Nuclearity in CFT

Roberto Longo

Based on a joint work with D. Buchholz and C. D'Antoni

Kyoto, Christmas 2006

QFT selection criterion.

 \mathcal{A} net of local observable von Neumann algebras on Minkowski spacetime:

$$\mathcal{O} \subset \mathbb{R}^4 \to \mathcal{A}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H})$$

 Ω vacuum vector, $U: g \in \mathcal{P}_+^{\uparrow} \to B(\mathcal{H})$ positive energy, unitary covariance representation of the Poincaré group.

Which nets are physical?

Quantum mechanics: states localised in a bounded region with an energy bound are <u>finitely many</u> (Laplacian in a box with Dirichlet boundary condition has finitely many eigenvalues ≤ const.)

 \longrightarrow Haag-Swieca: $E\mathcal{A}(\mathcal{O})_1\Omega$ compact subset of \mathcal{H} where E spectral projection of bounded energy (time-translation generator P), \mathcal{O} bounded region.

Split property. $\mathcal{O} \subset\subset \tilde{\mathcal{O}}$ bounded double cones

$$\mathcal{A}(\mathcal{O}) \vee \mathcal{A}(\tilde{\mathcal{O}})' \simeq \mathcal{A}(\mathcal{O}) \vee \mathcal{A}(\tilde{\mathcal{O}})'$$

natural isomorphism.

 \leftrightarrow statistical independence: φ_1, φ_2 normal states on $\mathcal{A}(\mathcal{O})$ and $\mathcal{A}(\mathcal{O})' \Rightarrow \varphi_1 \otimes \varphi_2$ is normal on $\mathcal{A}(\mathcal{O}) \vee \mathcal{A}(\tilde{\mathcal{O}})'$.

split property ⇒ local chrages
(integrated form of Noether thm.) (Doplicher,
L.)

Buchholz-Wichmann nuclearity (quantitative Haag-Swieca compactness):

$$\Phi_{\mathcal{O}}^{\mathsf{BW}}(\beta) : x \in \mathcal{A}(\mathcal{O}) \to e^{-\beta P} x \Omega \in \mathcal{H}$$

is nuclear, \mathcal{O} interval of \mathbb{R} , $\beta > 0$. Moreover $||\Phi_I^{\mathsf{BW}}(\beta)||_1 \leq e^{cr^m/\beta^n}$ as $\beta \to 0^+$.

Recall: $A:X\to Y$ is nuclear if \exists sequences $f_k\in X^*$ and $y_k\in Y$ s.t. $\sum_k||f_k||\,||y_k||<\infty$ and

$$Ax = \sum_{k} f_k(x) y_k .$$

 $||A||_1 \equiv \inf \sum_k ||f_k|| \, ||y_k||.$

BW nuclearity ⇒ split property

Buchholz-Junglas:

nuclearity ⇒ KMS states for translations

"local KMS states" by the split property

→ global KMS states.

weak limit point

Möbius covariant nets of vN algebras. A (local) Möbius covariant net \mathcal{A} on S^1 is a map

$$I \in \mathcal{I} \to \mathcal{A}(I) \subset \mathcal{B}(\mathcal{H})$$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

A. Isotony.
$$I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$$

B. Locality.
$$I_1 \cap I_2 = \emptyset \implies [A(I_1), A(I_2)] = \{0\}$$

C. Möbius covariance. \exists unitary rep. U of the Möbius group \mathbf{Mob} on $\mathcal H$ such that

$$U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), g \in Mob, I \in \mathcal{I}.$$

- **D.** Positivity of the energy. Generator L_0 of rotation subgroup of U (conformal Hamiltonian) is positive.
- **E.** Existence of the vacuum. $\exists ! U$ -invariant vector $\Omega \in \mathcal{H}$ (vacuum vector), and Ω is cyclic

for the von Neumann algebra $\bigvee_{I\in\mathcal{I}}\mathcal{A}(I)$ and unique U-invariant.

First consequences

Irreducibility: $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = B(H)$.

Reeh-Schlieder theorem: Ω is cyclic and separating for each $\mathcal{A}(I)$.

Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of $(\mathcal{A}(I), \Omega)$, are

$$U(\Lambda_I(2\pi t)) = \Delta_I^{it}, \ t \in \mathbb{R},$$
 dilations $U(r_I) = J_I$ reflection

(Guido-L., Frölich-Gabbiani)

Haag duality: A(I)' = A(I')

Factoriality: A(I) is III_1 -factor (or $A(I) = \mathbb{C}$).

