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Abstract
We consider the first-order Cauchy problem
Ou+a(z,x,DJu=0 0<z<Z
U w0 = o,

with Z > 0 and a(z, x, D,) a k X k matrix of pseudodifferential operators of order one, whose principal part is
assumed symmetrizable: there exists L(z, x, £) of order 0, invertible, such that '

a (Z, X, f) = L(Z, X, f) ("';81 (Zr X, f) +7 (Z' X, f)) (L(Z' X, E))—l ’

where ) and v, are hermitian symmetric and y; > 0. An approximation Ansatz for the operator solution, U(Z, 2),
is constructed as the composition of global Fourier integral operators with complex matrix phases. In the sym-
metric case, an estimate of the Sobolev operator norm in L((H*(R™)*, (H)(R™))*) of these operators is provided,
which yields a convergence result for the Ansatz to U(z', z) in some Sobolev space as the number of operators in
the composition goes to oo, in both the symmetric and symmetrizable cases. We thus obtain a representation of
the solution operator U(Z, z) as an infinite product of Fourier integral operators with matrix phases.

Keywords: Degenerate hyperbolic system; Symmetrizable system; Pseudodifferential initial value problem;
Fourier integral operator; Matrix phase function; Global Sobolev norm estimate; Infinite product.
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Introduction

Let k,n € N*. We consider the Cauchy problem

(¢))] du+a(z,x,Dyu=0 0<z<Z
@ U |0 = U0,
with Z > 0, u(z, x) € C*, and a(z, x, £) a k x k matrix with entries continuous with respect to (w.r.t.) z with values in

S'(R" x R™), with the usual notation D; = 18;. (Symbol spaces are precisely defined at the end of this introductive
section.)

When a(z, x, £) is scalar, k = 1, and independent of x and z it is natural to treat such a problem by means of Fourier
transformation: u(z, x’) = [f eX* ~#)-20® yo(x) d¢ dx, where d¢ := d£/(2n)". Some assumption need to be made on
the symbol a(¢) for this oscillatory integral to be well defined, e.g. non-negativity will be imposed on a(£). When
the symbol a depends on both x and z we can naively expect

3 u(z, ) ~ u)(z,x') := f f /% ~ 52005 £y (x) dE dx,

*Currently on a leave at Laboratoire POems, CNRS / ENSTA / INRIA (Rocquencourt), Domaine de Voluceau, B.P. 105 78153 Le Chesnay
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for z small, and hence approximately solve the Cauchy problem (1)~(2) for z € [0, 2] with z)) small. If we want
to progress in the z direction we have to solve the Cauchy problem

du+a(z, x,Dou=0, 2P <z<2

u(z, ') IZ=Z(1) = ul (Z(l)a -)’

which we again approximately solve by u(z, ) = uy(z, x) = [ e¥-#0-G-20ae®x Dy ;0 x) g¢ dx. This
procedure can be iterated until we reach z = Z.

In the scalar case, k = 1, upon appropriate assumptions, this procedure converges [18, 19] and yields the solution
operator to the Cauchy problem (1)—(2). The convergence is obtained in Sobolev spaces. We wish to extend this
type of results to the case of a symmetrizable system, which then yields a representation of the solution operator
as an infinite product of Fourier integral operators (FIO) of the form of (3). The extension is far from being
straightforward mainly because we have to deal with matrix symbols and phases which do not commute in general
and some simple algebraic operations in the scalar case become impossible. Here, we introduce classes of FIOs
with matrix phase functions. Some care is required for them to be well defined and some assumptions will be made
on the matrix symbol a(z, x, £), which generalize those made in the scalar case in [18, 19].

We write a(z, x, £) = a1(z, x, £) + ap(z, x, £), where a; is the principal part of a and ag is a matrix symbol with entries
in SOR" x R*). The principal part is assumed homogeneous of degree one and symmetrizable in the sense that
there exists a matrix L(z, x, £) with entries in S°(R" x R"), with z as a parameter, such that

a (Z, X, f) = L(Z, X, g) a1 (Z, X, §) (L(Z, X, g))—l ’

and a;(z, x, &) = —iB1(z, x, &) + ¥1(z, x,£), where B; and 7, are hermitian symmetric k X k matrices. The matrix
71(z, x,£) is also assumed non-negative. For the precise statements of the assumptions we make on the symbol
a(z, x, £) refer to the subsequent sections.

Following [18], we define the so-called thin-slab propagator, G(»,;, as the operator with (matrix) kernel

Gun, 1) = f £ =) g~ ~Da0(5X B o~ =D (& ) g

Note that e~ —2a0@x £) and ¢~ -da1(2x' £ do not commute in general. Combining all iteration steps above involves
composition of such operators: let 0 < zV < -+ < Z® < Z, we then have

Ugs1(Z, X) = Gz, ) © Gaw 24-) © * * * © G(0,0)(U0)(X),

if z > z®. We then define the operator Wy, for a subdivision P of the interval [0, Z], B = (@, 2V, ..., z™)}, with
0=z(o)<z(l)<...<z(N)=Z,

G0 if0<z<2D,
1

g(z,z(k))ng(go,z(t—xy) if 2P < z < Z®4D,
ik :

Wy, =

According to the procedure described above, Wy, yields an approximation Ansatz for the solution operator to the
Cauchy problem (1)—~(2) with step size Ap = sup,; n(2i = Zi~1)-

Note that a similar procedure can be used to show the existence of an evolution system by approximating it by
composition of semigroup solutions of the Cauchy problem with z ’frozen’ in a(z, x, Dy) [7, 22]. It should be
noticed that Wy, is however not the solution operator to problem (1)—(2) even in the case where the symbol a
only depends on the transverse variable, x. For instance in the scalar case, k = 1, while singularities propagate
along the bicharacteristics associated with —Im(a;), we however observe that, with the form of the phase function,
the operator G,y propagates singularities along straight lines. See [20] for further details. Furthermore, by
composing the operators G~y and G(» ), One convinces oneself that

Gy #Gwr°Gws

in general if 2’ 2 zZ 2 z € [0,Z] (use again that singularities propagate along straight lines). The family of
operators (Gz.»)z.pef0,zp 18 thus neither a semigroup nor an evolution system.
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Under Holder regularity of order o of a(z, x, &) w.rt. z, and Lipschitz regularity of L(z, x, £) W.r.t. z in the sym-
metrizable case, we shall prove convergence of the Ansatz “Wg , to the solution operator U(z, 0) of the Cauchy
problem (1)~(2):

@ W = Uz, O)lliaes vy garsenysy < Ag-ﬂa,

for 0 < r < 1 (Theorem 2.7 in the symmetric case, L(z, x,£) = I, and Theorem 3.13 in the symmetrizable case).
We thus obtain a representation of the solution operator U(z’, z) as an infinite product of FIOs with matrix phases.
As in the scalar case [18], such a result is achieved by first proving a precise estimate of the Sobolev operator norm
of the thin-slab propagator Gy , in the symmetric case, L(z, x,£) = I;: for all s € R, there exists M > 0 such that

&) G pllaor mopy < 1+ MA,

forall 0 < z <7 £ Z with A = 7 - z sufficiently small (Theorem 1.20). To prove (5), we assume that the symbols
B and ¥, and commute and are diagonalizable with a diagonalizing symbol that is smooth w.r.t. x and £ and only
bounded w.r.t. z, i.e. the symbol a(z, x,£) is assumed to be “geometrically regular”. Note that this assumption
allows for crossing smooth eigenvalues. Estimate (5) in the symmetric case is then used to treat the case of a
symmetrizable system. We then further assume that the symmetrizing symbol L(z, x, £) is smooth w.r.t. x and ¢ and
Lipschitz continuous w.r.t. z. In this case, solutions to (1)—(2) exist and are unique and we prove the convergence
of the proposed Ansatz Wy, to U(z, 0). An estimation of the form of (5) is however not obtained in the case of
a symmetrizable system. Many proofs are omited in the present article. A complete version of this article can be
found in [17].

