg(f) = t+o(1).
One may apply Lemma 6 in Appendix to claim that Eg(R) = o(v~!) as d — 0 in (3.37)—(3.38).
Note that ®(e1) — P(—¢2) = o and ®(n;) — ®(—n2) = 1 — 3. The assertion (3.36) can be shown
straightforwardly. m]

Remark 7. Let us consider the case that our goal is to design a two-sided test of

Hy:p=p —p2=0 against Hy:p#0 (3.39)

which has size a and power 1— 3 at |u| = d for all @, where a, 8 € (0,1) and d > 0 are three
prescribed constants. If 0?’s had been known, we would take a sample from each ; of size

2
ni 2 C2(3£ﬁ)0iz:0j (3.40)

and test the hypothesis by

C - =~ dza/2
rejecting Hy <> |X1m - in,I > c(cx_c:/ﬂ)-’ (3.41)
where 2, is the upper z point of N(0, 1), and ¢(a, 8) (> 0) is the unique solution of the equation
P(IN(0,1) + c(a, B)| > zas2) =1 —B. (3.42)

One may utilize the two—stage procedure described above for this goal as well after replacing
(6, R(6), v) with (c(a,B), 242, 0), respectively, in (3.31)-(3.32) and (3.34)-(3.35). Then, the
test of (3.39), given by

rejecting Hy <= [Xin, — Xony| > VIA—22 ((lza/;) (3.43)

is asymptotically second—order consistent as d — 0 as stated in (3.36).

Remark 8. Let us consider the case that our goal is to design a onée—sided equivalence test of

Hy:p=p —ps < —d against H,:pu>—d (3.44)
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which has size o and power no less than 1 — 3 at u4 > —~d for all 8. So, one wants to
demonstrate that a treatment is no worse than a standard or one treatment is no worse than
another treatment in paired comparison by amount d. If 0?’s had been known, we would take
a sample from each m; of size

2 2 -
Zo — Zl_ﬁ)
2| —————)] o; o, 3.45
(5=50) =%e (349
and test the hypothesis by

rejecting Hy <= Xy, — Xon, > —d (M) . (3.46)
Za — 21-8

One may utilize the two—stage procedure for this goal as well. Replace 62 with (2o —2,-5)%/(1—
v)? in (3.31) and in the choice of u of (3.32). Choose

2
. 52 T
§=14(L2+22 s+ 2zaz1_5— 1)-—2‘=1 e — -, (3.47)
i AT 8P (Tia 897
N 1—17r 22 S2
t = 2421-6(2o4 + 21— L Sk T 3.48
e A e AT, S 349
Then, the test of (3.44), given by
rejecting Ho <= Xin, — Xan, > —VAd (?“L;-‘:ﬁ) (3.49)
a T ~1-8

with A = 1+ v7}{, is asymptotically second-order consistent as d — 0 as stated in (3.36).

4. APPENDIX

Throughout this section, we write that
k k
i = |biloi 305 Ibiloy, Y= [bilSi 305, 15515

for i = 1,...,k. From (1.4), we write that C; = a7;/d?>. Let d (> 0) go to zero thorough a
sequence such that ar,/d? always remains an integer. Then, from (1.6), we may write that
m = ar,/d?. We note that vS?/0?, i = 1, ..., k, are independently distributed as a chi-square
distribution with v d.f. Let W}, ¢ = 1, ..., k, denote random variables such that vW;, i = 1, ..., k,
are independently distributed as the chi-square distribution with v d.f. Let w; = W;—1. Then,
we have that S? = 02(1 + w;), and E(w;) = 0, E(w?) = 2v7!, E(w?!) = O(v™*) and
EW?*) =0@w™), t=1,2,..

Lemma 1 For each i, we have as v — oo that

Eo(|Y; - ) = O(v™*?) (t22).
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Proof. We write that
SiS; — 0i0;
=0'i0'j{(\/1 + w; — 1)(\/1'{"0)_7' - 1)+(V1+w1‘— 1)+(\/1+UJJ'—1)}.

By noting that Eg([(1 + w;)¥/2 — 1|t) = O(v~*/2) (t > 2), we have that Eg(]S:S; — a,a,l ) =
O(v=*?) (t > 2). Hence, it holds that

k
> 1Bil[b1(S:S; — 0307)

=1

t
Eo(|Y; — il*) = Eg ( ) =0w?) (t>2).

