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1 Introduction
Let (V, $Y,$ $1,$ $\omega$ ) be a vertex operator algebra. Thus

$V= \bigoplus_{m\in \mathbb{Z}}V_{(m)}$

is a $\mathbb{Z}$-graded vector space over $\mathbb{C}$ and

$Y(\cdot, z)$ : $Varrow(EndV)[[\sim,\sim]]$ ;

$t’\mapsto Y(v_{1}.z)=\sum_{n\in \mathbb{Z}}\iota\prime_{n^{\vee^{-n-1}}}’$
’

is a linear map which satisfies a set of axioms. Each $v_{n}$ is a linear $end_{o1}norphism$

of $V$ . For $\iota$ } $\in V,$ $Y(v, \approx)=\sum_{n\in \mathbb{Z}}v_{n}\approx^{-n-1}$ is called the vertex operator $as_{-}sociated$

with $v$ . The subspace $V_{(m)}$ is called a homogeneous subspace of weight $rn$, and every
element in $V_{(m)}$ is said to be of weight $\uparrow\eta,$ . For $v\in lV_{(m)}$ , we denote its weight by
wt $v$ . The generating function

ch $V= \sum_{m\in \mathbb{Z}}(\dim V_{(m)})q^{m}$

of the dimension of each homogeneous subspace is called the character of $V$ .
There are two distinguished elements 1 and $\omega$ . The element 1 is of weight $0$ and

it is called the vacuum vector. It $plavs\backslash$ like the unity. In fact, $Y(1, \sim\cdot)=1$ , that is,
$1_{-1}=id_{V^{r}}$ and $1_{n}=0$ if $7?\cdot\neq-1$ . Another important property of 1 is the creation
property: $v_{-1}1=v$ for $al1\}^{\prime v}\in t/$ . The element $\omega$ is called the $Vira_{\llcorner}^{q}oro$ element.
The operators $L(n)=\omega_{n+1},$ $??,$ $\in \mathbb{Z}$ satisfv the Virasoro relation

$[L( \nu n,), L(\uparrow\iota)]=(m-\uparrow\iota)L(’|n+n)+\frac{1}{12}(rn^{3}-\uparrow n)\delta_{m+n.0^{C}}$ ,
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where $c$ is a constant called the central charge. The homogeneous subspace $V_{(m)}$ of
weight, $\prime m$ is the eigenspace for the operator $L(O)$ with eigenvalue $m$ .

An automorphism $g$ of the vertex operator algebra. $V$ is a linear automorphism
of $\iota_{/}^{\Gamma}$ such that $g\omega=\omega$ and $g(u_{n}\tau)=(gu)_{n}(g_{T’})$ for $v_{\eta},$ $\tau\in V,$ $?,$ $\in \mathbb{Z}$ . The set
Aut $V$ of all automorphisms of $V$ becomes a group under composition. Let.$q$ be
an autOmorphism of the vertex operator algebra $V$ . Then $q$ leaves the weight $m$

subspace $l/^{r}(m)$ invariant. Moreover, the space $l^{\gamma g}=\{v\in V|g\cdot v=\iota)\}$ of fixed points
is a subalgebra, which is called an orbifold.

Orbifold is an $imp_{orta11}t$ theme in the theory of vertex operator algebras. In
fact. many interesting examples of orbifolds are known. On the other hand, it is
difficult to study them. There are several reasons. One.is that $V^{9}$ is in general more
complicated than the original vertex operator algebra $V$ . Another reason is that
only a few general theorems $suc\cdot ha_{\kappa}^{q}$ quantum Galois theory $[8, 11]$ and the theory
of g-twisted modules $[9, 15]$ have been established so far (see also [7]).

Now, suppose $V$ is well understood and $g$ is given explicitly. We want to know
(1) various properties of the vertex operator algebra $l^{rg}/$ . and (2) the representation
theorv of $t^{rg}/$ , namely, the classification of irreducible modules and the $detern\dot{u}nation$

of fusion rules. There is a well $kno\backslash vn$ conjecture.