Multi-composition of FIOs to approximate solutions of Cauchy problems were first proposed in the scalar casc in
[13] and [12]. In these articles, the exact solution operator of a first-order hyperbolic equation is approximated
with a different Ansatz. The approximation is made up to a regularizing operator. The technique is based on
the computation and the estimation of the phase functions and amplitudes of the FIO resulting from these multi-
products, a result know as the Kumano-go-Taniguchi Theorem. It is based on the earlier work of H. Kumano-go in
[10]. This approach is synthesized in Chapter 10 of [11].

The case of systems with constant multiplicities in non-diagonal form in also treated in [11, Section 10.4]). How-
ever, the system is diagonalized by the application of elliptic pseudodifferential operators and the solution is only
recovered by the use of a parametrix which yields a solution operator up to a regularizing operator. In the present
article, we aim at obtaining an exact representation of the solution operator. Hence we do not rely on such a
diagonalization procedure of the system. ~

The multi-product technique was further applied to Schrodinger equations with specific symbols (9, 14]. In these
latter works, the multi-product in also interpreted as an iterated integral of Feynman's type and convergence is
studied in a weak sense. The time slicing approximation, closely related to our approach, allows to give a rigorous
mathematical meaning to Feynman path integrals [15, 3]. In [9] a convergence result in L? is proven. This is the
type of results sought here for first-order hyperbolic systems. We however do not use the apparatus of multi-phases
and rather focus on estimating the Sobolev regularity of each term in the multi-product of FIOs in the proposed
Ansatz ‘Wy,. While the resulting product is an FIO, we do not compute its phase and amplitude. The Sobolev
regularity allows us to use an a priori energy estimate for the Cauchy problem (1)—(2) to prove convergence of the
approximating Ansatz to the solution operator.

In this article, when the constant C is used, its value may change from one line to another. If we want to keep track
of the value of a constant we shall use another letter. When we write that a function is bounded w.r.t. z and/or A
‘we shall actually mean that z is to be taken in the interval [0, Z] and A in some interval [0, Anqa,] unless otherwise
stipulated. We shall generally write X, X', X”, X®, ..., X™ for R”, according to variables, e.g., %, ¥/, ..., ™.
We shall sometimes use the variables y, ¢ that belong to Y and T which will denote R™, R™ with possibly ny # n
andn, # n.

In a standard way, we set (£) := /1 + |§] for ¢ € R?. Throughout the article, we use spaces of global symbols;
a function a € ¥°RI X RP) is in SZD,(R" X RP),0 < p < 1,0 < 6 < 1, if for all multi-indices e, 8 there exists
Cap > O such that

16507a(x, )] S Cag ()" PPH, xeRY, £€RP.
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The best possible constants Cgg, i.e.,

Pas(@) = sup (& ™PASEg2fa(x, £)],
(x.£)ERIXR?

define seminorms for a Fréchet space structure on § p_5m4 X RP). As usual we write S7(R? X R”) in the case

=1-6,1 3 Sp <1, and S™(R? x R?) in the case p = 1, 6 = 0. We shall denote by MiS7;(R? x R?) the space
of k x k matrices with entries in S7';(R? X R?). By M;(C), we denote the space of kxk matnces with complex
entries, furnished with some norm ||. IIM,(C) Seminorms on M,S7's(R? X RP) are naturally built from ||.llsc) and
the seminorms on S7';(R? X RP). 1t yields a Fréchet space structure on M,;S Z’ (RY? x R?). In the case of matrix
symbols, we shall also use the notation simplifications given above in the case p = 1 -6, and thecase p = 1,6 = 0.

We shall use, in a standard way, the notation # for the composition of symbols of pseudodifferential operators
(wDO). In the case of matrix symbols, a # b will naturally denote the matrix symbol with entries (a # b);; =
ik @ik # bej. When given an amplitude p(x, y,£) € M;,S”'J(X X X x RM), p > 6, we shall also use the notation
o {p) (x, &) for the symbol of the pseudodifferential operator with amplitude p.

For r € R we let E® be the yDO with symbol (¢)". The operator E? maps H)(X) onto H*"(X) unitarily for
all s € R with E-" being the inverse map. We shall use the same notation for the diagonal operator that maps
(HO(X))* onto (H*~"(X))* unitarily, k € N*.

1 The thin-siab propagator for a symmetric system
1.1 The Cauchy problem

Letk,n € N. Let s € R and Z > 0. We consider the Cauchy problem

) S,u+a(z,x,Dyu=0, 0<z<2Z

2 Ul = o € (HVRM),

where the matrix symbol a(z, x, £) takes values in M;S 1(X x R*) with z as a parameter.

In this section, we focus on the symmetric case. More precisely, we shall make the following assumption.

Assumption 1.1. The principal matrix symbol of a, a1(z, %, &) = —ibi(z,x, &) + c1(z, x,§), is such that both bl
and c| are continuous w.rt. z with values in MSL(X x R™) and homogeneous of degree one in &, for |¢] =
Furthermore, they are hermitian symmetric and c1(z, x, £) is non-negative.

We set the remaining part of the symbol a(z, x,£) as ap(z, %, £), ao(z, x, £) = a(z, x,£) ~ a1 (z, x, §), which is assumed
to be continuous w.rt. z with values in MpS°(X x R").
Adapting the proof of Lemma 23.1.1 in [4] to systems (making use of the sharp Garding inequality for positive
first-order matrix symbols [16, Theorem 3.2], [25], [24, Chapter VII]) for any function in

V := €1((0, 2], (HO®R)) n €°([0, Z), (H*PRM)),

we have the following energy estimate (see also [1, Theorem 6.4.3])

3 sup [lu(z, Mlgwy < Cllu; Moy +C f 16z + a(z, x, Dx)ull gy dz.
0

2€(0,Z]

Then, there exists a unique solution in V to the Cauchy problem (1)(2) ({4, Theorem 23.1.2], [1, Theorem 6.4.5]).

By Proposition 9.3 in [2, Chapter VI] the family of operators (a(z, x, Dy)).ef0,z) generates a strongly continuous
evolution system. Let U(Z', z) denote the corresponding evolution system:

U@, 2)o U, )=U{",2), Z22"'27Z 2220,
with
8,U(z, z0)(up) + a(z, x, D)U(z,20)(g) = 0, 0 S29 <2< 2,
Ul(zo, 20)(uo) = o € (HE*DRM),
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while U(z, z0)(up) € (HE*DRM) for all z € [z9, Z]. For the Cauchy problem (1)—~(2) we take zp = 0.
We shall make the following further assumption on a(z, x, £).

