ON THE CROSSED BURNSIDE RINGS

小田 文仁 (FUMIHITO ODA) 国立富山工業高専 (TOYAMA NATIONAL COLLEGE OF TECHONOLOGY)

1. BOUC FUNCTORS

1.1. Notation and Definition. Let G and H be finite groups. An (H,G)-biset, or a biset shortly, is a set with a left $(H \times G^{op})$ -action, i.e., a set U with a left H-action and a right G-action which commute.

If K is another group, and V is a (K, H)-biset, then the product $V \times U$ by the right action of H given by $(v, u)h = (vh, h^{-1}u)$ for $v \in V$, $u \in U$, and $h \in H$. The class of (v, u) in $V \times_H U$ is denoted by (v, H u). The set $V \times_H U$ is a (K, G)-biset for the action given by

$$k(v,_{H}u)g = (kv,_{H}ug)$$

for $k \in K$, $g \in G$, $u \in U$, and $v \in V$.

Denote by C_p the following category:

- The objects of C_p are the finite p-groups.
- If P and Q are finite p-groups, then $\operatorname{Hom}_{\mathcal{C}_p}(P,Q) = B(Q \times P^{op})$ is the Burnside group of finite (Q,P)-bisets. An element of this group is called a virtual (Q,P)-biset.
- The composition of morphisms is \mathbb{Z} -bilinear, and if P,Q,R are finite p-groups, if U is a finite (Q,P)-biset, and V is a finite (R,Q)-biset, then the composition of (the isomorphism classes of) V and U is the (isomorphism class) of $V \times_Q U$. The identity morphism Id_P of the p-group P is the class of the set P, with left and right action by multiplication.

Let \mathcal{F}_p denote the category of additive functors from \mathcal{C}_p to the category \mathbb{Z} -Mod of abelian groups. An object of \mathcal{F}_p is called a **Bouc functor** (defined over p-groups, with values in \mathbb{Z} -Mod)(see [Th06], [Bo06]).

1.2. Notation. The Bouc functor of *Burnside group* will denote by B. The Bouc functor of rational representations will denote by $R_{\mathbb{Q}}$. The G-poset of the family of all subgroups of a finite group G will denote by S(G). If X is a G-set, denote by $G \setminus X$ a family of G-orbits, and by $[G \setminus X]$ a set of representatives of $G \setminus X$.

2. THE DADE GROUP

2.1. Some known Dade groups: The structure of D(P) is known for any 2-group P of normal 2-rank 1: when P is generalized quaternion, the result is due to Dade, and the other cases have been solved by Carlson and Thévenaz:

Theorem 2.2. (Dade [Da78a], Carlson-Thévenaz [CT00])

- (1) $D(C_{2^n}) \cong (\mathbb{Z}/2\mathbb{Z})^{n-1}$, and $D(C_{p^n}) \cong (\mathbb{Z}/2\mathbb{Z})^n$, if $p \geq 3$.
- $(2) D(D_{2^n}) \cong \mathbb{Z}^{2n-3}.$
- (3) $D(SD_{2^n}) \cong \mathbb{Z}^{2n-4} \oplus \mathbb{Z}/2\mathbb{Z}$.
- (4) $D(Q_{2^n}) \cong \mathbb{Z}^{2n-5} \oplus \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, for $n \geq 4$.
- (5) $D(Q_8) \cong \mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, if the ground field contains all cubic roots of unity, and $D(Q_8) \cong \mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ otherwise.

The ingredient of the present note is

Theorem 2.3. (Bouc-Thévenaz [BT00] Theorem 10.4) There is an exact sequence of functors

$$0 \longrightarrow \mathbb{Q}D \stackrel{\alpha}{\longrightarrow} \mathbb{Q}B \stackrel{\varepsilon}{\longrightarrow} \mathbb{Q}R_{\mathbb{Q}} \longrightarrow 0$$

where $\varepsilon(P): \mathbb{Q}B(P) \to \mathbb{Q}R_{\mathbb{Q}}(P)$ is the morphism mapping a P-set to the corresponding permutation module over \mathbb{Q} .