Conjecture 1.1 Assume that $V$ is a rationd and $C_{2}$ -cofinite vertex operator alge-
bra. Let $g$ be an automorphism of $V$ of finite order. Then

(1) $\iota_{/}^{rg}$ is rational and $C_{2}$ -cofinite.
(2) Any irreducible $V^{g}$ -module will appear in some irrducible V-module or some

irrducible $g^{i}$ -twisted V-module, $1\leq i\leq|g|-1$ .

In this article we will briefly survey recently obtained results concerning orbifolds
of some lattice vertex operator algebras by an automorphism of order 3. For details,
please refer to [18].

2 Examples of orbifold
In this section we review some known exarnples of orbifold. Let $(L, \langle\cdot, \cdot\rangle)$ be a
positive definite even lattice. IFlrenkel, Lepowskv and Meurman [10] constructed a
vertex operator algebra $V_{L}$ associated with $L$ . The vertex operator algebra $V_{L}^{J^{\vee}}$ is
known to be rational and $C_{2}$-cofiite. Any isometry $\sigma$ of the lattice $L$ can be lifted
to an automorphism $\sigma$ of $tl$)$e$ vertex operator algebra $1_{L}^{\Gamma}:$ .

The most basic exalnple of such an isometry is the-l isometry $\theta$ : $Larrow L_{:}\cdot\alpha\vdasharrow$

$-\alpha$ . There is a canonical lift $\hat{\theta}$ of $\theta$ such that $\grave{\theta}^{2}=1$ (cf. [10. (6.4.13). (10.3.12)]).
Let

$1_{L}’\vee\pm=\{v\in L_{L}^{\gamma}|\hat{\theta}v=\pm t\}$ .

Then $\iota_{L}^{r+}’$

.
$=t_{L}^{\gamma\hat{\theta}}$ is a simple vertex operator algebra and $\iota_{/}^{r_{L}-}$ is an irreducible module

for $V_{L}^{+}$ . The orbifold $l_{L}^{r+}$ of $\ddagger_{L}^{\prime^{r}}$ by the involution $\acute{\theta}$ has been studied extensively (cf.
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$[1_{\backslash }2.3])$ . The $rationa_{1}1ity$ and the $C_{2}$-cofiniteness of $V_{L}^{+}$ were established. Moreover,
the classification of irreducible modules and the deterInination of fusion rules were
obtained. In particular, Conjecture 1.1 is true in this case.

In the case where the lattice $L$ is the Leech lattice $\Lambda$ , the vertex operator algebra
$V_{\Lambda}^{r}$ is holomorphic, that is. $l_{\Lambda}^{7}/$ is simple and rational, and furthermore $l^{\gamma_{\Lambda}}$ has a
unique irreducible module. This is because A is a unimodular lattice. There is a
unique irreducible $\hat{\theta}$-twisted $l_{\Lambda}^{\gamma}$-module 1$i^{r}T\Lambda$ . The involution $\acute{\theta}$ acts on $t_{\Lambda}^{\nearrow T}$ . Actually,
the action of $\acute{\theta}$ on $V_{\Lambda}^{\gamma T}$ is not canonical. Here we adopt the notation so that our
action $\acute{\theta}$ on $l_{\Lambda}^{rT}$, is negative of the action described in [10]. We set

$V_{\Lambda}^{T,\pm}=\{\iota\in V_{\Lambda}^{T}|\hat{\theta}v=\pm v\}$ .

Then $V_{\Lambda}^{\pm},$ $V_{\Lambda}^{T,\pm}$ form a complete set of representatives of equivalenoe classes of
irreducible $V_{\Lambda}^{r+}$-modules. The construction of the moonshine vertex operator algebra
$1^{r\natural}$ by benkel, Lepowsky and Meurman [10] was based on the orbifold $V_{\phi}^{+}$ . In fact,
$V^{q}$ wa defined to be a direct sum of $V_{\Lambda}^{+}$ and its irreducible module $\iota^{\gamma_{\Lambda}\cdot-}$ . It $wa\llcorner s$

shown that the vector space $V^{\natural}=t_{\Lambda}^{r+}\oplus V_{\Lambda}^{T.-}$ has a vertex operator algebra structure
and its automorphism group Aut $\iota/\vee\natural$ is isomorphic to the Monster M. One of the
remarkable properties of $V^{\natural}$ is that the character ch $V^{\natural}$ is related to the modular
function $j(\tau)$ .

