0000000000
0 15640 20070 103-111 103

A cohomology group of a Zs-orbifold model of

the symplectic fermionic vertex operator superalgebra !

Toshiyuki Abe
Ehime university

1 Introduction

In this report we calculate a cohomological group of a model of an irrational
Cs-cofinite simple vertex operator algebra. The cohomological group is con-
sidered by Miyamoto in a study on the category of modules for C,-cofinite
vertex operator algebras, and this result is just a calculation of a concrete
example. In my talk, I introduced a homology of a certain functor. But
the functor we considered is left exact, and hence the homology should be
considered as a cohomology?. In this report we consider the cohomological
group of the simple vertex operator algebra SF* which is one of examples
of irrational Cs-cofinite vertex operator algebra.

2 Preliminaries

We do not state the definition of vertex operator algebras and its mod-
ules. For them, please refer to the literatures [LL], [MN] and [FHL]. Let
(V.Y(-,z),1,w) be a simple vertex operator algebra over C, and (M, Y (-, z))
a weak V-module. We write Y(a,z) = ) .7 amz """ for a € V following
[MN], where a(,) € End M. We also write L, for the n-th mode w,) of the
Virasoro vector w. The vacuum vector 1 satisfies that for any ¢ € V and
1€ Zzo, aml =0 and a.(_1)1 = a.

A vacuum-like vector u € M is a vector u € M satisfying aiu = 0 for
any a € V and ¢ € Zso. We set Vac(M) to be the set of all vacuum-like
vectors in M. It is known that

Vac(M)=Ker L_, ={ue M|L_ju=0}.

Actually, L_; = w(o) shows that Vac (M) D Ker L_;. On the other hand if
u € Ker L_;. then (77 ") auu = &L* aq1ru. Since a;yu = 0 for sufficiently

1The original title is A homology group of a Z,-orbifold model of the symplectic
fermionic vertex operator superalgebra.

2After my talk, Professors Matsuo and Arakawa gave me this advice. I apologize that
I made audience confused a lot according to my knowledgeless.



104

large positive integer j and ( "";1) # Ofor any i,k € Zyo, we see that ayu = 0
and that v € Vac (M).

We note that Vac (M) is included in the Ly-eigenspace My of weight 0
because Lo = w(;). Thus if Ly does not have any eigenvector in M, then

Vac (M) = 0.

Proposition 2.1. ([Li]) Let u € Vac (M), and suppose that u # 0. Then the
V-submodule (u) of M generated from u is isomorphic to V. A linear map
V — (u) defined by a — a(—1)u is a V-module isomorphism.

Proof. Let f : V — (u) be a linear map given by f(a) = a(-1)u It is known
that (u) is spanned by vectors of the form a(,u with a € V and m € Z.
Since u € Vac (M), we see that (u) is in fact spanned by a(_m)u with a € V
and m € Zso. Thus f is surjective. We also see that (u) = {a(-1)u|a € V}
because (m — 1)la—myu = (L7 a)-1)u for m € Zso.

Now we see that

’ . = n :
fla@w)b) = (am)d)-nu = Z () (=) (a(n-ib-149y% — (=1)"b(n-1-0)a()u)

: 4
=0
= a(m)b(-1)u

= a(n) f(b)

for a,b € V and n € Z. Therefore, f is a V-module homomorphism. Finally
ker f is a proper ideal of V' and hence ker f = 0 because V' is simple. Thus
f is a V-module isomorphism. O

3 A cohomological group associated to V
Suppose that the adjoint module V' has an injective resolution;
0—-V = X° -£)+ e = X7 Iﬁ) xntl f—"ﬂ> -+ (ezxact).
Then we have a cochain complex
0 — Vac (X% =% Vac(X?') =& -+ — Vac(X™) A Va_c(X"'*‘l) hia 2GR

where r, = fa|p». We denote the corresponding cohomological group by

H(V) =@, H"(V);
H™(V) =kerr,/Imr,_,
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for n € Zyo, where r_; = 0. The cohomological group is independent of the
choice of injective resolutions.

A vertex operator algebra V is called Cy-cofinite if the subspace C3(V)
spanned by vectors of the form a(_z)b with a,b € V has finite codimension
in V. If V is Cs-cofinite then we can show that any finitely generated weak
V-module has a projective cover. Therefore, the contragredient module V'
has a projective resolution. In particular, V has an injective resolution.