The proof is completed. _ ]

Remark 9. As for (3.6), let 7; = |bi]/tr(X;) Z;?:l |bj]4/tr(X;) and Y; = |b;|/tr(S;) }:;‘:1 |b;]
\/tr(S Let W;;, @ = 1,...k; j = 1,...,p, denote random variables such that vWi, @ =

. k; j=1,..,p, are mdependently dlstnbuted as a chi-square distribution with v d.f. One
may write that tr(S ) = tr(X;) + E,_l ii(Wi; — 1), where )\;;’s are latent roots of ;. Then,
we can obtain the same result as in Lemma 1 for (3.6) as well.

Lemma 2. For the two-stage procedure (1.6)-(1.7) with (2.1), we have as d — 0 that
u

Ee (N‘- - [Ez'y‘] - 1) = 0(d).
Proof. Let I{n,—m) be thé indicator function. Then, we have that
Bo (N [57] -1) = £ {fnem (n~ [59] 1))
< \/Pg(N.- = m)Ee {(m - [%Y] - 1)2}. (a1)

Then, it follows that

uts _ 1! +c;1)6}. 4.2)
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Here, (4.3) follows from the result that for any z (> 0) and y (> 0) such that z +y = ¢ (> 2),
we have from Lamma 1 that

Eo(lY; — nl*lv'8Yi") <V Eg(IY: - ml*®) Ee(Jv ' 8Yi%)
=0 (V—(z/2+u)) =0 (U~(t/2+y/2)) .

By combining (4.3) with (4.2), we have that
Py(N; = m) = O(d®). (4.4)
The result can be obtained in view of (4.1) and (4.4). ]

Lemma 3. Let q (> 0) and h (> 0) be constants. For a fired b (> 1), let X3, denote a
chi-square random variable with bv d.f. Then, we have as v — oo that

1
B(eXo, ~ h~ [gXa, — H)) = 1 + O™,

Proof. Let U = qXy, — h — [¢Xy, — h]. Then, we have for z € (0,1) and z; € (0, z) that

PU<z)=) PU<z i<qXp—h<i+l)
=0

=) P(i<qXp—h<i+z)
i=0

i

T ) i+h+x,~)
== RS 4.5
q“ b"( q (45)

where Fj,(-) is the c.d.f. of a chi-square random variable with bv d.f., and F}, (-) denotes the
first derivative of Fy,(-). Since m > 4 and b > 1, we have that by > 3. Here, there is at most

one constant ¢ (= bv — 2) satisfying sup, F},(z) = FJ (c), z > 0. If (h+ z;)/q < bv — 2, there
exists integer ¢, such that (i, + h +z;)/qg < bv — 2 < (i, + 1 + h + x;)/g. Then, we have that

7] i+h+z‘ (z <z )
i+1 R b ( q ) */
/ ' (f_t’“r_x) dz >
[

by
q ; . o '
Fl, (:&:ﬂ.) (i >4, + 1).

R, (f) dz+ L (z,+h+a:.»)
; q q

Fy, (3) dz + sup F}, (2). (4.6)

Hence, it follows that
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If (h+ z;)/q > bv — 2, we have that

‘ v itlihizg i < i),
/z+1FI <Z+h+$z)dz< b”( ‘ ) ( )
bv =
i q ; ) c s
F}, (’”‘q z ) (1 =i +1).

Hence, it follows that
© i+ h +
F’,( )dz—su FlL(2) < F,,('——-—i). 4.7
_/h o b pFy(2) < Z; b B, (4.7)

Combining (4.6) and (4.7) with (4.5), we have that

z—zF, (h-;:v,-) - -z-supF,j,,(z) <PU<z)
z .

h+$i

<z-zF, ( ) Esup (z) (4.8)

For the second term in (4.8), it is expanded as

£ (h+:z:,-) h+z; v (h), (4.9)

q q q
where h] € (0, h + z;). For the third term in (4.8), it is evaluated by Stirling’s formula that
sup F (2) = Fl(bv — 2) = O(r~/?) as v — oo. (4.10)
Z

By combining (4.9) and (4.10) with (4.8), we have that

PU<Lz)==x ic—(h$:ﬁ(f,,(q>—}—0( ~1/2) a8 v — o0.