Theorem 2.1 [10, Theorems 12.3.1. 12.3.4]
(1) $V^{\natural}=t_{\Lambda}^{r+}/\oplus\iota_{/}^{r_{\Lambda}T-}|$ has a vertex operator algebm structure.
(2) ch $V^{\natural}=(j(\tau)-744)q=1+0$ . $q+196884q^{2}+21493760q^{3}+\cdots$ .
(3) Aut $V^{\mathfrak{h}}\cong\ovalbox{\tt\small REJECT}$ .

The commutative non-associative algebra of the 196884 dimensional weight 2
space $V_{(2)}^{\natural}$ , called the Griess algebra, plays a crucial role for the identification of
Aut $V^{\natural}$ with the $M_{ol1}ster$ M. In fact, the automorphism group of the Griess algebra
is identical with the Monster.

Apart from the above $mentioned$ examples, only a few more examples of orbifold
have been studied in detail. In fact. some orbifolds of special type of lattice vertex
operator algebras by an automorphism of order 3 can be found in $[17, 18]$ (see also
[5]). We remark that even for an automorphism.$q$ of order 2, there is no general
results conceming Conjecture 1.1.

3 Main results
Let $p$ be an odd prime such that $p-1$ divides 24. that is $p=3,5,7$, or 13. Then
there is a Pxed-point-free isometry $\tau$ of the Leech lattice $\Lambda$ of order $p$ . It is expected
that an analogous construction of the moonshine vertex operator algebra $V^{\mathfrak{y}}$ mav
be possible bv using a lift, $\hat{\tau}\in AutV_{\Lambda}$ of $\tau$ in place of the canonical lift $\theta$ of the-l
isometry $\theta$ (cf. [10. Introduction]).
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Now we consider the case $p=3$ . Thus $\tau$ is a fixed-point-free isometry of A of
order 3. The first step should be the study of the orbifold $1_{\Lambda}^{r\acute{\tau}}/=\{\iota’\in l_{\Lambda}^{\Gamma}’|\hat{\tau}\iota=v\}$ of
$l_{\Lambda}^{r}/$ by $\acute{\tau}$ . By [7] $L_{\Lambda}^{1’}$

’ has a unique irreducible $\tau^{\prime i}$-twisted module for $i=1,2$ . Let $V_{\Lambda}^{T_{i}}$ be
the irreducible $\tau^{i}$-twisted $l_{\Lambda}^{J’}$’-module obtained bv the method of $[6, 14]$ . Set $[I(\epsilon)=$

$\{u\in U|\hat{\tau}tl=\xi^{\text{\’{e}}}u\}$ for $U=l_{\Lambda}^{r}’,$ $V_{\Lambda}^{T_{1}},$ $l_{\Lambda}^{rT_{2}}$ and $\vee c=0,1,2$ , where $\xi=\exp(2\pi\sqrt{-1}/3)$ .
Thus $V_{\Lambda}(O)=V_{\Lambda}^{!\hat{\mathcal{T}}}’$ . Our main theorem is as follows.

Theorem 3.1 [18]
(1) $l_{\Lambda}^{\prime\hat{\tau}}’\vee$ is rational and $C_{2}$ -cofinite.
(2) There are exactly nine equivalence classes of irreducible $V_{\Lambda}^{\hat{\tau}}$ -modules. which

are represented by $l_{\Lambda}^{\gamma}(\vee c),$ $V_{\Lambda}^{T_{1}}(_{\vee}c),$ $v_{\Lambda}^{\gamma T_{2}}(\epsilon),$ $\vee c=0,1,2$ .
We will sketch the proof of the main theorem. We start with a $\sqrt{2}A_{2}$ lattice $L$ .