Additivity: $I \subset \cup_i I_i \implies \mathcal{A}(I) \subset \vee_i \mathcal{A}(I_i)$ (Fredenhagen, Jorss).

Further selection properties.

• Split property. A is split if the von Neumann algebra

$$\mathcal{A}(I_1) \vee \mathcal{A}(I_2) \simeq \mathcal{A}(I_1) \otimes \mathcal{A}(I_2)$$

(natural isomorphism) if $\bar{I}_1 \cap \bar{I}_2 = \emptyset$.

- Split is a property of the net (not of U).
- Split is crucial, e.g. for local charges, complete rationality, hypefinetness, classification...
- Trace class condition.

$$\mathsf{Tr}(e^{-tL_0}) < \infty, \ \forall t > 0$$

- Trace class condition is standard in CFT

- Trace class condition ⇒ split
- Trace class condition can be refined to *log-ellipticity*

$$\log {
m Tr}(e^{-tL_0}) \sim {1\over t^{lpha}}(a_0+a_1t+\cdots) \quad {
m as} \ t o 0^+$$
 (Kawahigashi,L.)

- Trace class is a property of U (not of the net).
- Buchholz-Wichmann nuclearity:

$$\Phi_I^{\mathsf{BW}}(\beta): x \in \mathcal{A}(I) \to e^{-\beta P} x \Omega \in \mathcal{H}$$

is nuclear, I interval of \mathbb{R} , $\beta > 0$. P translation generator (Hamiltonian).

- BW-nuclearity is a physical property (Haag-Swieca).

- BW-nuclearity is a property of the full Möbius covariant net.
- Can be refined with $||\Phi_I^{\rm BW}(\beta)||_1 \le e^{cr^m/\beta^n}$ as $\beta \to 0^+$ and $\to KMS$ states for translations (Buchholz-Junglas).

Problem: Derive BW-nuclearity from the trace class condition.

Modular nuclearity

M von Neumann algebra, Ω cyclic separating unit vector. Set

$$L^{\infty}(M) = M,$$
 $L^{2}(M) = \mathcal{H},$ $L^{1}(M) = M_{*}.$

Then we have the embeddings

Now let $N \subset M$ be an inclusion of vN algebras with cyclic and separating unit vector Ω .

 $L^{p,q}$ -nuclearity if $\Phi^M_{p,q}|_N$ is a nuclear operator.

 $L^{\infty,2}$ -nuclearity was called *modular nuclearity*, i.e.

$$\Phi^{M}_{\infty,2}|_{N}: x \in N \to \Delta^{1/4}_{M} x\Omega$$

is nuclear.

As $\Phi^M_{\infty,1} = \Phi^M_{2,1} \Phi^M_{\infty,2}$, we have

 $||\Phi_{\infty,1}^M|_N||_1 \leq ||\Phi_{2,1}^M|| \cdot ||\Phi_{\infty,2}^M|_N||_1 \leq ||\Phi_{\infty,2}^M|_N||_1 \;,$ Thus

Modular nuclearity $\Rightarrow L^{\infty,1}$ – nuclearity.

indeed $\Phi^M_{\infty,1}|_N=\Phi^N_{2,1}\cdot\Phi^M_{\infty,2}|_N$ and $||\Phi^N_{2,1}||\leq 1$ so $||\Phi^M_{\infty,1}|_N||_1\leq ||\Phi^M_{\infty,2}|_N||_1$. (A certain converse holds) .

- If N or M is a factor and $\Phi^M_{\infty,1}|_N$ is nuclear then $N\subset M$ is a split inclusion $(N\vee M'\simeq N\otimes M')$.

Short proof. By definition $\Phi^M_{\infty,1}|_N$ nuclear means: \exists sequences of elements $\varphi_k \in N^*$ and $\psi_k \in M'_* (\simeq L^1(M))$ such that $\sum_k ||\varphi_k|| \ ||\psi_k|| < \infty$ and

$$\omega(nm') = \sum_{k} \varphi_k(n)\psi_k(m')$$
, $n \in \mathbb{N}$, $m' \in M'$.

where $\omega \equiv (\cdot \Omega, \Omega)$. As $\Phi^M_{\infty,1}|_N$ is normal the φ_k can be chosen normal (take the normal part). Thus the state ω on $N \odot M'$ extends to $N \otimes M'$ and this gives the split property.