Assumption 1.2. There exists w(z, x, £) continuous w.r.. z with values in MyS°(X X R"), unitary, homogeneous
of degree zero in &, for |€| 2 1, such that

bl (Z, X, §) = W(Z! X, f) db(Z, X, f) (W(Z, Xy f))-l:
c1(z, x,€) = w(z, x,£) dc(z, x,£) (w(z, x, 5))_1 ’

where dy(z, x, £) and d.(z, x, £) are k X k diagonal matrices with entries continuous w.r.t. Z with values in SIR* x
R") and homogeneous of degree one in &, for |é| > 1. The diagonal entries of d.(z, x,£) are non-negative since
ci(z,x, 6 2 0.

This assumption is sometimes referred to as having a “geometrically regular” matrix symbol a(z, x, £) (see e.g. [21,
Definition 2.2 (ii)]).

Assumption 1.2 will be satisfied for instance if the eigenvalues of b;(z, x,£) have constant multiplicities’ since b,
is hermitian symmetric [8, Section I1.4] and if the matrices b;(z, x, £) and ¢;(z, x, £) commute. However, Assump-
tion 1.2 is much more general and allows for crossing smooth eigenvalues.

We set v(z, x,£) := (W(z, x,£))"! = (W(z, x, &) and d(z,x,£&) = —idp(z, x,&) + d:(z,x,£). We shall denote by
dpi(z, x, ) and d.i(z, x, £), 1 < I < k, the diagonal entries of the matrices dj(z, x, £) and d¢(z, x, £).

Example 1.3. The Dirac operator };; = 13a;D;, + mB has an hermitian symmetric principal symbol. Here the
Dirac matrices are 4 X 4 matrices and are given by

0 i , . 0 1 0 —i 1 0
N R N

The two eigenvalues +|¢] both have constant multiplicity two. A norm convergence result of a Trotter-product
formula for the Dirac operator can be found in [6].

1.2 The thin-slab propagator

Let0<z<z <Z. Weset,forA =2z -z,
® 8 o(x &) = g~ Aa0(z5E)

The function g(» »(x, £) is bounded w.r.t. z and smooth w.r.t. A with values in M,S O(X x R™).

Following the definition of the thin-slab propagator given in the scalar case [18], we define the following kxk
matrix) kernel

(X' %) = f FE T g (2, e BNEED g,
Such a kernel is well defined since we can write
Ga(*, %) = f M g0 5 (X, OW(E, ¥, £)e AT Dy, X, £) dE,
and thus, each entry of the matrix kernel is a finite sum of scalar kernels of the form of
) [ a5 o n2 0 a2,
with oz (¥, x, §) bounded w.r.t. Z and z with value in S0 and ¢z (¥, x, £) a complex phase. We can prove that

each component of the associated operator is thus a finite sum of global FIOs for A sufficiently small (see {18]).
We have the following regularity results.

lin particular if the eigenvalues are simple, i.e., in the strictly hyperbolic case.
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Proposition 1.4. Let s € R. For A sufficiently small, the operator Gy 5y with distribution kernel Gy (X', x),
is a continuous map of (™) into (LR™)Y, (L' RM into (&' R™), and (HORM)* into (HOR™)Y. In
particular, there exists C 2 0 such that

1@ ol oy < C,
forallz,ze[0,Z, A=7 -z

Let m € R. If the matrix symbol gy, is changed into a function bounded w.r.t. A and z with values in M, S;(R" X
R"), p' € [4,1), then the associated operator maps (HOR™)* into (H*"™(R™)* continuously, with a uniform
operator-norm estimate as above.

In the sequel, we shall say that operators of the form of G(» ;) are FIOs with the complex matrix phase

(© ba, %€ = (X' — %) + bi(e, ¥, €) + ic1(z, X', ).

We aim at giving a more precise estimate of the norm of the thin-slab propagator in L{H@®R™), (HIR™)*). We
shall in fact obtain

WG ooy moyy S1+MA, A=z7 -z,

for some M 2 0 and for A sufficiently small (Theorem 1.20). To obtain such an estimate we need to understand
the properties of the matrix symbol e~21*4) when A is small.

1.3 A class of symbois
Here, we follow the developments of {18]. We first introduce some definitions.

Definition 1.5. Let L > 2. A (scalar) symbol q(z,.) bounded w.r.t. z with.values in S'(R? x R") is said to satisfy
Property (PL) if it is non-negative and satisfies

(P1) 18288 q(z, y, )l < Clap)y P+ OHBVL(L 4 gz, y, p))! 0oV, 2 € [0,2), ye R?, neR.

We thensetp=1-1/Land§ = 1/L.

Examples of symbols with such a property with L > 2 are given in [23]. In fact we have the following lemma {18].

Lemma 1.6. Let q(z, y, 1)) be bounded w.r.t. z with values in S IRP xR"). If g 2 O then q satisfies Property (P.) for
L=2

Remark 1.7. If the symbol ¢(z, y, ) and p(z, y, ) both satisfy Property (P.) then the amplitude g(z,y', n)+p(z, y, )
also satisfies Property (P.) (with derivatives w.r.t. y, ¥’ and n).

The following definition concerns matrix symbols.

Definition 1.8. Let L > 2, p = 1= 1/L and 6 = 1/L. Let pa(z,y, 1) be a function in € (Y X R", Mi(C)) depending
on the parameters A 2 0 and z € [0, Z). We say that ps satisfies Property (Q.) if the following holds

Q1) 858 (pa — pala=0)@ yim) = AWK NP . 7),  forlel +BIS L, 0<m<1-6(el+ 8D,

where p(z,y,7) is bounded w.rt. A and z with values in MiS moplB+iel(y x R"). It follows that pa(z,y,7m) -
pala=o(z, y,7) is itself bounded w.r.t. A and z with values in MiS (Y X R").

In [18], the following three lemmas, are proven in the scalar case, k = 1.

Lemma 1.9. Let g(z, .) be bounded w.r:t. z with values in S' (Y x R") and satisfy Property.(Pr). Define ps(z, » m=
e~89@Y M Then p, satisfies Property (Qr), k = 1, for A € [0, Amax] for any Amax > 0. As pala<o = 1, pa is itself
bounded w.rt. A and z with values in S3(Y X R").
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Lemma 1.10. Let f € F*(R) and palz,y,n) in €Y x R") that satisfies Property (Qr), k = 1, and such that
pa(z, Jla=o is independent of y and n. Then f(oa)(z, y, n) satisfies Property (QL).

Lemma 1.11. Let pa(z,y,7) € SS(Y X R7) satisfy Property (Qr), k = 1, such that pa|a=o is constant. Let fo(z,y,7n)
be bounded w.r.t. z and A with values in S'(Y x R") be homogeneous of degree one in n for || = 1. Define
1(4,2,y,m) :=n = Afaz,y,7). Then

ﬁA(zf Ys 77) = pA(Z, Y ﬁ(Ax 3 77))
satisfies Property (Q1), k = 1, for A sufficiently small.

Remark 1.12, These three lemmas naturally extend to diagonal matrix symbols and we shall use them in this form
below.

Proposition 1.13. Let L > 2. Let pa(z,y,n) be bounded w.r.t. z and A with values in MkSS(Y X R") that satisfies
Property (Q1), L2 2,p=1-1/L. Let r(z,.) be bounded w.r.t. z with values in MyS°(Y x R™). Then (rps)(z,y,n)
and (par)(z, y, n) both satisfy Property (Qy).

Corollary 1.14. Assume that the entries of the diagonal matrix symbol d.(z, x, ) satisfy Property (PL), for L 2 2.
Then the matrix symbol e=8¢®*%) satisfies Property (Q1) in MiSI(X X R™).

