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1 Introduction

Since Hudson-Parthasarathy [2], the quantum stochastic integrals of Itd type have been
studied extensively by many authors, see the books by Meyer [10] and Parthasarathy [14], and
their extensions to non-adapted quantum stochastic integrals by Belavkin [1], Lindsay [8],
among others. In this note, using the functional analytic method (kemel theorem and dual-
ity), we introduce the quantum stochastic gradients and thereby define the Hitsuda—Skorohod
quantum stochastic integrals for non-adapted integrands.

The (classical) Hitsuda-Skorohod integral is defined by means of the adjoint action of the
stochastic gradient (also called the Malliavin gradient) and provides a method of generalizing
the It6 integral for non-adapted integrands, see e.g., Kuo [7], Malliavin [9], Nualart [11]. Let
us explain slightly more in detail in terms of white noise theory (see Section 2). Let

(E) ¢ T(H) = TIXR)) ¢ (E)"

be the Hida—Kubo-Takenaka space of white noise functions. The stochastic gradient V is
defined for a white noise function ¢ (in a suitable domain) by

V¢(t) = at¢v

where a; is the annihilation operator at a point # € R. Then V becomes a linear map from
a suitable domain of white noise functions into a space of L2-functions with values in white
noise functions, i.e., a space of stochastic processes. The adjoint map 6 of V maps an L2-
function @ with values in white noise functions (i.e., a stochastic process) to a white noise
function. We call §(®) the Hitsuda-Skorohod integral, see Sections 3.1 and 4.1.

In the quantum context there are three quantum stochastic integrals, namely, against the
annihilation, creation and conservation processes. Accordingly, we need to introduce three
stochastic gradients. Our idea is based on the kernel theorem that ensures the isomorphism

LU(E), (E)) = (E) ® (E)".

Here an element in L((E), (E)*) is called a white noise operator. A time-indexed white noise
operator Z = {E(f) ; ¢ € R} is our quantum stochastic process for which we define integrals.



Thanks to the canonical isomorphism, we may define quantum stochastic gradients for
white noise operators via the tensor product spaces. Taking a suitable domain, we define

Vigeyl® = (Ve@) 8y,
Vg @yl = ¢ ® (V1)
V[ ® Y1) = (Vo(D) ® (V(0)).

Through the canonical isomorphism, each V¢ is regarded as a linear map from a certain space
of white noise operators into an L2-space with values in white noise operators (i.e., a space of
quantum stochastic processes). These maps are called the annihilation, creation and conser-
vation gradients, respectively. The precise definition will be given in Section 3.

The adjoint map of V¢, denoted by 6°, maps an L?>-function E with values in white noise
operators (a quantum stochastic process) to a white noise operator. We call §*(E), 6~(E)
and 6°(E) the creation, annihilation and conservation integrals, respectively. The details will
be found in Section 4. Our approach is expected to be advantageous to systematic study of
regularity properties of quantum stochastic integrals and quantum martingales, for relevant
study see Ji [3], Ji-Obata [5, 6].

2 Quantum White Noise Calculus
2.1 White Noise Distributions

Let L(R, d) be the Hilbert space of R-valued square-integrable functions on the real line
R, which is often considered as the time axis. Let S(R) be the space of rapidly decreasing
functions equipped with the canonical topology, and S’(R) its dual space, i.e., the space of
so-called tempered distributions. The real Gelfand triple:

S®) c R d) c S®) @1

is our starting point. Since the inner product of L3(R, d¥) and the canonical bilinear form on
S'(R) x S(R) are compatible, they are denoted by the same symbol (-, -). For simplicity, the
complexification of (2.1) is denoted by

EcH=IL*R)CE"

(Throughout this paper L%(. ..) means the complex L?-space.) The canonical C-bilinear form
on E* x E is denoted again by (-, -) so the norm of H, denoted by | - |o, satisfies |£ |g = (£, &)
foré e H.

It is well known that the topology of E is defined by means of the differential operator
A =1+ £ -d?/di® acting in H. For each p 2 0, E, = Dom(4”) becomes a Hilbert space
with norm |£|, = |4P€|, and E_, denotes the completion of H with respect to the norm
|€1_, = |47P€|,. Then we obtain a chain of Hilbert spaces:

~cE,c---cHC---CE_,C:-".

Note that E_, is identified with the strong dual space of E, through the canonical C-bilinear
form. Finally, we have topological isomorphisms:

‘E = projlimE,, E’ =indlimE_,.