Consider now the commutative diagram

$$L^{\infty}(N)$$
 $\xrightarrow{\Phi_{\infty,1}^{M}|_{N}}$ $L^{1}(M)$ $\downarrow^{\Phi_{\infty,2}^{M}}$ $\downarrow^{\Phi_{\infty,2}^{M}}$ $\downarrow^{\Phi_{\infty,2}^{M}}$ $L^{2}(N)$ $\xrightarrow{T_{M,N}\equiv\Delta_{M}^{1/4}\Delta_{N}^{-1/4}}$ $L^{2}(M)$

 $T_{M,N} \equiv \Phi^M_{2,2}|_N.$ L^2 -nuclearity condition (or $L^{2,2}$ -nuclearity) means that

$$||T_{M,N}||_1 < \infty$$

- L^2 -nuclearity \Rightarrow modular nuclearity,

indeed $||\Phi_{\infty,2}^{M}|_{N}||_{1} \leq ||T_{M,N}||_{1}$ because $\Phi_{\infty,2}^{M}|_{N} = T_{M,N} \cdot \Phi_{\infty,2}^{N}$ and $||\Phi_{\infty,2}^{N}|| \leq 1$.

Standard real Hilbert subspaces

 ${\mathcal H}$ complex Hilbert space and $H\subset {\mathcal H}$ a real linear subspace.

Symplectic complement:

$$H' \equiv \{ \xi \in \mathcal{H} : \Im(\xi, \eta) = 0 \quad \forall \eta \in H \}.$$

 $H' = (iH)^{\perp}$ (real orthogonal complement)

$$H_1 \subset H_2 \Rightarrow H_1' \supset H_2'$$
.

A standard subspace H of \mathcal{H} is a closed, real linear subspace of \mathcal{H} which is both cyclic $(\overline{H+iH}=\mathcal{H})$ and separating $(H\cap iH=\{0\})$. H is standard iff H' is standard.

H standard subspace \rightarrow anti-linear operator $S \equiv S_H : D(S) \subset \mathcal{H} \rightarrow \mathcal{H}$, where $D(S) \equiv H + iH$,

$$S: \xi + i\eta \mapsto \xi - i\eta$$
, $\xi, \eta \in H$.

$$S^2 = 1 \upharpoonright_{D(S)}.$$

Conversely, S densely defined, closed, anti-linear involution on ${\mathcal H}$ gives

$$H = \{\xi : S\xi = \xi\}$$
 standard subspace

$$H \leftrightarrow S$$
 bijection

Modular theory. Set

$$S_H = J_H \Delta_H^{1/2}$$

polar decomposition of $S=S_H$. Then J is an anti-unitary involution $\Delta \equiv S^*S>0$

$$\Delta_H^{it}H = H, \quad J_HH = H'$$

Standard subspace version of Borchers theorem. H standard subspace, U a one-parameter group with positive generator

$$U(s)H \subset H \quad s \geqslant 0.$$

Then:

$$\begin{cases} \Delta_H^{it} U(s) \Delta_H^{-it} = U(e^{-2\pi t}s), \\ J_H U(s) J_H = U(-s), & t, s \in \mathbb{R}. \end{cases}$$

Standard subspace version of Wiesbrock, Borchers, Araki-Zsido theorem

Let H, K be standard subspaces. Assume half-sided modular inclusion:

$$\Delta_H^{it}K\subset K$$
, $t\leq 0$.

Then $\{\Delta_K^{it}, \Delta_H^{is}\}$ generates a unitary representation of the "ax+b" group with positive energy

dilations =
$$\Delta_H^{-is/2\pi}$$

$$P = \frac{1}{2\pi} (\log \Delta_K - \log \Delta_H)$$

von Neumann algebras and real Hilbert subspaces

M von Neumann algebra on \mathcal{H} , $\Omega \in \mathcal{H}$ a cyclic separating vector,

$$H_M \equiv \overline{M_{sa}\Omega}$$

is a standard subspace of H

$$\Delta_M = \Delta_{H_M}, \quad J_M = J_{H_M}$$

In particular

$$H_M' = H_{M'}$$

Möbius covariant nets of real Hilbert subspaces

A local Möbius covariant net of standard subspaces \mathcal{A} of real Hilbert subspaces on the intervals of S^1 is a map

$$I \rightarrow H(I)$$

with

1. Isotony : If I_1 , I_2 are intervals and $I_1 \subset I_2$, then

$$H(I_1) \subset H(I_2)$$
.