Recall that by Lemma 1.6, by default, the entries of the diagonal matrix symbol d.(z, x, £) satisfy Property (PL),
forL = 2.

Lemma 1.15. Let the matrix amplitudes pa(z, x, y, £) and us(z, x, y, &) both satisfy Property (Q1) and be such that
Pa(z, la=o and pa(z, .)a=o are constant. Then the amplitude pa(z, x, y, E)ua(z, x, t, £) satisfies Property (Qy) (with
differentials w.rt. x, y, t, and £).

Lemma 1.16. Lez pa(z, x,y, &) be an amplitude in MkSB(RZP X RP) depending on the parameters A 2 0 and
z € [0, Z] that satisfies Property (Q) for 1 < |a| + |B| < 2 and such that pa(z, .)la=0 is independent of (x,y,£). Let
r(x, &) € MS*RP X RP) for some s € R. Then

o{par}(zx, &) — pa(z, x, x,&) r(x, &) = A"‘*z"/l'g(z, %), 0smsp-6,
where the function A7 (z, x, £) is bounded w.r.t. A and z with values in MkS;,"+”("_5)(RP X RP).

For a proof see the proof of Lemma 2.22 in [18), which can be directly adapted to the matrix case. We shall also
need the following lemma which is a closely related results.

Lemma 1.17. Ler ga(z, x, &) be an symbol in MkSg(RP X RP) depending on the parameters A > 0 and z € [0,Z]
that satisfies Property (Q) for |a| = 1 and such that qa(z, .)a=o is independent of x. Let r,(x, £) be bounded w.r.t. z
with values in M S*(R? X R?) for some s € R. Then

(rz # qA)(Z» X, f) - rz(x» f) QA(Z» x’g) = Am'HSAZ(za X, §)r 0sms< P>
where the function A3z, x, £) is bounded w.r.t. A and z with values in MS; " (RP X RP).

For a proof see the proof of Proposition 2.5 in [19], which can be directly adapted to the matrix case.

We shall need the following result.
Theorem 1.18. Let 4 < p < 1 and set 6 = 1 — p. Let p(x,£) be a real non-negative €™ function that satisfies

@) [Ilp(x, Ollmuc) < CE€),

8) 102 p(x. Olimeo < Caté)r lel=1, 1fpxOlImo $Cs BI=1,
and
© 320 p(x, &) € MiS5 W PAX X R,  forla + ] = 2.

Then there exists a non-negative constant C such that
Re(p(x, D)u, Wy ayy 2 ~CllullZy, 1 € (FRM).

The constant C can be chosen uniformly if the symbol p remains in a set such that the constants in (7)~(8) are
uniform and if 6‘;6? p(%,8), | + Bl = 2, remain in bounded domains of MiS5~ d+dlat-pBlx % R™) respectively.



76

In other words, for the partial differentiation of order zero and one the symbol p behaves like an element M,S {,o

and like an element of M;S 2'5 for higher-order derivatives. The result we prove is of the form of the sharp Garding
inequality. Note that considering p(x, £) to be in M;S },(X x R™), we cannot directly apply the usual sharp Garding
inequality to obtain a lower L? bound when 4 < p < 1.

The proof of Theorem 1.18 can be done by revisiting the proof of the sharp Gérding inequality for instance as
given in [11, Section 3.4].

The following result is at the heart of the precise Sobolev operator-norm estimation of the thin-slab propagator
G-

Theorem 1.19. Let k(z, x, £) be a kxk diagonal matrix symbol with non-negative entries, that satisfy Property (PL),
L > 2. Let m(z, x, &) be a k X k matrix symbol, such that m(z, x, §) and (m(z, x, g-'))'l are both bounded w.r.t. z with
entries in S°(X x R?). Set

h(Zv X, f) =m(z, x, f)k(z’ X, f)(m(l, X, ‘f))—, ’

The matrix symbol e~4%+*4) is bounded w.r.t. A and z with values in MkSS(X X R™) and the pseudodifferential
operator Az = e~3@*Ds) is continuous from (L*R™)* into (L*(R™)X. There exist A, > 0 and M 2 0 such that

Az o) Satisfies
e ollqzrazy S 1+ MA,

forallz ,z€[0,Z) suchthat0 < A=z -z < A,

Proof. In the proof, we shall always assume that A is sufficiently small to apply the invoked properties and results.
By Proposition 1.13, the symbols pa(z, x, £) = e"8¥@*) and p,(z, x, £) = e”44=*£) both satisfy Property (QL).

She prove that (A(y z) 0 A, ,\ U Wz, 2w S (1 +CA)|]u|[(2Lz),, for all u € (¥ (R™))*. The pseudodifferential operator
Az ) © A, ;) has the matrix amplitude

Pz %, 3, §) = e NG,

which satisfies Property (Q.) by Lemma 1.15. We then obtain
o {PA(Z; X, y! f)} - e—ZAh(z'x'f) = A’IA(ZQ X, f),

where Aa(z, x, £) is bounded w.r.t. z and A with values in Mksg(X X R") by Lemma 1.16 (using m = p - 5). By
the Calderén-Vaillancourt Theorem (see [11, Chapter 7, Sections 1,2] or [24, Section XIII-2]), we shall obtain the
desired estimate for (Fz,z) © By s W)a2p w2y if we prove Re(e 2K E=Pouy, uy a2y < (1 + CA)|ufF 2 for all

u € (R
We set ga(z.x, &) = (1 - e~ 28hzx £y IA for A > O and observe that ga(z, x, £) satisfies the conditions listed in
Theorem 1.18 uniformly w.r.t. z and A. In fact, a first-order Taylor formula gives llga(z, x, O)lim,c) < C(€). By
Property (Q1) we obtain

1659z, %, O)limyc) < C6), o] =1,

I659az % O)limeo SC BI=1,

using m = p in (Qy) in both cases. Finally, if | + 8| = 2, we obtain that 6‘;6qu(2, x, &) is bounded uniformly w.r.t.
z and A with values in MkS’,f—”ﬂ""” Pl(X x R") by choosing m = p — & in (Qy).

By Theorem 1.18 we thus obtain Re(ga(z, x, Dx)u, W2y 2y 2 -Clluil(zu), for all u € (R™)* which yields
el zye — ReCe™ A2 Pad, ) ay. apy 2 ~CAllullizays

which concludes the proof. o n
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1.4 Sobolev space regularity estimate for the thin-slab propagator

We now state and prove the main theorem of this section, which will be essential to give a meaning to infinite
products of operators of the form of G, in Sections 2 and 3.

Theorem 1.20. Lez s € R, There exist Az > 0 and M > 0 such that

”g(z‘,z)”((H(:))k,(H(:)y) <1+ MA,

forallz,z€[0,Z] suchthat0 S A =7 —z < As.

In the proof we assume that the diagonal entries of d, satisfy Property (P.) for some L > 2. We know that it is
always true for L = 2 by Lemma 1.6 but special choices for ¢; can be made. As before we use p = 1 ~1/L and
6§=1/Lwithp>éforL>2andp=6=4forL=2.