P~ p—roe
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There exists an orthonormal basis {e;}7>, € £ of H such that de; = (2i + 2)e,,i = 0,1,2,....
Hence A is of Hilbert-Schmidt type and E is a countably Hilbert nuclear space. The constant

number .

TR N
p=I4 ||0P—2

plays an important role in norm estimates in white noise calculus.
The (Boson) Fock space over E,, is defined by

I(E,) = {¢= o Jn € B, 1615 =D nl| £, 1} <oo}.

n=0

Then we obtain a chain of Fock spaces:
e CTE) - cTH)c---cT(E_p) -
and, as limit spaces we define

(E) = projim['(E,), ()" = indim[(E.,).

p—oo

It is known that (E) is a countably Hilbert nuclear space. Consequently, we obtain a complex
Gelfand triple:
(E) cI'(H) c (B),
which is refegred to as the Hida—Kubo—-Takenaka space. The dual space I'(H) is identified with
itself through the canonical C-bilinear form.
By definition the topology of (E) is defined by the norms

00

gl =D"m 4R, &=

n=0

where p runs over R. On the other hand, for each ® € (E)* there exists p 2 0 such that
®eI(E_,)and

1®I2,= D nl |F,2, <00,  ®=(F).
n=0

The canonical C-bilinear form on (E)* X (E) takes the form:

0o

(@, )= Y n(Fn f, ©=F)e@E'. ¢=(f)e(E)

n=0

2.2 White Noise Operators

A continuous linear operator from (E) into (E)* is called a white noise operator. The
space of white noise operators is denoted by L((E), (E)*) and is equipped with the bounded
convergence topology. The white noise operators cover a wide class of Fock space operators,
for example, L((E), (E)), LU(E)", (E)) and L(T'(H), ['(H)) are subspaces of .L((E), (E)"). Note
that L(I'(H), I'(H)) is the space of bounded operators on I'(H).

Since (E) is a nuclear space, by the kemel theorem we have the canonical isomorphism:

K : L(E).(E)) — (EY ® (EY, 22)
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which is defined by

(B¢, ¥) = (KE, y ® o), ¢.¢ € (E).
In (2.2) the symbol ® means the n-tensor product of topological vector spaces. As restrictions
of K we obtain similar isomorphisms such as

LAE)(E)=(E)®(E), LUE)LE)=(E)S(E),
L(EY,(E))=(EY ®(E), L((E).T(H)=T(H)®E), etc.
Particular attention should be paid to L(I'(H), I'(H)). Note that the Hilbert space tensor prod-
uct I'(H) ® I'(H) is isomorphic to the space of Hilbert—Schmidt operators .Lo(I'(H), ['(H)).
For each x € E* we define
a(x) : ¢ = (fdnuo — (7 + 1)x @1 fr41) s
where x ®, £, stands for the contraction. It is well known that a(x) € .L((E), (E)). We call
a(x) the annihilation operator associated with x. The adjoint operator a*(x) € L((E)*, (E)*) is
given by
a'(x): ¢ = (fahmo = (¥ fi-1)peo,  (understanding ., = 0),
and is called the creation operator associated with x. In particular, for each ¢ € R we put
a; = a(6,), a; =a’(6).

The pair {a;, a} ; t € R} is called the quantum white noise, for a survey see e.g., Ji-Obata [4].

3 Quantum Stochastic Gradients
3.1 Classical stochastic gradient

For a suitable ¢ in I'(H) or in a larger space the (classical) stochastic gradient is defined by
Vo) = ap, teR, |

whenever the map 7 — a,¢ is given a meaning according to a context. Our framework has a
significant advantage for a very regular property of the quantum white noise.
Lemma 3.1 The mapt — a; is an L((E), (E))-valued rapidly decreasing function, i.e., belong
to S(R) ® L((E), (E)) = L((E), SR) ® (E)) = SR, LUE). (E))).

As a result, the stochastic gradient

V:(E) = SR)® (E) = SRR, (E)) G.D

becomes a continuous linear map. For applications we need to extend the domain of V in
(3.1). For ¢ = (f,) € (E)* we set

g1 = D+ Dl 1.

n=0

Then D = {¢ € (E)*; li¢llp < o} is a subspace of I'(/) and becomes a Hilbert space equipped
with the norm || - ||p. The dual space is identified with D* = {® € (E)*; ||®|lp: < oo}, where

@B = i(n +1)7 'l | Falg, @ =(F,) € (E). (3.2)

n=0

Then we have
EYcDcI'(H)cD® c(E).
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Lemma 3.2 The map V in (3.1) is extended uniquely to a continuous linear map from D into
L*(R) ® ['(H) = L*(R,T(H)). Denoting the extension by the same symbol, we have

Vel @ran < 1¢lns ¢ €D.