2. Möbius invariance: There is a unitary representation U of \mathbf{Mob} on \mathcal{H} such that

$$U(g)H(I) = H(gI)$$
, $g \in Mob$, $I \in \mathcal{I}$.

- 3. Positivity of the energy : $L_0 \ge 0$
- 4. Cyclicity: the complex linear span of all spaces H(I) is dense in \mathcal{H} .
- 5. Locality: If I_1 and I_2 are disjoint intervals then

$$H(I_1) \subset H(I_2)'$$

- Reeh-Schlieder theorem, Bisognano-Wichmann property, Haag duality, . . hold.
- Net of factors \rightarrow Net of standard subspaces (not one-to-one)

 Net of standard subspaces → Net of factors (second quantization)

Modular theory and representations of $SL(2,\mathbb{R})$ (Brunetti, Guido, L.)

U is a unitary, positive energy representation U of Möbius on $\mathcal H$ and J on $\mathcal H$

$$JU(g)J = U(rgr)$$
 $g \in Mob$

where $r:z\mapsto \bar{z}$ reflection on S^1 w.r.t. the upper semicircle I_1 . Then define

$$J_I \equiv U(g)JU(g)^*$$

where $g \in \mathbf{Mob}$ maps I_1 onto I.

$$\Delta_I^{it} \equiv U(\Lambda_I(-2\pi t)), \quad t \in \mathbb{R}$$

namely $-\frac{1}{2\pi}\log\Delta_I$ generator of dilations of I,

$$S_I \equiv J_I \Delta_I^{1/2}$$

is a densely defined, antilinear, closed involution on \mathcal{H} .

H(I) standard subspace associated with $S_I \rightarrow$ Möbius covariant local net of real Hilbert spaces of \mathcal{H} .

A $\pm hsm$ factorization of real subspaces is a triple K_0, K_1, K_2 , where $\{K_i, i \in \mathbb{Z}_3\}$ is a set of standard subspaces s.t. $K_i \subset K'_{i+1}$ is a $\pm hsm$ inclusion.

Factorization

Local Möbius covariant net of real Hilbert spaces

Positive energy representation of $SL(2,\mathbb{R})$ (Guido, Wiesbrock, L.)

 L^2 -Nuclearity. Let $H\subset \tilde{H}$ be an inclusion of standard subspaces. Set

$$T_{\tilde{H},H} \equiv \Delta_{\tilde{H}}^{1/4} \Delta_{H}^{-1/4}$$

then $||T_{\tilde{H},H}|| \leq 1$. The inclusion is *nuclear* if $T_{\tilde{H},H}$ is a nuclear (i.e. trace class) operator.

U unitary, positive energy representation of Mob, H(I) the associated net of standard subspaces. U satisfies L^2 nuclearity if $H(I) \subset H(\tilde{I})$ is nuclear if $I \subset \subset \tilde{I}$.

 $SL(2,\mathbb{R})$ identities.

Formula 0 (Schroer-Wiesbrock)

U positive energy unitary Mob rep., $\forall s \geq 0$:

$$\Delta_1^{1/4} \Delta_2^{-is} \Delta_1^{-1/4} = e^{-2\pi s L_0}$$

 $\Delta_1 = \Delta_{I_1}$, $\Delta_2 = \Delta_{I_2}$, with I_1, I_2 upper and right semicircles.

About the proof. Use of double interpretation of Δ_1 , Δ_2 : modular (analyticity) and $SL(2,\mathbb{R})$ (Lie algebra relations)

Formula 1 U positive energy unitary representation:

$$T_{\tilde{I},I} = e^{-sL_0} \Delta_2^{is/2\pi}$$

 $s=\ell(\tilde{I},I)$ is the inner distance (if I=(-1,1) and $\tilde{I}=(-e^s,e^s)$ on the real line, then $\ell(\tilde{I},I)=s$) thus

$$||T_{\tilde{I},I}||_1 = ||e^{-sL_0}||_1$$

About the proof.

$$e^{-2\pi sL_0} = \Delta_1^{1/4} \Delta_2^{-is} \Delta_1^{-1/4} = \Delta_1^{1/4} \Delta_2^{-is} \left(\Delta_1^{-1/4} \Delta_2^{is}\right) \Delta_2^{-is} = T_{I_1,I_{1,s}} \Delta_2^{-is}$$

Formula 2

$$T_{I,I_{a',a}} = e^{-a'P'_I}e^{-aP_I}e^{-iaP_I}e^{ia'P'_I}$$
.