Thus $L=\mathbb{Z}\beta_{1}+\mathbb{Z}\beta_{2}$ with ($\beta_{i},$ $\beta_{i}\rangle$ $=4$ and $\langle\beta_{1}, \ \rangle$ $=-2$ . Let $\beta_{0}=-(\beta_{1}+/3_{2})$ .
Then $\langle\beta_{i}.\beta_{i}\rangle=4a\iota ld\langle\beta_{i}, \beta_{j}\rangle=-2$ if $i\neq j$ for $i,j\in\{0,1,2\}$ . Consider an isometry
$\tau$ of $L$ induced by the permutation

$\tau$ : $\beta_{1}$ ト$arrow\beta_{2}\mapsto\beta_{0}\vdasharrow\beta_{1}$ .

Note that $\tau$ is fixed-point-free and of order 3 on $L$ .
Let $L^{\perp}=\{\alpha\in \mathbb{Q}L|\langle\alpha, L\rangle\subset \mathbb{Z}\}$ be the dual lattice of $L$ . We extend $\tau$ t,o an

isometry of $L^{\perp}$ . There are twelve cosets of $L$ in $L^{\perp}$ . In fact, $L^{\perp}/L\cong \mathbb{Z}_{2}\cross \mathbb{Z}_{2}\cross \mathbb{Z}_{3}$ and
the twelve cosets are parameterized by $\mathcal{K}$ and $\mathbb{Z}_{3}$ . where $\mathcal{K}=\{0.a, b, c\}\cong \mathbb{Z}_{2}\cross \mathbb{Z}_{2}$ is
$Klein^{:}s$ four-group. For each $x\in \mathcal{K}$ we assign $\beta(x)\in L^{\perp}$ by $\beta(0)=0,$ $\beta(a)=\beta_{2}/2$ ,
$\beta(b)=\beta_{0}/2$ , and $\beta(c)=\beta_{1}/2$ . Set

$L^{(x,j)}= \beta(x)+\frac{j’}{3}(-\beta_{1}+\beta_{2})+L$ .

Then $L^{(x.j1},$ $x\in \mathcal{K},$ $j\in \mathbb{Z}_{3}$ are the twelve cosets of $L$ in $L^{\perp}$ .
A $\mathcal{K}$ code of length $\ell$ is simply $aA1$ additive subgroup of $\mathcal{K}^{l}$ . For $x,$ $y\in \mathcal{K}$ . define

$x\cdot y=\{\begin{array}{ll}1 if x\neq y,x\neq 0_{\tau}y\neq 0,0 otherwise.\end{array}$

For $\lambda=(\lambda_{1:}\ldots, \lambda_{\ell}),$ $\mu=(\mu_{1}\ldots.,\mu_{\ell})\in \mathcal{K}^{\ell}$ . let $\langle\lambda, \mu\rangle_{\mathcal{K}}=\sum_{i=1}^{l}\lambda_{i}\cdot\mu_{t}’\in \mathbb{Z}_{2}$ . For
a $\mathcal{K}$-code $C$ of $leng,hp$ , we define its dual code by

$C^{\perp}=$ { $\lambda\in \mathcal{K}^{\ell}|\langle\lambda,$ $\mu,\rangle_{\mathcal{K}}=0$ for all $\mu\in C$ }.
A $\mathcal{K}$-code $C$ is said to be self-orthogonal if $C\subset C^{\perp}$ and self-dual if $C=C^{\perp}$ .

For $\lambda=$ $(\lambda_{1}, \ldots , \lambda_{l})\in \mathcal{K}^{t}$ . its support is defined to be $supp_{\mathcal{K}}(\lambda)=\{i|\lambda_{i}\neq 0\}$ . The
cardinality of $supp_{\mathcal{K}}(\lambda)$ is called the weight of $\lambda$ . We denote the weight of $\lambda$ by
$wt_{\mathcal{K}}(\lambda)$ . A $\mathcal{K}$-code $C$ is said to be even if $wt_{\mathcal{K}}(\lambda)$ is even for aluy $\lambda\in C$ .