Proof. We first observe that we can write, g (%, &) = Ik + A »(x, £), With g, bounded w.rt. A and z with
values in M SOR” x R"), from Taylor’s formula, and (1.1.9) in [5]. We thus obtain G 5 = g{; a3t AG 5, Where

the operator G{‘z‘,_z) is of the same form as G(», with the amplitude g(, ;) replaced by ;. With the last point in
Proposition 1.4, we have _
G ollaoy, oy < €

for A sufficiently small. Without any loss of generality we can thus assume that g (x, &) = I, i.e., ao(z, x, £) = 0.
Let s € R. Then the kernel of By ) = Gz ) © EC* is given by

Bea(¥, ) = [ ¥ -i0ebaietd gy ag.

The kernel of the adjoint operator of B, is given by
B{z, .z)(x' ,X) = f &I~ 3 gmibby .z f)-Ber(2x£) ¢ £y~* d,

since the matrix by (z, x, &) and ¢;(z, x, £) are hermitian symmetric. Introducing D¢z 2 = Bz z © B, ,)» We find its
kemnel to be

Dgn(¥, %) = f ) B (0 ) gl o f)-Ber @28 (gy728 g
which we write
Dt ) = [ 4470 (wiz, de 840z, ) (¢,€) (wez. Je™ e, ) . 7 .
With Taylor’s formula we write |
Wz, X, £) = v(z, %, &) + (X' - xI¥(z, X', x, ),
with $(z, ¥, x, £) bounded w.r.t. zin (MSO(X’ X X x R®)" by (1.1.9) in [5]. This yields
Dz »(¥, %) = Dz (¥, X) + Dz 25X, X) + Dz ,¢(¥', %),

where

Dy pa(. %) = f F (g, ¥, £)e~MAEX DTNy (7, i, £) ()7 dE,

D yp(¥ . %) = f F-M 1 x| e Dy _ X5z, X, x, ) Wiz, x, e~ Dz, x, &) (6 &,

and

Dig pe(¥, %) = — f Tz | £y MR DYECEDN (3 — (2, ¥, x, £)) ()2 dE.
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We can prove that the associated operators, namely Dy .4, Dz 6> ad Dy 5., satisfy
1E® © D0 © EDlayiapy < 1+ CA,

IE® o (D06 + Dz ore) © EDlliuap oy < CA,

for some C' > O, uniformly in z € [0,Z] and A, A sufficiently enough. The first estimate is obtained by using
Theorem 1.19. ]

2 Convergence properties of the Ansatz Wy, in the symmetric case

As in Section 1, the z-family of symbols a; (z, .) satisfies Assumptions 1.1 and 1.2. Letp € [%, 1]. We assume that
¢} is chosen such that

(€9) palz, ) = e 4@

takes values in MkSS(X x R™) (see Lemma 1.9 and corollary 1.14).

We first define the Ansatz that approximates the solution operator to (1)—(2). The regularity properties of the
thin-slab propagator G(» , given in Proposition 1.4 allow to compose operators of the form of G, 4.

We chose to use a constant-step subdivision of the interval [0, Z] but the method and results presented here can be
naturally adapted to any subdivision of [0, Z].

Definition 2.1. Let B = 2@, 20, ..., 2™} be a subdivision of [0, Z] with 0 = z® < zD < ... < z™ = Z such that
20D = 20 = Ag. The operator Wy, is defined as

Geo if 0<z<20,
1

g(z.z“’)ng(z(n,z«—n) if Z® < 7 < Z-+D,
i=k

(Wﬂl.z =

Thanks to the estimate proven in Theorem 1.20 we can now obtain the following proposition.

Proposition 2.2. Let s € R. There exists K > 0 such that for every subdivision B of [0, Z] and Wy, as defined in
Definition 2.1 we have

Vz € [0,Z], “’Wﬁ),z"((y(.r))&_(ml))k) <Kk,

Jor Ag sufficiently small.

Proof. By Theorem 1.20, there exits M > 0 such that for A = 2’ - z small enough we have ||Gy )l oy oy S

1 + AM for all z € [0, Z]; we then obtain
W ZM\N
Il m.z"((H(-r))h,(H(:))k) <1+ AmAl)N = (1 + T)

which is bounded as it converges to exp(ZM) as N goes to oo. |

As in [18], we have the following regularity result for the Ansatz Wy ,.

Proposition 2.3. Let s € R, B a subdivision of [0, Z) as in Definition 2.1 and let ug € (H®*\)(X)). Then the map
z — Wa (uo) is in €°((0, Z], (H*V(X))¥) and is piecewise €' ([0, Z], (H)(X))*) if B is chosen such that Ay is
small enough. The map z — Wg ,(uo) is in fact globally Lipschitz with C = 0 such that

IWe .2 (o) ~ We 2(o)lloy: < Clz’ — 2| luoligggeoy,

where the constant C is uniform w.rt. B, z' and z, if Ag is sufficiently small.

Before proceeding to estimating the approximation error made between the Ansatz Wy, and the solution operator
U(z,0) of (1)-(2), we need to establish a ¥ DO-FIO composition formula adapted to the case of matrix phase
functions such as @, given in (6).
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Theorem 2.4. letp’,p" € [%, 1}. Let u(z, x, &) be bounded w.r.t. z with values in MkS; (X x R™), and the operator
A -y defined by

sﬂ(z"z)(u)(x’) - ff e[(xI—XIf)‘T(z’,z)(xl, §)e—Aﬂl(ZX;Xv£) u(x) d‘f dx’

where 0 <257 <Z, A =7 -z with o (X, £) bounded w.rt. ' and z with values in MS Z',: (X X R"). Then, for
A sufficiently small, we have

Wz, %, Dy) 0o Ap ) = By + ARz,
where for all s € R there exists C 2 0 such that
(2) ”R(z'.z)"((ﬂ(:))k'(ﬁ(a—m-m'))t) £C, 0x<zx Z' <2Z,

and the operator B(y ;) has for kernel
Bz 5(x¥', %) = f ) gy (¥, NP g,

with g (X', &) bounded w.rt. to 7’ and z with values in MiS g‘;,'('; - onXXR") and given by the oscillatory integral
representation

3 Qo= [ f XD iz 1) O 50 £ (2 7 ) Wz, y, E)ENBEIO-BEL Dy y £) dn dy.

with pa(z,y,€) givenin (1).

To estimate the norm of Wy ,up — U(z, 0)(4p) in some Sobolev space, where U(z, 0) is the solution operator of (1)—
(2), we first need to have an understanding of the infinitesimal error made by the use of the thin-slab propagator,
i.e., find a bound for

@By +az(x, D)) 0 Gr W), 0<z<7 <Z ueHW,

in some properly chosen norm when A = 7z’ — z is small. For the next proposition we shall need the following
assumption.

Assumption 2.5. The matrix symbol a(z, ) is in €°%([0, Z], MiS (X x R™)), i.e., Holder continuous w.r.t. z with
values in MiS (X X R™), in the sense that,

a(z,, xra - a(27 xaf) = (ZI - Z)aa(Z',Zs x,f)y O £z< Z' < Z
with 3(z, z, x, £) bounded w.r.t. ¥ and z with values in MiS'(R" X R™).
It should be noted that Assumption 2.5 concerns the full symbol a(z, .) and not simply its principal symbol.
Proposition 2.6. Let s € R. There exist Ay > 0 and C 2 0 such that for 7 ~z = A, A € [0, Aq4),

@ @y + az (x, Dx)) © Gz llarerp ey < CA®.

The proof is along the lines of that of Theorem 2.8 in [19] and uses the calculus result of Theorem 2.4 since in the
present case phase functions are matrices.