 $I_{a',a} \equiv \tau'_{-a'} \tau_a I$ with a, a' > 0.

$$e^{-2sL_0} = e^{-\tanh(\frac{s}{2})P}e^{-\sinh(s)P'}e^{-\tanh(\frac{s}{2})P}$$

therefore

$$e^{-2sL_0} \le e^{-2\tanh(\frac{s}{2})P}$$

in particular $e^{-i\pi L_0} = e^{iP}e^{iP'}e^{iP}$.

About the proof. Consider $\tilde{I}=(0,\infty)$, $I=(t,\infty)$, then

$$T_{\tilde{I},I} = \Delta_{\tilde{I}}^{1/4} \Delta_{I}^{-1/4}$$

$$= \left(\Delta_{\tilde{I}}^{1/4} U(t) \Delta_{\tilde{I}}^{-1/4}\right) U(-t)$$

$$= e^{-tP} e^{itP}$$

where we have used the Borchers commutation relation $\Delta_{\tilde{I}}^{is}e^{itP}\Delta_{\tilde{I}}^{-is}=e^{i(e^{-2\pi s})tP}$. Any $I\subset\subset\tilde{I}$ is obtain by iteration the above, get a formula and compare with formula 1.

Formula 3

$$||e^{-\tan(2\pi\lambda)d_IP}\Delta_I^{-\lambda}|| \le 1$$
, $0 < \lambda < 1/4$.

with d_I the usual lenght. Thus

$$e^{-2\tan(2\pi\lambda)d_IP} \le \Delta_I^{2\lambda}$$
.

so we have

$$e^{-2d_I P} \le \Delta_I^{1/4} \le e^{\frac{2}{d_I} P'} .$$

Modular nuclearity and L^2 -nuclearity

 L^2 -nuclearity implies modular nuclearity and $||\Delta_{\tilde{H}}^{1/4}E_H||_1 \leq ||T_{\tilde{H},H}||_1.$

Comparison of nuclearity conditions

Let H be a Möbius covariant net of real Hilbert subspaces of a Hilbert space \mathcal{H} . Consider the following nuclearity conditions for H.

Trace class condition: $\operatorname{Tr}(e^{-sL_0})<\infty$, s>0;

 L^2 -nuclearity: $||T_{\tilde{I},I}||_1 < \infty$, $\forall I \in \tilde{I}$;

Modular nuclearity: $\Xi_{\tilde{I},I}: \xi \in H(I) \to \Delta_{\tilde{I}}^{1/4} \xi \in \mathcal{H}$ is nuclear $\forall I \subset \subset \tilde{I}$;

Buchholz-Wichmann nuclearity: $\Phi_I^{\text{BW}}(s): \xi \in H(I) \to e^{-sP}\xi \in \mathcal{H}$ is nuclear, I interval of \mathbb{R} , s>0 (P the generator of translations);

Conformal nuclearity: $\Psi_I(s): \xi \in H(I) \rightarrow e^{-sL_0}\xi \in \mathcal{H}$ is nuclear, I interval of S^1 , s>0.

We shall show the following chain of implications:

Trace class condition

1

 L^2 – nuclearity

#

Modular nuclearity

#

Buchholz-Wichmann nuclearity

Conformal nuclearity

Where all the conditions can be understood for a specific value of the parameter, that will be determined, or for all values in the parameter range.

We have already discussed the implications "Trace class condition $\Leftrightarrow L^2$ -nuclearity \Rightarrow Modular nuclearity".

Modular nuclearity ⇒ BW-nuclearity

We have

$$||\Phi_{I_0}^{\mathsf{BW}}ig(d_Iig)||_1 \leq ||\Xi_{I,I_0}||_1$$

where d_I is the length of I on \mathbb{R} .