DePne an action of $\tau$ on $\mathcal{K}$ by $\tau(0)=0$ . $\tau(a)=b,$ $\tau(b)=c,\cdot$ alld $\tau(c)=$

$a$ . This action of $\tau$ on $\mathcal{K}$ is compatible with the isometry $\tau$ . Indeed, we have
$\tau(L^{(x.,j)})=L^{t.\tau(x).j\rangle}$ . We extend the action of $\tau$ to $\mathcal{K}^{l}$ componentwise so that $\tau\lambda=$

$(\tau(\lambda_{1}), \ldots, \tau(\lambda_{\ell}\cdot))$ .
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Lemma 3.2 [13, Lennna 2.8] Let $C$ be a $\mathcal{K}$ -code of length $\ell$ .
(1) If $C$ is even, then $C$ is self-orthogonal.
(2) If $C$ is $\tau$ -invariant, then $C$ is $e\tau$ en if and only if $C$ is self-orthogonal.

A $\mathbb{Z}_{3}$-code of length $\ell$ is a subspace of the vector space $\mathbb{Z}_{3}^{\ell}$ . For $\gamma=(\gamma_{1}, \ldots, \gamma_{l}’)$ ,
$\delta=$ $(\delta_{1}, \ldots , \delta_{l})\in \mathbb{Z}_{3}^{\ell}$. we consider the ordinary inner product $\langle\gamma, \delta\rangle_{\mathbb{Z}_{3}}=\sum_{i=1}^{\ell}\gamma_{i}’\delta_{i}\in$

$\mathbb{Z}_{3}$ . The dual code $D^{\perp}$ of a $\mathbb{Z}_{3}$ -code $D$ is defined to be

$D^{\perp}=$ { $\gamma\in \mathbb{Z}_{3}^{\ell}|\langle\gamma^{t},$ $\delta\rangle_{\mathbb{Z}s}=0$ for all $\delta\in D$ }.

Then $D$ is said to be self-orthogonal if $D\subset D^{\perp}$ and self-dual if $D=D^{\perp}$ .
For $\lambda=$ $(\lambda_{1}, \ldots , \lambda_{l})\in \mathcal{K}^{\ell}$ and $\gamma=(\gamma_{1}, \ldots, \gamma_{\ell})\in \mathbb{Z}_{3}^{\ell}$ , let

$L_{(\lambda,\gamma)}=L^{(\lambda_{1},\gamma_{1})}\oplus\cdots\oplus L^{(\lambda_{\ell},\gamma\ell)}\subset(L^{\perp})^{\oplus\ell}$ ,

where $(L^{\perp})^{\oplus l}$ denotes an orthogonal sum of $\ell$ copies of $L^{\perp}$ . We extend the isometry
$\tau$ of $L^{\perp}$ to an isometry of $(L^{\perp})^{\oplus\ell}$ componentwise. For $P\subset \mathcal{K}^{\ell}$ and $Q\subset \mathbb{Z}_{3}^{\ell}$ , set

$L_{PxQ}= \bigcup_{\lambda\in P.\gamma\cdot\in Q}L_{(\lambda,\gamma\prime)}$
.

If $C$ is a $\mathcal{K}$-code of length $p^{1}$ and $D$ is a $\mathbb{Z}_{3}$-code of the same length, then $L_{CxD}$

becomes an additive subgroup of $(L^{\perp})^{\oplus\ell}$ . However, $L_{CxD}$ is not an integral lattice
in general. Let $(L_{C\cross D})^{\perp}=$ { $\alpha\in(\mathbb{Q}$ (Dz $L$ ) $|\langle\alpha,$ $L_{CxD}\rangle\subset \mathbb{Z}$}. The following two
lemmas are easily verified.

Lemma 3.3 $(L_{CxD})^{\perp}=L_{C^{4_{-}}xD^{\perp}}$ .

Lemma 3.4 (1) If $C$ is even and $D$ is self-orthogonal. then $L_{CxD}$ is an even lattice.
(2) If both $C$ and $D$ are self-dual. then $L_{CxD}$ is a unimodular lattice.

Suppose $C$ is a $\tau- invariallt$ even $\mathcal{K}$-code of length $\ell$ and $D$ is a self-orthogonal $\mathbb{Z}_{3^{-}}$

code of the salne length. Then $L_{C\cross D}$ is a positive definite even lattice by Lenmia 3.4.
Moreover. $\tau$ induces an isometry of $L_{CxD}$ , for we are a-ssunling that $C$ is $\tau$-invariant.
$Note$ that $\tau$ is bed-point-fre.e on $L_{CxD}$ .

