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THE SPECTRAL FUNCTION AT A MAXIMUM OF THE POTENTIAL

IVANA ALEXANDROVA, JEAN-FRANGQOIS BONY, AND THIERRY RAMOND

1. INTRODUCTION AND STATEMENT OF RESULTS

We study the structure of the spectral function of the Schrodinger operator with short range
potential at an energy, which is a non-degenerate maximum of the potential. We prove that it
is semi-classical Fourier integral operator quantizing the incoming and outgoing Lagrangian
submanifolds associated to the fixed hyperbolic point. We then give the oscillatory integral
representation of the spectral function implied by this result.

More precisely, we work in the following setting. We consider the operator
P(h) = —%h2A+ V,0<h<l,
where V € C®°(R™;R), n > 1, is a short range potential, i.e., for some p > 1 and all € N"
1) 02V (2)] < Ca(l +|lzfl)~*71l, z e R™.

Then P(h) admits a unique self-adjoint realization on L?(R™) with domain H?(R™), the semi-
classical Sobolev spaces of order 2 (see Appendix A). Denoting by {E)} the spectral family of
P, we shall use e), for the Schwartz kernel of E for A > 0. The Limiting Absorption Principle
states that in B (LZ(R"), L% ,(R™)), where LZ(R™) = {f : f(-)* € L}(R™)}, a > 1, the limit
R()\ +10,h) ef limgjo (P(h) — (A £ i€)) ™" for X > 0 exists.

We let p(z, &) = 1]|€||2 + V(x) denote the principal symbol of P(h) and denote its Hamil-
tonian vector field by Hp = Z;.‘___l (3‘9-55% - %3%) . An integral curve v of H, will be called
a trajectory and will be denoted ~(-; zo, £0), if (z0,&) € T*R"™ are its initial conditions. We
recall that

Definition 1. The trajectory v (-; o, €0) i8 non-trapped if im;_,+o ||z (¢; Zo, &0)|| = co0. The
energy A > 0 is non-trapping if for every (xo, &) € T*R™ with %"50“2 + V(xz9) = \ we have

limt—o:l:oo ”x (t; Zo, EO)” = 0.
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We refer to the Appendix for the relevant parts of semi-classical analysis used throughout
this paper.

The structure of the spectral function for Schrédinger-like operators has been studied ex-
tensively. Popov and Shubin [14], Popov [13], and Vainberg [18] have established high energy
asymptotics for the spectral function of second order elliptic operators under the non-trapping
assumption.

Robert and Tamura [17] consider the spectral function for semi-classical Schrodinger oper-
ator with short range potentials and establish asymptotic expansions at fixed non-trapping
and non-critical trapping energies in the sense of a distribution.

The microlocal structure of the spectral function has also been analyzed. In [19, Theorem
XIL.5] Vainberg establishes a high energy asymptotic expansion of the spectral function for
compactly supported smooth perturbations of the Laplacian assuming that the energy 1 is
non-trapping. This asymptotic expansion is expressed this in the form of a Maslov canonical
operator K ) associated to a certain Lagrangian submanifold A = A, C T*R™ and acting on
another asymptotic sum in A. The Lagrangian submanifold A, consists of the phase trajecto-
ries at energy 1 of the principal symbol of A passing through a fixed base point z(0) = y, while
the terms of the asymptotic sum on which K, ) acts solve a recurrent system of transport .
equations along the phase trajectories of the system.

Gerard and Martinez [10] prove that the spectral function for certain long-range Schrodinger
operators at non-trapping energies )\ is a semi-classical Fourier integral operator (h-FIO)
associated to (User graph exp(tHp)|p—1( A))'. Near the diagonal {(z,¢; z,£) : p(z,£) = A} they
also give the following oscillatory integral representation of the spectral function

1
(2mh)™

ex(z,y,\h) = /s . e{?“’(””"""\)a(z,y,w,)\)dw,

where ¢ is such that (gﬁf)z + V(z) = X and %2

T

vy = VAT V@, oy =0

In [1] the first author has proven that the spectral function restricted away from the di-
agonal in R™ x R™ at non-trapping energies, and at trapping energies under the absence
of resonances near the real axis, is an h-FIO associated to (UJ, graph exp(tHp)lp-102)) U
(Ut‘__':z(‘, graph exp(th)lp_l(A))’ for some T > 0 near a non-trapped trajectory. Under a cer-

tain geometric assumption [1] also gives an oscillatory integral representation of the spectral
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function of the form

ex(z, 9, \) = / ehS @¥a(z,y, t)dt,
where S(z,%,t) = [i;2.) HIE®I? — V(z(t)) + Adt is the action over the segment i(2,z,y) of
the trajectory which connects  with y at timet¢ and a € S;lf':l (1).