4 The vertex operator algebra SF*

Let h be a finite dimensional vector space of dimension 2d with a nonde-
generate skew-symmetric bilinear form (-,). Then the vector space b =
h ® C[tt!] @ CK has a Lie super-algebra structure as follows; the even part
is CKR and the odd part is h ® C[t*!], and the super-commutation relations
are

(b @t™. ¢ @'} = m(y, §)om —nK, [K,B] =0

for ¢,v € h and m,n € Z.
Now we consider the super-algebra A := U(h)/(K —1), where U(h) is the

universal enveloping algebra of b and (K — 1) is the two-sided ideal of U (h)
generated by K — 1. Let [5o be the left ideal of 4 generated by ¢ @t" for all
Y € b and n € Zyo. We then have a left A-module A/I»q and denote it by
SF.2 Tt is clear that SF is isomorphic to the exterior algebra A(h®t~1C[t™Y])

as vector spaces. We write 9, for the left multiplication on SF by ¢ @ t"
for 4 € h and n € Z. Let 1 be the image of the unit of A in SF. Then SF
is spanned by vectors of the form

‘l/)(l_nl_)‘ll’?-nz) KRR/ B (¥ € b, ni € Zso).
We define the vertex operator map Y (-,z): SF — (End SF)[[z,z71]] by
Y(1,z) = idr,
Y($nliz) =) "

neEZ
' TR\ L2 r o'
Y (¥(cn)¥icng) a1 2)
= 9™ VY (g1, 2) - A TIY (1, 2) ¢

3The notation SF comes from “Symplectic Fermion”.
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for ¢, 4 € B, n,n; € Zsg, where ) = k'a—-k' for k € Z>o.
Let {€', f },___1,...,d be a basis of § satisfying

(e¢,Y=(f',f)=0 and (e, f) = -
for 1 <1i,57 <d. Then the Virasoro element w is given by

d

w=Y_ e nfiyl

i=1

Finally we have a vertex operator superalgebra (SF,Y(-,z),1,w) of central
charge —2d.

The vertex operator superalgebra SF has canonically an automorphism
0 defined by

-1 1 2 r r r
9(¢(—n1)w(—‘n2) T w(—nr)l) = (—1) ‘l/’)(l—nl)’l/)(z—ng) T '()[)(—n,—)l

for any v¥; € h,n; € Zso. The fixed point set SF*+ of SF for § is the even
part of the vertex operator superalgebra SF and the —1l-eigenspace SF'~ is
the odd one. The even part SF* becomes a simple vertex operator algebra
of central charge —2d, and SF~ is an irreducible SF*-module.

5 Projective and injective resolutions of SF'*

It is known that SF™* has four irreducible modules (see [A]). These are given
by SF* and irreducible components of the unique irreducible #-twisted S F-
module. The lowest weights of SF* and SF~ are 0 and 1 respectively. Those
of other two irreducible SF*-modules are —-‘;4 and %i.

The two irreducible modules given as submodules of the irreducible 6-
twisted S F-module are projective and injective. This fact is not so easy but
can be shown by using the structure of Zhu’s algebra of SF* studied in [A].
On the other hand, SF* are not projective nor injective. Their projective
covers can be constructed as follows.

First we consider the SF-module SF' = A/, where Iypisa left ideal of

A generated by  @t" with¢ € hand n € Z~o. We see that SFis generated
from the vector 1 = 1 + I5o and that SF o A(h @ C[t™1]) as vector spaces.
We define the action of 6 on T by

2 ) \7 o h 1 y YA 1
O(W(—ny)¥i—ma) " Y(ennl) = (=D)L ¥(ny) Plennl
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—~ %
for any ¢; € h,n; € Z>o. We denote by SF~ by the t1-eigenspace for §. We

—~ + ~ &
note that they are SF*-modules and (SF ) = SF  respectively. We use
the following conjecture.

. =+ .. c e
Conjecture. The SF-modules SF are projective and injective.

. . . i et ..
Assuming this conjecture is true, we can find that SF~ are projective
covers of the SF*t-module SF* respectively as follows. By construction, we
have an S F-module epimorphism ¢ : SF — SF defined by

¢0(¢(1—ﬂ1)¢(2-n2) T 'l’b(r—nr)l) = 'l’b(l—nl)tvb(z—nz) o '?’b’(’—nr)l

—~ %
for v; € h.n; € Zyo. By definition ¢ gives epimorphisms SF~ — SF*
respectively. We set Wy = kg\r ¢o. Then Wy is an SF-submodule of SF
generated from €)1 and fi1 for 1 < i < d. We also see that Wo =

(WoNn SF" )& (WoeN SF~ ) and the submodules WyN SF * are indecomposable.
£

Hence SF~ are projective covers of SF¥ respectively.
We now state that SF has the following projective resolution.