BW-nuclearity ⇒ Conformal nuclearity

By formula 2 there exists a bounded operator B with norm $||B|| \leq 1$ such that $e^{-sL_0} = Be^{-\tanh(\frac{s}{2})H}$, therefore

$$\Psi_I(s) = B\Phi_I^{\mathsf{BW}}(\mathrm{tanh}(s/2))$$
 $||\Psi_I(s)||_1 \leq ||\Phi_I^{\mathsf{BW}}(\mathrm{tanh}(s/2))||_1.$

Consequences

- Distal split property. If $\operatorname{Tr}(e^{-sL_0})<\infty$ for a fixes s>0, then $\mathcal{A}(I)\subset\mathcal{A}(\tilde{I})$ is split if $I\subset\tilde{I}$ and $\ell(\tilde{I},I)>s$ e.g free probability nets (D'Antoni, Radulescu, L.).
- Constructing KMS states. $\mathcal{A}|_{\mathbb{R}}$ restriction of \mathcal{A} to $\mathbb{R} \simeq S^1 \setminus \{-1\}$, \mathcal{A}_0 the quasi-local C*-algebra. i.e. the norm closure of $\cup_I \mathcal{A}(I)$ as I varies in the bounded intervals of \mathbb{R} . Let $\mathfrak{A} \subset \mathcal{A}_0$ the C*-algebras of elements with norm continuous orbit, namely

$$\mathfrak{A} = \{ X \in \mathcal{A}_0 : \lim_{t \to 0} ||\tau_t(X) - X|| = 0 \}$$

au translation automorphism group.

Thm. If the trace class condition holds for ${\cal A}$ with the asymptotic bound

$$\operatorname{Tr}(e^{-sL_0}) \le e^{\operatorname{const.}\frac{1}{s^{\alpha}}}, \quad s \to 0^+$$

for some $\alpha > 0$, then the BW-nuclearity holds with $m = n = \alpha$.

If the trace class condition holds with log-ellipticity (above asymptotics) then for every $\beta > 0$ there exists a translation β -KMS state on \mathfrak{A} .

 \bullet L^2 -Nuclearity and KMS states in higher dimensions.

 \mathcal{O} a double cone in the Minkowski spacetime \mathbb{R}^{d+1} , $\mathcal{A}(\mathcal{O})$ the local von Neumann algebra associated with \mathcal{O} by the d+1-dimensional scalar, massless, free field.

With I an interval of the time-axis $\{x=\langle x_0,\mathbf{x}\rangle: \mathbf{x}=0\}$ we set

$$A_0(I) \equiv A(\mathcal{O}_I)$$

where \mathcal{O}_I is the double cone $I'' \subset \mathbb{R}^{d+1}$, the causal envelope of I. Then \mathcal{A}_0 is a translation-dilation covariant net on \mathbb{R} . \mathcal{A}_0 is local if d is

odd and twisted local if d is even. Moreover \mathcal{A}_0 extends to a Möbius covariant net on S^1 (d odd) as one has a natural factorization.

We have:

$$\mathcal{A}_0 = \bigotimes_{k=0}^{\infty} N_d(k) \mathcal{A}^{(k)}$$

where $\mathcal{A}^{(k)}$ is the Möbius covariant net on S^1 associated with the k^{th} -derivative of the U(1)-current algebra and $N_d(k)$ is a multiplicity factor (see below).

This follows because the one-particle ${f Mob}$ representation U_0 decomposes

$$U_0 = \bigoplus_{k=1}^{\infty} N_d(k) U^{(k)}$$

where $U^{(k)}$ is the positive energy irreducible representation of $PSL(2,\mathbb{R})$ with lowest weight k.

A spherical harmonics computations determines the multiplicity factor $N_d(k)$. As $k \to \infty$:

$$N_d(k+1) = \dim(\mathcal{P}_k \ominus \mathcal{P}_{k-2})$$

$$= m_{d-1}(k-1) + m_{d-1}(k) \sim \frac{2}{(d-2)!} k^{d-2},$$

with $\mathcal{P}_k\ominus\mathcal{P}_{k-2}$ the k-spherical harmonics and $m_d(k)\sim \frac{1}{(d-1)!}k^{d-1}.$ Thus

$$\log \operatorname{Tr}(e^{-sL_0}) \sim \frac{2}{s^d} \qquad s \to 0^+$$

where L_0 is the conformal Hamiltonian of \mathcal{A}_0 .

Problems.

- $\operatorname{Tr}(e^{-sL_0}) < \infty \Leftrightarrow \operatorname{split} \operatorname{property}$?
- e^{-sL_0} compact \Leftrightarrow split property?
- ${\rm Tr}(e^{-sL_0})<\infty\Rightarrow {\rm Tr}(e^{-sL_{0,\rho}})<\infty$ in every irreducible representation ρ of ${\cal A}$?