There are various examples of $L_{CxD}$ . In the case $\ell=12$ , it is known that the
LeeCh lattice A can be expressed in the form $L_{CxD}$ for a $\tau$-invariant self-dual $\mathcal{K}-$

code and a self-dual $\mathbb{Z}_{3}$-code (cf. [12]). From now on we adopt the expression of
$\Lambda=L_{CxD}$ and fix such $C$ and $D$ .

We consider a sequence

$L_{\{0\}x\{0\}}=L^{\oplus 12}\subset L_{\{0\}xD}\subset\Lambda=L_{CxD}$

of sublattices. where $0$ denotes the zero codeword. Correspondingly, we have a
sequence

$L_{L_{\{0\}\cross\{0\}}}^{\Gamma}=\iota^{r_{L}\mathfrak{Q}2},\subset]/^{r_{L_{\{0\}\cross D}}}\subset\dagger_{\Lambda}’=L_{L_{CxD}}^{\gamma}$.
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of vertex operator subalgebras.
There is a natural lift $\hat{\tau}\in Autl_{L}^{1^{r}}$ of the isometry $\tau$ of $L$ of order 3. We can extend

it to an automorphism of $l/^{r_{L_{C\cross D}}}$ of order 3 whose restriction to $V_{L_{\{0\}\cross\{0\}}}=V_{L}^{\otimes 12}$

is $(\tau’\ldots. , \hat{\tau})$ . For simplicity of notation. we denote the automorphism of $V_{L_{C\cross D}}$

obtained in this way by the same symbol $\dot{\tau}$ . Our main concern is the orbifold $V_{L_{C\cross D}}^{\hat{\tau}}$

of $1_{\Lambda}^{7}’=t_{L_{C\cross D}}^{\prime^{r}}$ by $\dot{\tau}$ . For this, we consider subalgebras which appear in the sequence

$(L_{L}^{r\hat{\tau}})^{\cup}’-12\subset V_{L_{\{0\}x\{0\}}}^{\hat{\tau}}\subset V_{L_{\{0\}\cross D}}^{\overline{\tau}}\subset I_{L_{C\cross D}}^{\prime^{r}\hat{\mathcal{T}}}$.

Indeed, we can analyze any module for $V_{L_{\{O\}\cross\{0\}}}^{\hat{\tau}},$ $V_{L_{\{O\}\cross D}}^{\dot{\tau}}$ , and $l_{L_{C\cross D}}^{\hat{\tau}}/^{J^{\vee}}$

. as a module
for $(L_{L}^{r_{\hat{\mathcal{T}}}}’)^{\otimes 12}$ . In this process the knowledge about the vertex operator algebra $V_{L}^{\hat{\tau}}$ is
indispensable. We quote some properties of $V_{L}^{\hat{\tau}}$ from $[16, 17]$ .

(1) $|_{\text{ノ_{}L}}^{\Gamma\hat{\mathcal{T}}}$ is rational and $C_{2}$-cofinite.
(2) $\iota_{L}^{r\dot{\tau}}$

, has exactly 30 inequivalent classes of irreducible modules. Their represen-
tatives can be described explicitlv. Among them, twelve are contained in irreducible
$V_{L}$-modules. while nine appear in irreducible $\grave{\tau}$-twisted $V_{L}^{\gamma}$ -modules alud the remain-
ing nine appear in irreducible $\hat{\tau}^{2}$-twisted $t_{L}^{J}$’-modules.

(3) Fusion rules are kiiown partially. Some of the irreducible $V_{L}^{\mathfrak{k}}$-modules are
simple currents, but some are not simple currents.

Let $U$ be an irreducible $l_{L_{CxD^{-1}}}^{r_{\hat{\mathcal{T}}}}/nodule$ . Our argument is divided into three steps.

Stepl: Since $t_{L}^{\prime’\dot{\tau}}$ is rational. $(t_{L}^{r\hat{\tau}}’)^{\overline{C}^{I}12}$ is also rational. Thus $U$ is a direct sum of
irreducible $(1_{L}^{r\hat{\tau}}l)^{\dot{\overline{t}}^{j}12}$-modules.