Proor. For ¢ = () € (E) we have

. %0

I Vo112, = | lagladt= ) n | |7+ 1)fh(s-) 5 dt
RIHE) R R

n=0

=D+ Do+ D fra B D+ D0 LG = 11015,

n=0 n=0

which proves the assertion. |
A further extension is possible.

Lemma 3.3 The map V in (3.1) is extended uniquely to a continuous linear map from T'(H)
into L*(R) ® D* = L%(R, D*). Denoting the extension by the same symbol, we have

IVl 2@pey < 116 lirgsy » ¢ € I(H). (3.3)

Proor. For ¢ = (f,) € (E) we have

196 sy = [ N0 1. (3.4)

In view of (3.2) we have

n=0 n=0

laglp = Y n+ 17 nl @+ Va6 )G = D0+ D fon(t )R,

s0 (3.4) becomes

-]

” V¢ ”iz(g.])-) = Z(n + 1)| .fnlj;u»l(t' ') I(z) dt = Z(n + 1)' If;l*-l Ig < “¢"12'(H)

n=0 n=0
This proves (3.3). |
The above argument is condensed into the following diagram:
(E) — D —  T(H)

| dl 7| (3.5)
SR(E) — DPRIE) — IRD),

where the right arrows are continuous injections (inclusions) and the down arrows are contin-
uous linear maps which differ in domains but are denoted by the symbol V. We refer to V as
the (classical) stochastic gradient. The stochastic gradient V with the domain D appears often
in literatures, see e.g., Kuo [7], Nualart [11].
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Proposition 3.4 Let / € L*(R). Then we have

aww - [ covend  geD, (3.6)
and

€a(O)d, ¥) = (V,L @YY,  ¢€D, yeT(H) (3.7)
A similar statement is true for ¢ € I'(H).

Proor. lety e [(H)and{ € H. If ¢ € (E), we have

f {OKVH(@), yhdr = f {@)Kag, yHdt = f «®ap,y) dt = (a()¢, ¥} G.8)
R R R

We know by elementary calculation that a({) € £L(D,I'(H)). Hence the right-hand side is
continuous in ¢ € D. On the other hand, for ¢ € D the function ¢ — {Vé(?), ¥) belongs to
I*(R) and

L OV, yhdt = fR (Vo). L(Wd dt = (Ve L DY),

which is continuous in ¢ € D. Therefore, we see from (3.8) that

‘[; LOKV(), YD dt = (a(O)e, ¥)

is valid for all ¢ € D, which proves (3.6). During the above discussion (3.7) has been already
shown. i

3.2 Creation gradient
We first define V* by compositions of continuous maps as follows:

¥ . [(H) ® (E) —= L}(R,D") 8 (E) — L*R, D’ ® (E)), (3.9)

where (3.5) is taken into account. The above isomorphism needs clarification. It follows from
a general property of a countably Hilbert nuclear space [12, Proposition 1.3.8] we have

L*(R,D*) ® (E) = proj lim L*(R,D*) ® ['(E ),

P

D* ® (E) = projlimD* ® I'(E,),

p—roo

where the right hand sides are the Hilbert space tensor products. Taking in mind the isomor-
phisms:

LR, D) ®T(E,) = (L*(R)® D) ®I(E,) = L*(R)® (D* ® I(E,)) = L*(R,D* @ I(E,)),

we define
L*(R,D* ® (E)) = proj lim LR, D*® T(E,)),

p—oo

which justifies the isomorphism in (3.9).
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We now define the creation gradient V* by
L(Ey,TH) —— TH)S(E)
"‘l J'v* (3.10)
L*(R, L(E)', D*)) «—— L*QR,D" & (E)).

The above isomorphisms are due to the kernel theorem (recall that (E) is a nuclear space). It
is noteworthy that

L*(R, L(E)", D) = [XR, D" & (E))
= proj lim L*(R, D* ® I'(E},))

p—roo
= proj lim L*(R, L»(T'(E-,), D*)),

p—boo

where £, denotes the space of Hilbert-Schmidt operators between Hilbert spaces. It then
follows from (3.3) that

IV* E @ LoE 00 S I ELLaeray- (3.11)

In a similar fashion we can define the creation gradlent on different domains. Among
others, we note the following:

V*: L(E), T(H)) = [(H) ® (E) — L*R,D") @ (E)°
= I*R,D* ® (E)") — LA(R, L(E), D*)), (3.12)
where the last two spaces are defined by

L*(R, L((E),D")) = L¥(R, D" ® (E)*) = i:}cgim LR, D’ ® T(E_,)).