小田 文仁 (FUMIHITO ODA) 国立富山工業高専 (TOYAMA NATIONAL COLLEGE OF TECHONOLOGY)

We could determine the difference rank $B^c(P) - \operatorname{rank} R_{\mathbb{Q}}(\mathcal{D}(P))$ by using a result as follows:

Theorem 2.4. (Bouc-Thévenaz [BT00] Theorem A) The torsion-free rank of the Dade group D(P) is equal to the number of conjugacy classes of non-cyclic subgroups of P.

- 3. The crossed Burnside ring and the rational representations of Drinfel'd DOUBLE
- **3.1. Definition.** Let M be one of the Bouc functors $\mathbb{Q}D$, $\mathbb{Q}B$ and $\mathbb{Q}R_{\mathbb{Q}}$. We use a construction of Dress for Mackey functors for obtaining a module from M. Let P be a p-group. Now we set

$$M(X) = \left(\bigoplus_{x \in X} M(P_x)\right)^P$$
$$= \left\{ (m(x)) \in \bigoplus_{x \in X} M(P_x) \middle| g(m(x)) = m(gx) \forall g \in P \right\}$$

where P_x is the stabilizer of x in P.

Corollary 3.2. Let P be a p-group and X a P-set. Then there is an exact sequence of \mathbb{Q} -vector spaces

$$0 \longrightarrow \mathbb{Q}D(X) \stackrel{\alpha}{\longrightarrow} \mathbb{Q}B(X) \stackrel{\epsilon}{\longrightarrow} \mathbb{Q}R_{\mathbb{Q}}(X) \longrightarrow 0.$$

3.3. Notation. We denote by $B^c(P)$ the crossed Burnside ring of P, i.e. the Grothendieck ring of the category of finite crossed P-sets over P^c , for relations given by decomposition into disjoint union of crossed P-sets, the ring structure being induced by the product of crossed P-sets. Also we denote by $R_{\mathbb{Q}}(\mathfrak{D}(P))$ the rational representation ring of the Drinfel'd double $\mathfrak{D}(P) = (\mathbb{Q}P)^* \otimes \mathbb{Q}P$ for the group algebra $\mathbb{Q}P$.

Corollary 3.4. Let P be a p-group. Then there is an exact sequence of \mathbb{Q} -vector spaces

$$0 \longrightarrow \mathbb{Q}D(P^c) \stackrel{\alpha}{\longrightarrow} \mathbb{Q}B^c(P) \stackrel{\varepsilon}{\longrightarrow} \mathbb{Q}R_{\mathbb{Q}}(\mathcal{D}(P)) \longrightarrow 0.$$

In particular, we have

$$\operatorname{rank} B^{c}(P) = \operatorname{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) + \dim_{\mathbb{Q}} \mathbb{Q}D(P^{c}).$$

Corollary 3.5. Let P be a p-group. Then the following numbers are equal:

- (1) rank $B^c(P)$.
- (2) $\operatorname{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) + \sum_{g \in [P \setminus P^c]} \dim_{\mathbb{Q}} \mathbb{Q}D(C_P(g)).$

$$(3) \sum_{Q \in [P \setminus \mathfrak{S}(P)]} \frac{|C_P(Q)|}{|N_P(Q)|} \cdot |Q| \left(\sum_{x \in Q/Q'} \frac{1}{|x|} \right)$$

- $(4) \sum_{Q \in [P \setminus \mathcal{S}(P)]} |N_P(Q) \setminus C_P(Q))|.$ $(5) \sum_{g \in [P \setminus P^c]} |C_P(g) \setminus \mathcal{S}(C_P(g))|.$

Corollary 3.6. Let P be a p-group. Then

$$\operatorname{rank} B^{c}(P) = \operatorname{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) + \sum_{g \in [P \setminus P^{c}]} |C_{P}(g) \setminus \delta_{\operatorname{non}}(C_{P}(g))|,$$

where $S_{non}(C_P(y))$ is the $C_P(y)$ -poset of non-cyclic subgroups of $C_P(y)$ with $C_P(y)$ -action defined by conjugation.