Adapting the proof of energy estimate (3) to the case of piecewise ¥ ! function yet globally Lipschitz functions
like Wy ,(up) (see Proposition 2.3) we find that

b4
) Uz, 0)(40) — Wy (uo)liarwy < +C f I8, + a(z, x, D)) W :(uo)llzropdz,
0

with the constant C uniform w.r.t. z and and the subdivision B, for uy € (HE+D)¥,
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let B = {0, ..., z™M). We take z €]z\?, zU*D[. Then

1
(az + a(z, X, Dx)) W‘B,Z(HO) = (az + a(z’ X, DI)) g(z,z(ﬁ)ng(zm,z("‘))(L‘O)

i=j
= (8, + a(z, %, D)) (Gz.emn(u4))
with u; = JTL G0 20-)(u0) Which is in (H*D®R™)Y* by Theorem 1.20. By Proposition 2.2, the norm of u; in
(HE*D®R™)* remains bounded even if |B| = N becomes very large:
3K 20, |ujligeny < Kluoligoop, j€{0,...,N},N =B €N, up € (H*PRY),
if Ay is small enough. By Proposition 2.6, we thus obtain
(6) @, + a(z, x, D)) Wg ;(uolll oy S CKA luollgnesvy,  z € [0,Z]\ B,
with the constants C and K uniform w.r.t. z and P.
An interpolation argument, as in [18] yields the main result of this Section.

Theorem 2.7. Assume that the symbol a(z, .) satisfies Assumptions 1.1 and 1.2, and is in €°=([0, Z), MiS ' (R™ x
R™), i.e. Holder continuous w.r.t. z, with values in MiS'(R" X R™), in the sense that, for some 0 < o < 1

alZ,x, &)~ aiz,x,& =@ -%a(Z,z,x,¢€), 0257 <Z,

or Lipschitz (@ = 1), with@(Z, z, x, £) bounded w.r.t. 2’ and z with values in MS'(R*XR™). Lets e Rand0 <r< 1.
Then the approximation Ansatz Wy, converges to the solution operator U(z, 0) of the Cauchy problem (1)~(2) in
L(HSDR™M)E, (HEDIRM)F) uniformly w.rt. z as Ag goes to 0 with a convergence rate of order a1 - r):

1'Ws.z = Uz, Ollarssop, oy < CAR' ",z €[0,Z].
Furthermore, the operator Wy, strongly converges to the solution operator U(z, 0), uniformly w.rt. z € [0, Z), in
L(HCEDRDE, (HEDRMP.
Proof. The case r = 0 is an immediate consequence of (5) and (6).

From energy estimate (3) for s + 1 we have

@) WU (z, 0)(up)llerwrvy < Clisolirssny.
From Proposition 2.2 we obtain

® W, (uollareny < Clisdollareny:

and thus

® | IWe. 2 (uo) = Uz, 0)(uo)ligaresvy: < Clltdoliceruenyt,

uniformly w.r.t. z € [0, Z]. The interpolation inequality
Moy < Clllgioy Vgm0 S 7S 1,
then yields ‘
1Wep.£(u0) — Uz, 0)(o)lsromay < CAZ ™ ugllgpomy, 0<r <1,

uniformly w.r.t. z € [0, Z].
Let up € (HC*D)* and let & > 0. For the strong convergence in (H**D) we choose u; € (HU*P)* such that
lluo ~ wyllmevy < . We then write
W (o) — U(z, 0)(uo)licavy < W (o — udliaeeny: + [ We (1) — Uz, 0) (w1l pervrye
+ Uz, 0)(uo — ur)ll(greseny:
<Ce+ CA%I[ul Hepresy

from estimates (7) and (8) and the case r = O of the first part of the Theorem. This last estimate is uniform w.r.t.
z € [0, Z] and yields the result. ]
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3 Symmetrizable systems

In this section, we consider the more general situation where the matrix symbol a; is symmetrizable. Namcly we
make the following assumption.

Assumption 3.1. There exists a k X k invertible matrix L(z, x, £) that is bounded w.r.t. z with values in MS°(X x
R"), homogeneous of degree zero in &, \&| = 1, with (L(z, x, £))™! satisfying the same property, and such that

a1z %,6) = L@z, 5,8 o1(2, %.6) Lz %, €)™,
with @y = —if| + y1 satisfying Assumptions 1.1 and 1.2.

Note that this formulation is in fact equivalent to that in which we choose L(z, x, £) to be itself hermitian symmetric
or to the formulation given in [1]: we have

| $@ %8 a@ x €)= (L% )" a1 % £) L % )7
with §(z, ¥, &) = (L(z, x, &))~'Y L(z, x,£))"* which is hermitian symmetric.
We shall make the additional following assumption.

Assumption 3.2. The matrix symbol L(z, x, £) is Lipschitz continuous, in the sense that
LEZ,x%8) - Lz %8 = (2 - )L 2% 8),

with Z(z’, 2, x,&) bounded w.r.t. 7' and z with values in MpS%(X x R™).

The same property naturally follows for the matrix symbol R(z, x, £) := (L(z, x, £))".

Example 3.3. The first-order system that describes linear anisotropic elastodynamic, written in terms of velocity
and stress field, is smoothly symmetrizable if multiplicities remain constant. Similarly, Maxwell’s equations are
a possible application of the results of this article if multiplicities remain constants. Conical refraction in crystal
optics is thus not considered here.

With the two assumptions made, the energy estimate (3) remains valid [1, Chapter VI] and there exists a unique
solution to the Cauchy problem (1)~(2) in €([0, Z], (HC*DR™)Y*) N €1([0, Z1, (HORM)).

The thin-slab propagator G, ) is defined as in Section 1. We check that it satisfies the regularity properties of
Proposition 1.4. The approximation Ansatz Wy, can be defined as in Section 2. As in the previous sections, we
may assume that e™4%() and ¢=47@) take values in MSI(X XR"), p € [}, 1] (see Lemma 1.9 and corollary 1.14).

3.1 Composition of two thin-siab propagators

Because the matrix symbol L(z, x, £) is not unitary we cannot proceed as in Section 1 and obtain an estimate for
the Sobolev operator norm of G, ;) as in Theorem 1.20.

We instead investigate the product G, ») © Gz, With 0 < z < 2’ < 7 < Z, as it appears in the definition of the
Ansatz Wy, in Section 2.

We define the following matrix-phase FIOs

(1) Hep W(X) = ff XX g (X, E)L(z, ¥, £)e~ N EF Dy(x) dx dE,
@ Hep @) = f f X g0 (X, O8N &N R(z, X', ) u(x) dx dE,
3 He »@)(x) = f f XA (o )BT y(x) dx dE,

and

@ HE @) = GraW)(®), ueHEORM)
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Proposmon 3.4, Let s € R. There exists an operator K » 5 bounded from (HORMY* into (HORM), uniformly
wrt 7", 7/ and z, such that

7{(1;’.#) ° 7{(1;’.2) = (H(Iz”.z’) ° 7-{(rz’.zz) +max(4, A,)‘K‘(z”,z’.z) + M, x, Dy),
forA=7 —zand A’ = 7 — 7’ both sufficiently small, and where

5) M(z, x, Dy) := I — L(z; x, Dx) o R(z, x, Dy).

In the sequel, we shall often write M, in place of M(z, x, D;) for concision.