Having defined the creation gradient with two different domains (3.10) and (3.12), we can
summarize into the following diagram:

LAE)y. TH) —— L(E).TH))
v*l lv+ (3.13)
L*R, L(E), D") — L*(R, L((E),D")).

It is also interesting to discuss the creation gradient acting on Hilbert-Schmidt operators.
Note that L,(I'(H), I'(H)) is a subspace of L((E), ['(H)).

Proposition 3.5 The creation gradient gives rise to a continuous linear map:

v L(T(H), T(H)) - L*R, L(T(H), D'))j
Moreover, it holds that

| V* Ellpg.ooeny S | E L geenray E € L(I'(H), I'(H)).
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The proof is similar to the argument of (3.10) and (3.12). The next result shows a role of
the creation gradient, cf. Proposition 3.4 for the classical case.

Theorem 3.6 Let E € L((E),I(H)). Then, for { € H = L*(R) the composition a({)Z is
defined as a continuous operator in L((E)*, D*) and admits the integral expression:

a(H)E = fk LOVTE()ar. (3.14)
Similar statements remain valid for 2 € L((E), T(H)) and E € L,(T'(H), T(H)).

Proor. That the composition a({)E is defined and belongs to L((E)*, D*) is verified by
definition and an elementary norm estimate of annihilation operators.

We show (3.14). Let ® € (E)" and y € D. Then t — (V*E(1)®, ¥) belongs to LX(R). In
fact, choosing p 2 0 such that ® € I'(E_,), we see from (3.11) that

KV E@DD, Y| < IIV'E@llp- ¢ llp < IV E@)I| oz ppnnll D ll-pll ¥ I
Since V*E € L3(R, Lo(I" (E-p), D)) by (3.11), we have

' *-’fk KV E@O®, y)Pdt < || O 12, Il 1} j; | V*E(?) ”i:z(r(g_‘,),no)dt < oo,
Then, for any ¢ € L?(R) we have

| fR LOKV EO®, py di = fk (T (KX, L0t ® Dy dit

={(VeDKE,{ oy @ D)
= (KE V'({®y)® D)

= (EQ,V'({ ®¥))

= (VED,{®y).

We see from Proposition 3.4 that the last expression becomes {a({)E®, ¢). Consequently,
[ coxvze.pya = @z,

which proves the assertion. |

3.3 Annihilation gradient
We define V- by compositions of continuous linear maps as follows:
V- LD (E)) = (E) D = (Ey ® AR, T(H)
= LR.TE). E)) = LR, LTEH), E))),
where the last space is defined by
L*(R, LD(H), (E)) = L*(R, (E)" ® T(H)) = indlim L*R,T(E-p) ® [(H)).
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With parallel argument for L(D*, (E)) we obtain
LDV (E) ——— LD, (E))
v—l lv— (3.15)
LR, LT(H). (E))) — L*R, LT(H), (E)))-
We call V- the annihilation gradient. As for Hilbert-Schmidt operators,

V-1 L0, T(H)) — LR, Lo(T(H), T(H))
becomes a continuous linear map.

Theorem 3.7 Let E € L(D", (E)). Then, for { € H = L*(R) the composition Ea’({) is defined
as a continuous operator in L(I'(H), (E)) and admits the integral expression:

=@ = [ ovEDe
Moreover, it holds that
V2@ =(V*E'(t))" forae teR.
Similar statements remain valid for = € L(D*, (E)*) and E € L,(D*,T(H)).

The proof of the first half is similar to that of Theorem 3.6. For the second half we need
only to note that

2a'() = @OE) = ( | cOV'E W) = | (OVEQY dr.
R R

3.4 Conservation gradient
We need the “diagonalized” tensor product V @ V of the stochastic gradients. We begin
with the following.

Lemma 3.8 Forany p 2 0 and q > O with p + q > 5/12 there exists a constant C(p,q) > 0
such that

sup | V@I, < C. Q) WG ¥ € (B).