Hassell and Wunsch [11] have studied the structure of the spectral function on compact
manifolds with boundary equipped with scattering metrics. Their result roughly says that
the spectral function is an intersecting Legendrian distribution.

Here we study the structure of the spectral function under the following additional assump-
tions: |

(A1) V has a non-degenerate global maximum at z = 0, with V/(0) = E > 0 and
no 32
V(z)=E - Zl —éf-zﬁ +0@), z—0,
where 0 < A1 € X2 L... S Ao
(A2) {(z,€) € p~(E) : exp (tHp) (,€) = o0 as t — oo} = {(0,0)}
Then the linearized vector field of Hy, at (0,0) is

0 I
d(O,O)HP = . 9 9 .
diag(Af,...,As) O
Therefore, by the Stable Manifold Theorem, there exist Lagrangian submanifolds Ay C

T*R" satisfying
Az = {(z,§) € T*R" : exptHp(z,£) — (0,0) as t — Foo}

(see Figure 1).

To state our main theorem, we further recall from [12] that if py € Ay and v2(5p+) =
(+(5 p2),€£(5 p2)) & (5 p1), then for some gx € C® (R?") and ¢ > 0, z(t;pz) =
g4 (ps)etMt + O(eXP1+o)t) as t — Foo. We let Ay = {(z,€) € Ax : g_(z,€) = 0} and recall
from [7] that dim f\* = n — m, where m o #{j: A\ =N}

We also set Ax(pz) = {p+ € Az : {9+ (p£), 9% (p5)) = 0}.
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FIGURE 1. The incoming A_ and outgoing A_ Lagrangian submanifolds.
Our main result is the following

Theorem 1. Microlocally near (p4,p-) € At \ Ay(p-) x A_\A_, the resolvent R(E +10) €
1— P AR

I, B (R A, xA).

Similarly, microlocally near (o, p4) € A_\A_(p4) x Ay \ Ay, the resolvent R(E —10) €

E”alx'
1~
IR (R A xAL).

Remark. If A2 > /}1, then A, (p_) = A, and
R(E +1i0) € 1,1,‘&’:‘11_1 (Rzn,A+ \Ay x A_ \A_) .

The structure of the resolvent in various settings has been studied in [3], [4], and [11].
For compactly supported and short ra.ngé potentials, the resolvent has been shown to be a
h-FIO associated to the Hamiltonian flow relation of the principai symbol of P restricted to
the energy surface in [3] and [4]. Hassell and Wunsch [11] identify the Schwartz kernel of the
resolvent on a compact scattering manifold with a Legendrian distribution.

Using Stone’s formula

dE,

—2(B) = 2im (R(E +i0) — R(E — i0)),

we now easily obtain from Theorem 1 the following



18

Corollary 1. Microlocally near (p—,p+) € A~ '\ A x Ar\ K+(p_), the spectral function
1...2_:1'%&; .
eg €I, M (R¥7™AyxA).
Microlocally near (p4,p-) € Ay \ Ay x A_\ A_(py), the spectral function
1— E"j=1 Aj
e €I, ™ (R¥,A_xAy).

We now introduce some of the notation we shall use below. For a sequentially continuous
operator W : C°(R™) — D’'(R"™) we shall denote by Kw its Schwartz kemel.. On any smooth
manifold M we denote by o the canonical symplectic form on T*M and everywhere below
we work with the canonical symplectic structure on T*M. If C C T*M; x T*M,, where M, iy
j = 1,2, are smooth manifolds, we will use the notation C’ = {(z,&;y,—) : (z,§;¥,n) € C}.
We also set B(0,r) = {z € R": ||z|| < r}.

We prove our main th_eorem in Section 2 and in Section 3 we give the microlocal represen-

tation of the spectral function implied by Theorem 1.

2. THE RESOLVENT AS A SEMI-CLASSICAL FOURIER INTEGRAL OPERATOR

Here we prove Theorem 1.
. . log h
The resolvent estimate from [5, Theorem 2.1}, ||R(E =+ :0)|| B(LAR),L2 (R) = () (Lﬁ—l) ,
for a > %, and [4, Lemma 1] give that Kg(g+i0) € Dy(R?").
Let

Ta(R,d,0) = {(x,f) R xR [lo] > B, < ] < d t cos(a, ) > icr}

with R>1,d > 1, o0 € (-1,1), and cos(z,§) = “éﬁl-", be the outgoing and incoming subsets
of phase space, respectively. We choose d > 0 such that J < E < d.