Step2: An irreducible $(L_{L}^{r\hat{\tau}}’)^{c.12}i\neg$-module is a tensor product of sonie 12 irreducible
$\mathcal{V}_{L}^{\hat{\tau}}\vee- 111odules$ . Thus everv irreducible direct sulnmand in [I of Stepl can be described
aae a tensor product of irreducible $l_{L}^{\nearrow\hat{\tau}}$ -modules.
Step3: Fusion rules alnong the irreducible $\ddagger_{L}/^{r}\acute{\mathcal{T}}$ -modules impose certain restrictions
on the irreducible direct $SUlnn$)$a\iota uds$ in $U$ . Using these conditions we deternuine $U$ .

Actually, we first classify irreducible modules for $V_{L_{\{0\}x\{0\}}}^{\hat{\tau}}$ and $V_{L_{\{0\}\cross D}}^{\dot{\tau}}$ . When
we discuss irreducible modules for these two vertex operator algebras, only simple
current irreducible $t_{L}^{r\hat{\tau}}$,-modules are involved and the argument is relat,ivelv easy.
However, for irreducible $\iota_{L_{C\cross D}}^{r\hat{\tau}}$-modules we need to deal with non-simple current
extensions. In fact, this is the most difficult part in the proof of Theorem 3.1.

4 Further discussions
Recall the construction of $1^{\prime^{\tau}\#}$ by Frenkel. Lepowsky and Meurman [10]. The ir-
reducible $\acute{\theta}$-twisted $\dagger_{\Lambda}^{1^{\vee}}$ -module $\iota_{\Lambda^{T}}^{r}$ is a direct sum $l_{\Lambda}^{rT,+}/\oplus 1^{\gamma_{\Lambda}^{T.-}}$ of two irreducible
$l$ノ$r_{\Lambda}+$ -modules $1_{\Lambda}^{\prime^{\prime T,+_{andt_{\Lambda}’}T.-}}$ . The weights of $l_{\Lambda}^{!^{J^{\vee}}}T,-$ are integers, while those of $t_{\Lambda}^{r^{T,+}}$

are half integers. For the construction of $l’\vee\natural=L_{\Lambda}^{\prime+}\oplus V_{\Lambda}^{T.-}$ , the irreducible $V_{\Lambda}^{+}$ -module
$\dagger^{\gamma_{\Lambda}^{T.-}}$ of integral weights is used.
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In our case the irreducible $\hat{\tau}^{i}$ -twisted $1_{\Lambda}’/$’-module $l_{\Lambda}^{rT_{i}},$ $i=1,2$ is a direct sum of
three irreducible $V_{\Lambda}^{+}$ -modules $\ddagger_{\Lambda}^{rT_{i}}1(\epsilon),$ $\llcorner\zeta^{\backslash }=0,1_{t}2_{\backslash }$

$V_{\Lambda}^{T_{i}}=1_{\Lambda}^{rT_{i}}(0)\oplus 1_{\Lambda}^{rT_{1}}’(1)\oplus V_{\Lambda}^{T_{i}}(2)$ , $i=1,2$ .

Among the six irreducible $V_{\Lambda^{-1}}^{\hat{\tau}}\iota$)$odulest_{\Lambda}^{\gamma T_{l}}(\epsilon)$ . $i=1,2,$ $\epsilon=0,1,2$ , only $V_{\Lambda}^{T_{1}}(1)$

and $\}_{\Lambda}^{rT_{2}}’(2)$ have integral weights. Thus if one expect a $\sin\dot{u}lar$ construction as in
[10], a prospective candidate should be a direct sum of $V_{\Lambda}(O),$ $l_{\Lambda}^{rT_{1}}’(1)$ , and $V_{\Lambda}^{rT_{2}}(2)$ .
In this context we have two conjectures.

Conjecture 4.1 All the nine iweducible $V_{\Lambda}^{\tau}$’-modules $V_{\Lambda}(\epsilon),$ $V_{\Lambda}^{T_{1}}(\epsilon),$ $V_{\Lambda}^{T_{2}}(\zeta\vee\cdot),$ $\epsilon=$

$0,1.2$ are simple currents.