Corollary 3.7. Let P be a cyclic p-group. Then

$$\operatorname{rank} B^{c}(P) = \operatorname{rank} R_{\mathbb{O}}(\mathcal{D}(P)).$$

3.8. Some small 2-groups. We summarize basic facts on the structure of the centralizers of the representative of a conjugacy class of dihedral, semi-dihedral and generalized quaternion 2-groups (see, for instance, III.17 of [Er90]). In the rest of the paper, we always denote by z the central elements of order 2 of the group considered. Suppose that

$$D_{2^n} = \langle x, y | x^{2^{n-1}} = y^2 = 1, y^{-1}xy = x^{-1} \rangle$$

is a dihedral group of order 2^n $(n \ge 2)$. Then the centralizers of 1 and z are D_{2^n} . The centralizers of y and xy are Klein four groups. The centralizers of the representative of the other $2^{n-2} - 1$ conjugacy classes are cyclic subgroups $(n \ge 3)$. Suppose that

$$SD_{2^n} = \langle x, y | x^{2^{n-1}} = y^2 = 1, \ y^{-1}xy = x^{-1+2^{n-2}} \rangle$$

is a semi-dihedral group of order 2^n $(n \ge 4)$. Then the centralizers of 1 and z are SD_{2^n} . The centralizer of y is a Klein four group. The centralizers of the representative of the other 2^{n-2} conjugacy classes are cyclic subgroups. Suppose that

$$Q_{2^n} = \langle x, y | x^{2^{n-2}} = y^2, y^4 = 1, y^{-1}xy = x^{-1+2^{n-2}} \rangle$$

is a generalized quaternion group of order 2^n $(n \ge 3)$. Then the centralizers of 1 and z are Q_{2^n} . The centralizers of the representative of the other $2^{n-2} + 1$ conjugacy classes are cyclic subgroups.

Corollary 3.9. Let P be a dihedral group D_{2^n} of order 2^n $(n \ge 2)$. Then

$$\operatorname{rank} B^{c}(P) - \operatorname{rank} R_{\mathbb{O}}(\mathcal{D}(P)) = 4n - 4.$$

Corollary 3.10. Let P be a semi-dihedral group SD_{2^n} of order 2^n $(n \ge 4)$. Then

$$\operatorname{rank} B^{c}(P) - \operatorname{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) = 4n - 7.$$

Corollary 3.11. Let P be a generalized quaternion group Q_{2^n} of order 2^n $(n \ge 3)$. Then

$$\operatorname{rank} B^{c}(P) - \operatorname{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) = 4n - 10.$$

REFERENCES

[Bo03a] S. Bouc, Hochschild constructions for Green functors, Communications in Algebra, 31 (2003), 419-453.

[Bo03b] S. Bouc, The p-blocks of the Mackey algebra, Algebras and Representation Theory, 6 (2003), 515-543.

[Bo06] S. Bouc, The Dade group of a p-group, Invent. Math., 164 (2006), 189-231.

[BT00] S. BOUC AND J. THÉVENAZ, The group of endo-permutation modules, Invent. Math., 139 (2000), 275-349.

[Bu87] L.M. BUTLER, A unimodality result in the enumeration of subgroups of a finite abelian group, *Proc. Amer. Math. Soc.*, 101 (1987), 771-775.

[CT00] J. F. CARLSON AND J. THÉVENAZ, Torsion endo-trivial modules, Algebr. Represent. Theory, 3 (2000), 303-335.

[Da78a] D. DADE, Endo-permutation modules over p-groups I, Ann. Math., 107 (1978), 459-494.

[Da78b] D. DADE, Endo-permutation modules over p-groups II, Ann. Math., 108 (1978), 317-346.

[Er90] K. ERDMANN, Blocks of tame representation type and related algebras, Lecture Notes in Math.,1428, Springer-Verlag, (1900).

[Ka94] C. KASSEL, Quantum groups, Cambridge University Press, 1995.

[Ma95] S. MAJID, Foundations of quantum group theory, Cambridge University Press, 1995.

[Od] F. ODA, Crossed Burnside rings and Bouc's construction of Green functors, preprint.

[OY01] F. ODA AND T. YOSHIDA, Crossed Burnside rings I. The Fundamental Theorem, J. Algebra 236 (2001), 29-79.

[OY04] F. ODA AND T. YOSHIDA, Crossed Burnside rings II. The Dress construction of a Green functor, J. Algebra 282 (2004), 58-82.

[Pu90] L. Puig, Affirmative answer to a question of Feit, J. Algebra 131 (1990), 513-526.

[Th06] J. THÉVENAZ, Endo-permutation modules, a guide tour, preprint (2006).