Theorem 5.1. The SFt-module SF has a projective resolution
oo PP P .. 5 PP SF 0,

with P"* = ﬁ'@h(nﬂ); the direct sum of h(n)-copies of SF.

The number h(n) is given as follows: Let

(:) 0 _.1 (2d)

2d-1.
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Then h(n) is the 2d-th component of v(™). Hence
h(1)=1, h(2)=2d, h(3)=d(2d+1),

In the case d = 1, we have d(n) = n.

Since SF F the contragredient module to SF F | is isomorphic to SF F, by th1s
theorem, we have an injective resolution

0+SF—-P 5P ... P" 5
By studying the structure of SF in detail, we get
Theorem 5.2. The irreducible SF*-modules SF* have injective resolutions

0— SF* 5 POt ... o prE  prilE ..

respectively, where

prt — (@i)eh(n+l) if n is even,
(SFT)@hnt1) if n is odd.

6 Cohomological group H*(SF™)
By Theorem 5.2, we get the cochain complex

0 = Vac (P%*) = Vac(P'*) = .-

.+ = Vac (P™t) Ity Vac (Pt ot
We note that Vac (§F+) = Cej- el flo) - _f(%)i and Vac (SF ) = 0. Hence

Ch(n+1) if n is even,

Nyt A
Vac (PPT) = {0 if o is odd.

for n > 1. We can observe that

Imr, =0 forn € Zyo,
{Va.c (P™t) if n is even,

kerr, =
e if n is odd.

Therefore, we have
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Theorem 6.1.

HYSFt) = CtH+D  if i is even,
H (SF*)=0 if i is odd.

Remark 6.2. We can also define H*(SF~). Then we have H'(SF~) =0 if
i is even and H*(SF~) = Chi+D if { is odd.

7 A projective resolution in the case d =1

We expla,in the projective resolution of SF in the case d = 1. For simplicity,
we set € = ¢! and f = f1 In this case, the submodule ker¢o = Wy
generated by € 0)1 and f(o)l and the submodule generated from e f(o)l is

isomorphic to SF because ) f 0)1 is a vacuum-like vector. Therefore, we
have the following sequence of submodules;

0Cc SFcW,cSF.

One sees that ﬁ’/%b ~ SF and Wy /SF = SF & SF.
Now we consider the SF-module epimorphism ¢; : SF & 8F - W,
defined by | |
¢1(ui, vi) = ue(o)i + 'vf(o)ll\,
where u,v € A(h @ C[t7']). Then We see that the kernel of ¢;, denoted
by Wl is the SF-submodule of SF° genera.ted by the vectors (e(o)i,O),

(foy1. 1) and (0, fin)1).
If we draw an extension of X by Y as
X
o
v

then we have the following pictures;

n
!
I

n
3
W\
!
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and
SF
Wo= v N
SF | SF
We also see that
SF SF
o N <N
SF =SF SF SF SF,
hN e hN /
SF SF
and
SF SF
W, = Ve N Ve hN :
SF SF SF

By the same way, for n € Zso, we consider a SF-module homomorphism

Br_1 : ﬁgﬁn — .ﬁ'@(n—l) defined by

¢n_1(u1i, ey u“i)
= (ule(o)i + u2f(0)/1\7 uze(o)i\ + usf(o)i\, R 'u"'le(o)f + u"f(o)/l\)

with u!,... u™ € A(h @ C[t™!]). Then we can show that

Im ¢,, = ker ¢,,_;
for n € Zy, and we have the exact sequence
”n =~ B(n+1 ”e— ; — o
Sost, GEPHY dng SR fnot, L0y GF 2% SF 0.

}BVe recall the action of § on SF. We extend the action of 8 to that on
SF™" with diagonal action. Then it is easy to see that 8 o ¢, 0 0 = —¢,
for any n € Zyq. Therefore, the projective resolution above gives rise to two
projective resolutions
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where ¢ is defined by

+ F if nis even
+ if nis odd.
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