Let u_ € D}, (R™) be such that MS(u-) C I'- (R,d, o) is compact, where M S denotes its
microsupport.

We shall prove that u = R(E + i0)u_ solves the problem

{ (P — E)u = 0 microlocally near (0,0)

u= T’ifc:r ehtEe=%tPgt y_ near I'_ (R, d, o)

for some T > 0 sufficiently large.
The first condition is clear.
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For the second condition, let w_ € S5, (1) have compact support and observe that for any
T>0

' . T .
w-(z,hD;)R(E + i0)u_ =w-(z,th)%/ ehtEektPdt 4 _
0
+ e TBy_(z,hD,)R(E + i0)e~ % TPuy_.

For the second term, observe that, by [5, Lemma 5.1] there exist o4 € (0,1) and Tp > 0
such that for T > T

MS (e-’?”u_) c T*B (o, g) Ul (-’Zi,d, a+) .

Let, now, w, € S% (1) have compact support in I'y (£,d;,5,) for some d; > d and
5, < o4 with wy =1 on MS (e-%'-”’u_) AT, (B,d,04) and let x € C2(R™) be such that
x =1on B (0, %) . Then two consecutive applications of [16, Lemma 2.3] give

w_(z, hDg)R(E + i0)e~ kTPy_
—w_(z, hDg)R(E + i0)xe~ TPu_ + w_(z, hDz)R(E + i0)w4(z, hD;)e tTPu_
+ O(h*)
=O(h™).

The same proof as of [5, Lemma 5.1] now gives that for R > 0 sufficiently large, we have
that Ay NT* (R™\B (0, £)) < I'x (£,d, 0+) . Therefore, by [7, Theorem 2.6] and [7, Remark
2.7), if Opn(a+) have compact wavefront sets in T'x (§,d, a’i) near p., respectively, then
microlocally near (p,,p-) € Ay \ Ap(p-) x A \A_,

@) - i
. i itE -
Opn(a+)R(E + i0)Opn(a-) =Opn(a+)T (B)3 _/ ektEe= 1P dt Opy(a-),
(]

if suppa.. is close to (0,0)
. S ;

Oph(a+)R(E +i0)0p(a-) =~ ¥*P-EOp, (a4,,) T(B)3 / e#*Be it dt eh* P~ FOpa(a-),
if suppay is far from (0,0),s > 0 is large enough,

and ess-suppy, a+,s C exp(—sHp) ess-supp), a+

- . .k
where microlocally near (p4,p—) € A \Ay(o_)xA_N\A_, J(E) €Z, ™ (R>™A4xA").

We now have the following
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: i i i
Lemma 1. %foT ertBentPdt € T2 (R*, Ap(R)) , where
Ag(R) = (Ut>o graph exp(tHp)|p-1(z)) -

Proof. We recall the well known fact that e~ %*F € 0 (R?", (graph exp(sH,))") for s € R. For
t sufficiently small we further have from [15, Proposition IV-14]

' ‘ i i .
(3) Kc—*t(P—E) = W b ex(w(t,z,o) Y e+tE)a(z, y’ o)do’

where ¢ € C®(R?*+!) satisfies ¢}+p (z, ¢}) = 0 and (z, V,p(t, z,0)) = exp(tHp) (Vop(t, z,6),6) ,
and a € S3,(1).
We now use the following result, the proof of which we postpone until later.

Lemma 2. Let x € C(R). Then
i [ —i4(P—E) 3 (m2n
= /0 x(t)e~#P-B)gt ¢ T (R™, A(R)).

Let, now, x € C°(R™) have support near 0 and satisfy >,z x(t ~ 1) =1 for ¢ € R and
some ¢ > 0 sufficiently small. Then

i (P—E) g; t(P-E) 33 s(P-FE (P-
-’;/eﬁ( Ddt = -/ S x(t~De” RUP-E)gy -Z/ x(s)e~#*P=B)gg ¢~ RUP-E)

leeZ lecZ
It is now easy to see that the manifolds

Ag(R)' x graphexp (tHpy)

T*R™ x diag (T*R" x T*R") x T*R"
intersect transversely and therefore

i (T _sup-p) 3 (p2n

A e . dt € I? (R*", Ag(R)) .

We now return to the analysis of (2), It is easy to see that the manifolds

Ay x A_ x Ag(R)'

and

T*R™ x diag (T*R" x T*R") x T*R"
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intersect cleanly with excess 1 and from (2) and [9] we then have that microlocally near
i=1 3

- - 1- - -
(p+:0-) € A\ Ay(p-) x AL\A_, REE+i0) €T, ™0 (R¥ A4\ Ai(p-) x A-\A-).
The second part of the theorem is proven analogously.