Proposition 3.5. Let s € R. There exists an operator K » 7, bounded from (HOR™M) into (H)R™)Y* uniformly
wrt. z”, 2 and z such that

|
(H(IQ'.z') o Hy 5 = Hipr oy © Hiz.oy + max(d’, AKizr 2.3,

for A’ and A sufficiently small.

Finally, we shall use the following result.

Proposition 3.6. Let s € R. There exists an operator Ky ;, bounded from (HO®R™)* into (HOR™)* uniformly
w.rt. 2’ and z such that

Hy o © Mz, X, Dy) = M(Z, x, D) + 5Kz ),

for A sufficiently small.

3.2 Stability of the Ansatz Wy, and conclusion

Let s € R. Let K > 0. We shall denote by K a generic operator continuous from (H®(R®))* into (H”(R"))* such
that || KMl grop (royy < K. We now define notations for some operators. In the notation J 0y below, we are
solely interested in the form of the operator and by its norm estimate rather than by its precise definition. Thus, in

the definition of J,a ., the operators denoted by K may change from one term to another. We choose to make
this abuse of notation for the sake of concision.

Definition 3.7. Let NeN. Let0 =729 <V ... <zZ™M < Z For0< 1<V < N, we set
Id ifl =1,

g(z“"....,z“’) =G ) ifl—1=1,
B> 4r-) O+ + © Gaon 0y Otherwise,

Id i =1,
Hn,..a0) = Heger gr-y = G-y fr-1=1,
7.{(11(" -0 ° Hgr-n -y © + - © Hguom ey 0 Hi sy 4oy Otherwise,
and
Id ifr=1i
Hen,.am 1= { g geny fr-1=1,

7"{(2(17).2(:'-1)) 0+« 0 '}"{(z(ln).z(lu)) o 7‘{(';(““’:(0) otherwise.

The reader should note that H", & 0y = G w0y but H, o e G(zu') 2oy fU =122 ForO<I<I <N, we
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denote by J . 40y an operator of the form (J o sy = 1d)

©  Turr M
+ A Z 7-{(2(”) ..... Z("'l*”) ° 7( ° ﬂztml-l) 'zm)
I+1<mgl'~1

r
+A . Z » 7'{(5/) ey oK °;'{{(z(~,—l) ’z(m,‘lﬂ)) o
+dr=1Smp SV - o o
: (2D, D) (@170, 2y
iamioms s

r (!
+A Z 7'{(:(,) (m,.ml)) ° 7( ° 7‘{( (m,a-l) ,z(mr’—l'.'l))

B2 -1Sm ¥ .
- © Himon,.. z<-l+”)°7(°(H
H3smy<ma -2

Hismy Simy-2

=D, A0y

with ¥ = B((l' = D)/2).

In the sequel, the “order” of a term will refer to the power of A appearing in it.

Remark 3.8. Observe that in the definition of J(, ), in the case where I’ — [ is even, the last term is in fact
AU-DI2g o ... o K, with the generic operator K appearing (' — [)/2 times (we do not write K*~D/2 since the
operator K may not be the same each time). In the case where I —  is odd, then, there remains one operator of the

type ‘I-I(’J,,,_D dweny OF 'H(‘ 20, .. gm0y in each term of order E((/ — I)/2) = (' = 1 - I)/2. Basically, in each term in the

sums above, the operator K replaces the occurrence of two consecutive operators of the type given in (1)~(4) and
we cover allpossible cases in the sums. We write the first examples of the operators J i 0y to get used to their
form:

T (gev g0y = q"{(l:(ul),zm),

T,y = Higun_goy + K,

T2y = Hoon_ g0y + 8(K © Hgun 1+ Hiion guny 0 K).

Tt g0y = 7{(';(»4) 20y
+A ('K o Hiwn, oy + W,««) vy © Ko Hi g oy + Hex (9, w0y © 7<)
+AK o K,

etc,

As in Section 2, we shall use uniform subdivisions of [0,Z] but the method and results presented here can be
naturally adapted to any subdivision of [0,Z]. We give an estimation of the operator norm of T L0y that relies
on the sharp estimation of the Sobolev operator norm of the thin-slab propagator obtained in Theorem 1.20 in the
case of a symmetric system. The result of Theorem 1.20 in fact applies to the operator H(y 5, defined in (3), by
Assumption 3.1.

Lemma 3.9. There exist S 2 0 and C > O such thas, for all subdivision B of [0,Z], B = {2@,2®,..., 2"}, with
0=20 <20 <... <2 =Z and 2D — 70 = Ag, we have

™ “’j(z").z"’)“((ﬁ(:))t,(ﬁ(:))t) < S2eCZ, 0<l<! <N,

Sfor Ay sufficiently small.

Proof. From Proposition 1.4 and Theorem 1.20, there exist S > 0 and M > O such that

"(Hrz‘.z)“((y(n)t (H(:))t)ss' ” .z)"((u(:))t (Hk)y = <S,

" -3)”((}{('))‘ (HGHkY <S, and, ”w(z'.z)"((gm)b (HWY) <1+ MA,
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uniformly w.rt. 2’ and 2, 0 £ 2 < 2’ < Z, for A = 7/ — z sufficiently small.

We choose S > 1 and Ag sufficiently small such that 1 + MA < S and to apply the invoked properties. There is no
loss of generality in assuming I = 0.

If we consider the generic term in the sum of order 7 in the definition of J ¢ ,»y we find

oK oH"

1
" 7'{(;:').._, Zmr+Dy (dme-),, gy sy O * 7

e (rz“‘z"’ ..... meny 0 K0 ﬂ(rz"“l"’....,z@) "((H“'))".(H('))*)

< SH-ZK"(I + MA)['—:"'-Z.
The number of terms in the sum of order r is less than (' — 1)(/' = 3)--- (' — 2r + 1)/r!. In any case, /' being even
or odd, we can estimate this number of terms from above by 2’(E("r/ 2)). In fact, the number of terms in the sum is
over estimated but this estimation will suffice to our purpose. We obtain

Ar Z q-((l:“’).....z""’”)) oK o 7‘[(;0"_””“.2(..'_”") O
z;um:.,sr;l . °q-((r,(mz-l),... Zmr+Dy oq(o?'[(’;m_,)"" Loy Neop @R
Sy Sma =
17
<2 A)r(E(lr/ 2)) K'S r+2 1+M A)f‘ —3r-2‘

Observe that this estimation is sharp in the case r = 0 but becomes rather crude when r becomes large, from the
over-estimation made above. In particular, for r = E(/'/2) this estimate is much larger than the estimates AE¢/2 k"
(in the case I’ is even) and -’-'iﬂS ABE/DEKT (in the case I’ is odd) that we can directly obtain.