Conjecture 4.2 Let $\dagger\cdot l^{r}=V_{\Lambda}(0)\oplus \mathcal{V}_{\Lambda}^{\sim T_{1}}(1)\oplus\tau_{\Lambda}^{rT_{2}}’(2)$ . Then $M/$ has a vertex opemtor
structure and it is isomorphic to $V^{\natural}$ .

We look at the weight 2 subspace. Recall that the weiglit 2 subspaoe $l_{(2)}^{r\natural}/$ of $V^{\natural}$

is of 196884 dimension. As a module for the Monster $M,$ $1_{(2)}^{\gamma.\natural}$ is divided into a direct
sum of two irreducible modules, one corresponds to the principal character $\chi_{1}$ and
the other corresponds to the irreducible character $\chi_{2}$ of degree 196883 in the ATLAS
notation (cf. [4]). By abuse of notation we identify $\chi_{i}$ with its representation space,
so that we may write $V_{(2)}^{\natural}=\chi_{1}\oplus\chi_{2}$ symbolically.

The conjugacy classes of elements of order at most 3 in the Monster are as follows
(cf. [4]).

the unity : 1A,
elements of order 2 : $2A,$ $2B$ ,
elements of order 3 : $3A,$ $3B,$ $3C$ .

Now. we calculate $tl$)$e$ action of $\hat{\theta}$ on $V_{(2)}^{r\natural}$ . Since $V^{\natural}=I_{\Lambda^{+}}/’\oplus V_{\Lambda}^{T.-}.$

, we have

$\iota_{(2)}^{r}/\natural=(t_{\Lambda^{+}}’)_{(2)}\oplus(1_{\Lambda}^{\prime T.-}/)_{(2)}$ ,

$\hat{\theta}$ : 1 $-1$ .

Since $\dim(t_{\Lambda}^{r+}’)_{(2)}=98580$ and $\dim(t_{\Lambda}^{rT.-})_{(2)}=98304$ , the trace of the action of
$\hat{\theta}$ on $t_{(2)}^{\prime\natural}!$ is

$tr_{t_{t2)}^{r\#}}.\dot{\theta}=98580-98304=276$ .

On the other hand, ATLAS [4] tells us tlne character values of $\lambda 1+\chi_{2}$ on t,he

conjugacy classes $2A$ and $2B$ . They are

$\chi_{1}(2A)+\chi_{2}(2A)=4372$ ,

$\chi_{1}(2B)+\chi_{2}(2B)=276$ .
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Hence we know $that_{l}\dot{\theta}c$.orresponds to a $2B$ element of the Monster.
Next. we examine the action of $\acute{\tau}$ on the weight 2 subspace of $W=t_{\Lambda}^{\gamma}(O)\oplus$

$l_{\wedge^{T_{1}}}^{\ddagger}’(1)\oplus V_{\Lambda}^{T_{2}}(2)$ . We have

$\mathfrak{s}f_{(2)}^{r}/=1_{\Lambda}^{7}/(0)(2)^{\oplus l_{\Lambda}^{\prime T_{1}}(1)_{(2)}\oplus V_{\Lambda}^{T_{2}}(2)_{(2)}}’\hat{\tau}:1\xi\xi^{2}\vee$

.

Since dim $t_{\Lambda}^{r}’(0)_{(2)}=65664$ , dim $V_{\Lambda}^{T_{1}}(1)_{(2)}=65610$ , and dim $l_{\Lambda}^{\prime\tau_{2}}\text{ノ^{}\prime}(2)_{(2)}=$ 65610,
the trace of the action of $\hat{\tau}$ on $M_{(2)}^{r}$

’ is

$t\pi_{(2)}^{r}\acute{\tau}=65664-65610=54$ .

Moreover,

$\chi_{1}(3A)+\chi_{2}(3A)=783$ .
$\chi_{1}(3B)+\chi_{2}(3B)=54$ ,
$\chi_{1}(3C)+\lambda 2(3C)=0$

by [4]. Hence $\acute{\tau}$ should correspond to a $3B$ element if Conjecture 4.2 is true.
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