Proof of Lemma 2. As in (3) we have
1 _iyp_ 1 e - .
,—z / x(t)e *P=Fldt = Gy /0 /x» X(t)e~ ket O—¥O+tE)g(t 5.y 6)dbdt.

We shall prove that ®(z, y; t,0) def ¢(t,z,0) — y8 + tE is a non-degenerate phase function.

Let
Co & {(z,,1,6) € R : V,48(z,;,6) = 0}

= {(z,9,t,0) € R¥"*': gi(t,2,0) = —E, Vep(t, z,0) = y}
and for (z,y,t,6) € Cp consider ‘

d@l @” " Q” " (P” 0 ‘pll ’
[d@f ] (z,4;t,6) = [ wowonw ] (z,y3¢,6) = [ tz P } (,3;1,0)
6

Dy, Do, Do oo Yoz I ¥o Yoo
The bottom n rows in the above matrix are clearly linearly independent. The last row is
never O for (z,y,t,0) such that @:(t,z,0) = —E = —p(z, ¢:(t, z,0)) because from Assumption
2 it follows that dp # 0 on {p = E}\{(0,0)}. Therefore d®|c, has maximum rank and P is
a non-degenerate phase function. This implies that ,‘; f(;‘r e~ #t(P-E)gt is an h-FIO associated

to

As ¥ {(z,V20(z,u;1,0); ¥,V 8(z,3; 1,0)) : (2,;t,6) € Ca}

= {(SL', Vz‘P(t, T, 0);ys _0) : (x'D y;t, 0) € CQ} = AE(R)'
From [2, Theorem 2] we obtain that the order of this h-FIO is 3.

3. MICROLOCAL REPRESENTATION OF THE SPECTRAL FUNCTION

Here we present the représentation of the spectral function as an oscillatory integral op-
erator near Microlocally near (p4,p-) € Ay \ Ay(p-) x A \ A_. The oscillatory integral
representation near (p_,p;+) € A_ \ A_(p4+) x A} \ A, is analogous.

Theorem 2. Let (p4,p-) € Ay \ Ar(p-) x A \A-.

Then there exists a non-degenerate phase function ¥ € C®(R?™*™) and a symbol b €
1-Zi=1d oW % p4g

Sontm (1) such that microlocally near (p+,p-)

eg = / e%“'(""”"')b(z,y,r)dr.
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Proof. The assertion of the theorem follows from (2, Theorem 1] and Theorem 1. O

Remark. If (p4,p-) € Ay \ Ai(p-) x A_ \ A_ are such that the projection from
T*R™ to the base R" restricted to A1 is a diffeomorphism in some neighborhoods of p«, 4
we have from (6, Theorem 46.D] that near pi, A+ = {(z,d;S+(z);¥,dyS-(y))}, where
Sy = fu(pi) e @)I? — V(z+(t))dt are the actions over the half-trajectories 74 (p1) =
(z+,€+) C As which start at p+ and a;g)'itiiﬁh SO, 0) as t — Foo. Therefore, from [2, Theo-

1.__15.&_
rem 1] we have that there exist b € S,;, 3 (1) such that

ep = ek S++5-)p microlocally near (P4r0-) € A\ Ap(p-) x A_\ A_.

APPENDIX A. ELEMENTS OF SEMI-CLASSICAL ANALYSIS

" In this section we recall some of the elements of semi-classical analysis which we use in this

paper. First we recall the definitions of the following two classes of symbols

ST (1) = {a € C® (R x (0, ho)) : Vo, B € N™,

820fa (2,6 h)| < Caph™}
and

S™k (T*R™) = {a, € C= (T"R" x (0, hq)) : Yo, 8 € N™,

820fa (2,6 )| < Cagh™ ('},

where hg € (0,1] and m,k € R. For a € S, (1) or a € S™F (T*R") we define the correspond-
ing semi-classical pseudodifferential operator of class ¥7*(1,R™) or \1/;""‘ (R™), respectively, by

setting
Opn (a) u () = (2—;—1,1)—,, / / 2R 4 (5,61 h) u (y) dydé, u € S(R),

and extending the definition to S’ (R™) by duality (see [8]). Here we work only with symbols
which admit asymptotic expansions in h and with pseudodifferential operators which are
quantizations of such symbols. For A € ¥}(1,R*) or A € \Il’,:"k(R"), we shall use 0g(A) and
o(A) to denote its principal symbol and its complete symbol, respectively. A éemi—classical
pseudodiﬁerentié.l operator is said to be of principal type if its principal symbol a¢ satisfies

a0 =0 = dag # 0.
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For a € S™* (T*R™) or a € S (1) we define