Summing the estimates we obtain

E(r/2) (E(lllz)
r

T ).Z@)“((H(n))k'([{(:)y) s @A) )K’S 2] 4 MA) 32
r=0

B2 (E(l’ /2))( 208K -

— a2 -2
=S¥+ MO ) r N\T+MA

r=0

)r (a1 + may)

In the case where I’ is even we obtain

2ASK

E('/2)
2 -2 2
NT .ol gy garenyy S S°(1 + MA) (m +(1+ MA) )

Thus, there exists C 2 0 such that

T ol oo gy S S2(L + CAYD < 821 + ZC/NYY,

which is bounded, with S2 exp(CZ) as an upper bound. The case where  is odd yields a similar bound. n

With the results of Propositions 3.4 to 3.6 we now compute H”., = .. 0 T 0y, Which will be needed below.
po (@0 4y © J (@.20)

Lemma 3.10. For Ag sufficiently small, i.e. N large, for ' — 1 2 3, we have

H v gy © T2y = Taron sy + Bp Myran 0 K © T sy,
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where Jam w0 is given by (T ay = 1d)

T 0y = Hin 0,
+ Ay Z (;r)"_.'zau,u)) oKo ?{z(ml-l) 0

I+1sm sl -1
* A;’ Z (H'(rz“' Dyzire) © Ko 7'((z(m.-- g1y ©
0 He s ey K 0 Hlp
135my Sy =2 (227D, g +D) (Caul LR C))
I+1smy Smy-2
’J
* A(n Z 7-((’#’)....1"':' +')) °oKo {H(rz(u,, D ,.m)
th—ls:mrlsl‘-l . 7-{(2(_2_0 meiyy 07{07{:"!-“ 2y’
135y Siy-2
+1Smy Sy =2
with r' = E((' - )/2). We have
T, cz ,
®) Iu-(z(’),z(’))"«ﬁ'(;))k’(ﬁ(;))‘) <Se*4, 0<I<I<N.

for the same constants S and C as in (7).

Note that the definition of J 4, is similar to that of J e uy With the terms H, ., replaced by M, ..

. . — l . .
We now focus on the estimation of the operator norm of G,/ = Hy 4y 0"+ © 'H(;m 7o 1-. the question of

the stability of the Ansatz ‘Wy,. In the method we shall use, operators of the form of J . .0y appear, for which
we can now bound the operator norm uniformly w.r.t. N = ||. We have seen above, in Proposition 3.4, that

... = 7'{(1:(1) 20 ° ‘Hl;(n o= (’zm 2y © Hiay 0y + B3K + Mo
‘7-((2(,, oy + 83K + Mo = T 0 + M.
Composing with 'H( oz ON the Lh.s. we obtain
G, = Hilo vy © Mg gy © Higo
= Filo ay © (Hie,_.soy + B9 K + Mea)
..o * 89 (K 0 Hon oy + Hilo vy © K) + Hio ) © M
= T + Hi gy © M = T 20y + M + BpK,
by Proposition 3.5 and Proposmon 3.6. We carry on with these explicit computations to derive the form of
G, = 'H(I:(s) 0’ (za) 20y We have
G,z = ‘H(zm 0o (I:m 20y = (lz'«, ) © (T g0y + Mo + Ag %K)
= Tz, 20y + Ap Mo 0 K 0 T o 1y + Mo + AgK + Amq-{z(‘).z“’) oK
= J .0 + Myo 0 (1d + AgK 0 Tz o) + AgK + AgHly 0, 0 K,
by Proposition 3.5 and Proposition 3.6 and Lemma 3.10. Similarly, we obtain
GS,.40 = 7'{(12(5) 2o e '7'{([;«),:(0))
= 7'[(’2’(,, 20 © {J"(zw,ztm) + Myw o (Id + AgK 0 T ‘2(0))) +Ap’K + Aﬂ)q‘((l:“) 2 ©° ‘K]
= J9.20) + Dg Mo 0 K 0 Fow 10y + (Myo + AgK) 0 (1d + AgK o T 20)
+ B (Mo g0y © K + Hil 10y © Hifo 9, © KO
= T 20) + DG, 0 0 K+ Mys 0 (Id +AgK o 57-'(‘«» 2y +ApK o 3~'(zm .z(m))
+ AgGun j0y 0 K + AgK o (Id +AgK o jza» ,2(0))) .
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By induction we can now obtain

Lemma 3.11. Let [ > 5, we have

-4
® G20 = T + bgGo,.0) © K + M 0 [Id + Ay Z KoJ (zU’,z“”)]
j=0

[ J=5
+Ag Z [g(z")....,zw) oK o (Id + Ag Z Ko J(z“’.z‘"‘)]) ,
= :

i=0
with the convention 3.5 K © ﬁgo,zm) =0.

From Lemma 3.9 and Lemma 3.10 we observe that

<C, 0<I<N,
(HOR(HBY)

l
1d + Ag ) K 0 T 4oy
J=0

with C uniform w.r.t. P and [, since Ap = Z/N. As |IM, ||y ey is bounded uniformly w.r.t. z, we obtain the
existence of A 2 0 and B 2 0 such that *

l
G, (z"’.z“”)“((nm)t,(ymy) SA+AgB Z ”g(z(”.zu’)"((H(.v))k,(g(:))k);
=3
* from Lemma 3.11, which gives, with Vp,[ = "g(z(r)'zm)||((H(,,)¢’(H(,)),‘),
L i
Vio<A+ At,pBZ V[_j <A+ Aq;BZ Vij-
. J=3 J=1
Above, we have chosen to use z(® = 0 as the starting value for z. However, similarly, we obtain
v
ViiSA+AgB ) Vi OSISUSA.
J=l+1
Define the finite sequence, (Wpogisy by
!
Wo=1, Ww=A+AgB)Y W), OSISN-L
Jj=0
Since G0 0y =1d, 0 < I < N, we have Vj; = 1 and a simple induction gives
Vig<Wey, 0<ISV SN
We now observe that forall/,/ = 1,...,N,
W, = Wi_y + AgBWj_q = (1 + AgBYWy-y = (1 + Ap B) Wo
=(+ApB)Y < (1 + %‘71)" < %2,

For the Ansatz ‘Wy, in the symmetrizable case, we thus have the following counterpart to Proposition 2.2.

Theorem 3.12. Let s € R. Under Assumptions 3.1 and 3.2, there exists K' > 0 such that for every subdivision
B = (29,70, ...,z2M) of [0, Z] with 0 = 2@ < 2 < --- < 2™ = Z and Wy ; as defined in Definition 2.1 we have

Vz€[0,Z], [Wa.dlgaror arop < K's

for Ag sufficiently small.
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With the stability of Wy, established, we can proceed with the analysis of its convergence as in Section 2. There
is no difference in the argumentation between the symmetric and the symmetrizable cases there. We thus obtain a
theorem similar to Theorem 2.7, which gives a representation of the solution operator of the Cauchy problem (1)~
(2) by an infinite product of matrix-phase FIOs.

Theorem 3.13. Let Assumptions 3.1 and 3.2 hold and let xassume that a(z, .) belongs to €°*([0, Z], MiS ' (R" x
R™), i.e. Holder continuous w.r.t, z, with values in MyS*(R" X R™), in the sense that, for some 0 < < 1

aZ,x,&€-a(z,x,6€) = -2)%al,z,x,8), 05257 <2,

or Lipschitz (@ = 1), with@(Z, z, x, £) bounded w.r.t. z’ and z with values in MS '(R"XR"), Lets € Rand0 < r < 1.
Then the approximation Ansatz “‘Wg , converges to the solution operator U(z, 0) of the Cauchy problem (1)—(2) in
L(HS*DRM)*, (HED(R™)*) uniformly w.r.t. z as Ag goes to O with a convergence rate of order (1 — r):

1Wa. = Uz, O)larueip grownyy < CAZI™, 2 € [0,2).

Furthermore, the operator Wy , strongly converges to the solution operator U(z, 0) uniformly w.r.t. z € [0,Z]) in

L((H(‘"'”(R"))k, (H'("“)(R"))k).
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tems and Didier Robert for early discussions on the content ot the article. The author also wishes to thank Hiroshi
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