Then, from the fact that F}, (k!/q) < sup, Fj,(z) = O(v~'/2), we obtain that
PU<z)=z+0Ww?) as v — . (4.11)
It completes the proof. (]

Lemma 4. For the two-stage procedure (1.6)-(1.7) with (2.1), we have as d — 0 that

{d2|b|S 3 [b1S; - {dzws 3 Jbs |S]}=%+O(d).

j=1 j=1

Proof. Let X, = VZ‘-1 W; and V; = vW; /Xy, i = 1,...,k. Then, X}, is distributed as the
chi-square distribution with kv d.f,, V; is distributed as the beta dlstnbutlon with parameters
v/2 and (k — 1)r/2, and X}, and V (", ..., V&) are independent. We write § as

N (a — 1)Ba?V; 5, b302V; _ YlaVikr,
277 X 72’

@®>
Il
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where Z,' = |bi|01\/‘—/;z.l;=l |bj|0’j\/T/;. Then, we have that (U/dz)'b.,ls, Z;:l IinSJ = (U/d2V)
Xy Z; where

uXy, Z; —x % 1+ _1_ 1+ (a—1)b2a?V; Z;:l b?”?VJ _ ab?a?V}kr;
d?v "Ry v 222 2d?2Zyv
Let us denote
aZ; 1 (a— 1)bFo2V; 35, bla?V; ab?o2Vikr,
Q—d211 {1+;(1+ 223 ’ H-—_m,l/— (412)

Then, we have that (u/d?v) Xy, Z; = QX — H. Let U = (QXiww — H) — [@X), — H]. From
Lemma 3, the conditional distribution of U, given V =7 (H = h, Q = q), is given for z € (0, 1)
that

- . A
R(U <al? =92 0= 2B g (B) 20 50)

z(h + z;) F

Po(U <7 =9) < 2 o (5) + ZowAe)

k7./(2min <<k b20?) (= ), and 1/Q < 7./Z; < 7./(b202V;). Then, we have Ep(z;/Q) <
(1«/b202)(kv — 2)/(v — 2). Here, H/Q is uniformly integrable since |H/Q| < =, and 1/Q is
uniformly integrable since [1/Q| < 7./(b?0?V;) with 7./(b?02V;) being uniformly integrable.

From (4.10), one can yield that

Ep {ﬂg- :, (%)} < F {Hg‘”‘ sup F, (z)} ~ 0(d),

Bo { £ ()} = 0(0),

where H! € (0, H + 7;). From the fact that Eg{Ps(U < z|V = ¥)} = Pe(U < z), we obtain
that

where z; € (0,z) and h} € (0,h + z;). We evaluate that H/Q < kr*/(ZZ;-’:l b2o?V;) <

Po(ULz)=2+0(d) as d— 0. (4.13)
Hence, U is asymptotically uniform on (0,1) as d — 0. The proof is completed. a

Remark 10. When § is given by (2.16), one may write that

: b202V; SF_ 6202V 252V
Q=;221: {1+%<1— APV EL i ’)} H = Si0iVikT (4.14)

Z? 2d2Z,'l/
When 3§ is given by (3.34), one may write that

5Z; 1 (3: = D¥olVi 35, b3V, 5°b202Vir,
-E{H-(H 27  H=— (4.15)
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with
_ (¢(e1) + B(e2)) (mid(m) + M3 (n2)) — ($(m) + d(m2))(e3P(e1) + €38(e2))

= . 4.16
" (d(er) + $(€2)) (me(m) + md(m2)) — (¢(m) + B(n2)) (e16(e1) + £20(e2)) (4.16)
When § is given by (3.47), one may write that
- - 1)b?0?V; b2o?V;
Q= Zq — 218 Z 1 + 1+ (80 ) 22:_, =1 050 ,
l1—7v v 2Z;
Zoa—21-8\ bioiViT,
= 4.1
7 ( 11—~ ) d?Zv ( 7)
with so = 22 + 2}_5 + 2421-p. When § is given by (3.7), one may write that
_ Zr, L2 EJ_ A; (sz? + ZLj) N b?L:"k'r*
Q= W {1 + = ( ZL , H= ———-—-—2WZL‘V, (4.18)

where L; = \/E§=1 AiiVij, Ay = '\2 VQ/(Z /\ij";j)za Zy, = |bi|Ls ZJ-1 lbj|Lja and V;;
denotes a beta random variable havmg parameters v/2 and (k — 1)v/2. When § is given by
(3.22), one may write that

GY (a) ’
aZs; 1 ( 0G@ T 1) b263 Vi z j=1 b?&fV ab?62Vpik,
Q= o 1+ —11- y H= 22—

Zai 2d225iV ! (4.19)

Vp Vp

where Zs; = [bi|6i\/Vpi 35—, [bil6;1/Vp; and Vs denotes a beta random variable having pa-
rameters v,/2 and (k — 1)y,/2. Note that, for nominal values of a and 8, it holds that

> —1 in (4.16) and Gj(a)/G,(a) < 0 in (4.19). We can evaluate that Ep(1/Q) = O(1)
and Eo(H/Q) = O(1) for @’s and H’s described above. Hence, the result similar to Lemma 4
is obtained for those cases as well.