€ss-suppy, a
c
= {(2,6) e T"R"| 3¢ > 0026{a (z',€) = Oca(er) (B°), Vo B € N}

U ({ (z,€) € T*R™\ {0} |3 e> 062.’6?0. («, ') =0 (R™ (¢)™™),

sniorly n (/,€) suehthat e =1+ g + [~ g | < )

c T*R" U $*R",
where we define S*R™ = (T*R"\ {0}) /R and denote by ¢ the complement of the set o. For
A € ¥T* (R"), we then define

WF), (A) = ess-supp, a, A = Opy, (aj .
We also define the class of semi-classical distributions D} (R™) with which we will work here
D, (R™) ={u € C ((0,1}; D' (R")) : Vx € CX*(R*)IN €Nand Cy > 0:
|Fn (cw) ()| < Cnh™N (N}
where ,
Fi (xu) () = (7508, xu),

and (:,-) denotes the distribution pairing. We also extend this definition in the obvious way
to & (R™).
The L?—based semi-classical Sobolev spaces Hj(R"), s € R, which consist of the distribu-

tions u € &;(R™) such that [ull%, @ 2 g Joe (L IE1R) | F(u) (@)1 df < oo.
For u € D} (R™) we also deﬁne its finite semi-classical wavefront set as follows.

Definition 2. Let u € D; (R™) and let (x9,&) € T* (R™). Then the point (zq,&o) does not
belong to WF,{ (u) if there ezist x € C (R™) with x (zo) # 0 and an open neighborhood U of
§o, such that YN € N, V€ € U, |F (xu) (§)| < CnhY.

We say that u = v microlocally (or u = v) near an open set U C T*R", if P(u—v) = O (h*°)
in CZ° (R") for every P € ¥ (1,R") such that

WE,(P)cU,U € U € T*R*, U open.
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We also say that u satisfies a property P microlocally near an open set U C T*R" if there
exists v € D}, (R™) such that u = v microlocally near U and v satisfies property P.

We extend these notions to compact manifolds through the following definition of semi-
classical pseudodifferential operators on compact manifolds. Let M be a smooth compact
manifold and «; : M; — X, j =1,...,N, a set of local charts. A linear continuous operator
A : C™(M) — D} (M) belongs to ¥3*(1, M) or \IIZ""(T"M) if for all j € {1,...,N} and
u € C(M;) we have Auo ;" = A; (uos;l) with 4; € UP (1, X;) or 4; € U (X;),
respectively, and x1A4xa2 : Dy (M) — h°C*°(M) if supp x1 Nsupp x2 = 0.

We now define global semi-classical Fourier integral operators.

Definition 3. Let M be a smooth k-dimensional manifold and let A C T*M be a smooth
closed Lagrangian submanifold with respect to the canonical symplectic structure on T*M. Let
r € R. Then the space I}, (M,A) of semi-classical Fourier integral distributions of order r
-associated to A is defined as the set of all u € & (M) such that

(INI Aj) ('u,) = OL’(M) (hN—f_E) ,h—0,

j=0

for all N € Ny and for all A; € ¥ (1,M), j =0,...,N -1, with compact wavefront sets and
principal symbols vanishing on A, and any Ay € V(1, M) with compact wavefront set.

A continuous linear operator C® (M) — D), (Mz), where My, M, are smooth manifolds,
whose Schwartz kernel is an element of I} (My x Ma,A) for some Lagrangian submanifold
A C T*M; x T*M, and some r € R will be called a global semi-classical Fourier integral
operator of order r associated to A. We denote the space of these operators by I}, (M x Ma, A).

Lastly, we define the microlocal equiva.lencé of two semi-classical Fourier integral operators.

Definition 4. Let M;, j = 1,2, be smooth manifolds, A C T*M; x T*M,— a Lagrangian
submanifold, and W, W'’ € I7 (M x M2, A) for some r € R. For open or closed sets U C T*M;
and V C T*M, the operators W and W' are said to be microlocally equivalent near U x V if
there ezist open sets U € T*M; and V € T*M;, with U € U and V € V such that for any
A€ ¥ (1,M;) and B € ¥ (1, M) with WF}, (A) c U and WF;, (B) C V we have that

B (W - W) A= 0 (h): D} (M) — C® (My).
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If X C My x My is an open set, we shall also write W € I} (X, A) to indicate that Kw|x €

IT(X,A), where A C T*X is a Lagrangian submanifold. We shall also write W = W' near
V xU.
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