Remark 11. When the design constant is defined as a constant, the asymptotic uniformity
of P(U < z) was studied by several authors. See Hall (1981) for k = 1 and Takada (2004) for
k>2.

Lemma 5. The two-stage procedure (1.6)—(1.7) with (2.1) has as d — 0:

(i) Ee{C;Y(N; — C))} = (w)}(2s — 1 + f; + B;) + O(d®),

(i) Eo{C;*(N; — Ci)?} = ()} (L + 2fi + iy £3) + O(),
(iii) Eo{C;'(N; — C)C7 (N; = C))} = (2v) M (fi+ fi + Tian f3) + O(P) (i #5);
where B; = v/C; and s is a constant such that Eg(8) = s + o(1).

Proof. Let us write that

N; =rCT; + (1 + [rCTi] — rCT;) + (N; — [rCT) - 1),
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where 7 = u/a = 1+ v '3 and T; = 77 'Y;. Here, from Lemma 4, U; = 1+ [rC;T}] — rC/T; is
asymptotically distributed as U(0,1). Let D; = N; — [rC;T;] — 1. From Lemma 2, it follows
that E{(D;/v)°} = O(v~%2) as d — 0, where c (> 1) is fixed. Then, we have that

C7Y(N; — C) = (rT; = 1) + v 'BU; + C71D;. (4.20)
By noting that Eg(3) = s + 0(1), we obtain the following results:

Eo(rT; = 1) = (2v) Y (2s =1+ f;) + kO(d“),

Bol(rTi = 1)} = @) (1 42/ + 3 f) + O, (4.21)
Eo{(rTs — 1)(rTy — 1)} = 20)"(fi 4 f; + Z 1) L) (i #7)

Let us combine these results with the expectations of (4.20). Let U; = U + €;, where U is a
U(0, 1) random variable and ¢, is the remainder term. Then, note that (E{(rT; — 1)v~1¢;})? <

E{(rT;—1)*}E(v~2¢3) = o(v=2) so that E{(rT;—1)v~'¢;} = o(v~*/2). The results are obtained
straightforwardly. a

Remark 12. For the two-stage procedure (3.5)—(3.6) with (3.7), we have as W — 0 that
() Eo{Ci"(N: — Ci)} = (20) {25 + By + Ai(fi — 05) — 0.5 X5, f;4;} + O(W™2),
() Bo{Ci2(N: — C)?} = (2v) A1 + 2) + oy F2A;} + O(WH2),

where A; = tr(2?)/(tr(X:))?, Bi = v/C;, and s is a constant such that E(3) = s + o(1).

Lemma 6. For the two-stage procedure (1.6)-(1.7) with (2.1), one has asd — 0 that Eg(R) =
o(v™1) in (2.4).

Proof. 1In order to verify this lemma, we have to deal with the terms such as Eg(L;), Eg(I;;)
and Eg(1;je), where

I = 639| Ma I..=_63L| MQ u>
! u=§ C; ’ Y BufauJ u=§ C; Cj ’

I" _ 639 | (Ni—C,-) Nj—-Cj) (Ng—Ce)
it = Bu,-(?u,-aug u=¢{ C; Cj Ce

forall 1 <i < j < €< k. Note that each third—order partial derivative’s magnitude can be
bounded from above by a finite sum of terms of the type

Aél—l’l 2‘?2 e E’:Pk

with A > 0, p, > 0, r = 1,...,k, which are independent of d. Let A also denote a generic
positive constant, independent of d. Let us write N} = C;}(N; — C;) for i = 1,...,k. Then, we
obtain that

|Eo(L:)| < AEg(§;7 &7 - - - £ INFP). (4.22)

We observe that & > C7'm = 777, w.p.1foralli = 1,..., k. Also, we observe that Eg(|N}|3) =
O(v~%/%) since Eg(]N*|4) = O(u‘z) from the facts that Eg{(rT- - 1%} = O(v™?), Eo{(rT; -
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1)} = O(r~?) and so on together with (4.21). Hence, from (4.22), it follows that |Ee(I;)| =
O(v=3/%).

Similarly, one may use the facts that Eo(|N}|*|N}|) = O(v~%2) and Ea(|N;||N;|IN;)
O(v=3/2) to show that |Ee(l;;)| = O(v~¥?) and |Ee(Iije)l = O(v™3?) for 1 <i < j < €< k.
Therefore, we conclude that Eg(R) = O(v=3/2) = o(v1).

o
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