Proor. We first note that

sup|d; |-, < o r>5
'ekp 1 i=~r ’ 12,

which is verified by mimicking the argument in Obata [13, Appendix]. Then, for any pair of
P, q satisfying the assumption, we have

C(p.q) = max{p™"(n +1) |6, Xpugy s t€R, n=0,1,2,...} < o0. (3.16)
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Now for ¢ = (g,) € (E) we have Vi(f) = aup so that

IVU@IZ = D nt (3 +1)6, @1 gosi I

n=0

= Zn!pzq"l(n + 1)6; ®1 8ne1 |§+q

n=0

£ szq"(n +1)|6; E(p+q) (7 +1)! | gnu1 Ii-&-q‘
n=0

Taking (3.16) into account, we obtain

IvY @) < C@. )¢ 12,
which completes the proof. |
For each ¢ € D and ¢ € (E) we define
[(VoVp®y)®) = Vé(r) ® Vy(r), forae teR.

Then, with the help of Lemmas 3.2 and 3.8 one can show easily that

fk 1V @ V)6 @ Y10 Isnarcs,y 47 < Co. ) 1 #1312y

We then see that
VoV:De(E)— L*(R,T(H)® (E))

is a continuous linear map. The conservation gradient is now defined by compositions of
continuous linear maps:

VoV

V" : L(E)'. D) — D & (E) — L*R,T(H) & (E)) — L*R, L(E)", T(H))).
In a similar manner,
Vv : L(EY, TEH)) — T(H) ® (E) — L*R.D" ® (E)) — L*R, L(E)', D)
becomes also a continuous linear map. Summing up,
L(Ey,D) ——  L(E)y.TH))
vol lv° (3.17)
LR, L(E), T(H)) — L*R, L(E)", D).

4 Quantum Stochastic Integrals
4.1 The Hitsuda-Skorohod integral

The classical stochastic integral of Hitsuda—Skorohod type is defined by means of the
adjoint action of the classical stochastic gradient. Let § denote the adjoint map of the classical
stochastic gradient V : D — L%(R, I'(H)), see (3.5). Then,

§=V": [R,T(H)) » D"
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becomes a continuous linear map, which is sometimes called the divergence operator. By
definition it holds that

(B(P), 8) = fk (¥(), Vo(ydi, $eD, ¥ eIXRT(H)). @1)

Then 6('P) is called the Hitsuda—Skorohod integral.

The quantum stochastic integrals of Hitsuda—Skorohod type are defined in the same spirit,
where the quantum stochastic gradients play a role.
4.2 Creation integral

The creation integral 6* is by definition the adjoint map of the creation gradient V*. From
(3.13) we obtain easily the following diagram:

L*R, L(E)", D)) — L*(R, L((E), D))
& le
L(EY TH) — L&) T(H)).

Similarly from Proposition 3.5 we obtain a continuous linear map:
' 1 LR, Lo(T(H), D)) — LT (H), [(H)).
The creation integral is expressible in terms of the (classical) Hitsuda—Skorohod integral.
Proposition 4.1 For E € L*(R, L((E), D)) it holds that
S'EM=6(E4), ¢e(E), (4.2)
where E¢ € LX(R,T(H)) is defined by (E¢)(t) = E(¢)¢.
Proor. Taking 6*(E) € L((E), T'(H)) into account, we consider
(" Ee.w),  ¢e(E), yeTl(H) (4.3)
Let V+ : I'(H) ® (E) — LR, D* ® (E)) be the same as in (3.9) and
5t L*(R,D®(E)") -» T(H)® (E)
its adjoint operator. Comparing with (3.10) we see that
V' =KoV oK, St=K"1os* ok
With these notations we calculate (4.3):
(5" @)y = (K(S* @)y @ ) = (&' (K@) ¥ @ ¢)
= (KE, V'Y ® ¢)) = (KE, (Vy) ® ¢)
- [z, vu o 8yar = [ a0 vunar
The last integral is the Hitsuda—Skorohod integral, see (4.1). Thus,

(@00 = [ (06 Vo0t = [ (GO0 TVt = (5E). .
which proves (4.2). ' |
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4.3 Annihilation Integral

The annihilation integral 5~ is by definition the adjoint map of the annihilation gradient
V~. In view of (3.15) we obtain

LR, LT(H), (E))) —— LXR, LT (H), (E))
el >
LD, (E)) _— LD, (E)").
For Hilbert-Schmidt operators we have
6 LR, Lo(T(H), T(H))) — LoD, T(H)).

In a similar fashion as in Proposition 4.1 we have the following

Proposition 4.2 For E € LX(R, L(T'(H), (E)*)) it holds that
5 (E)b = j; EOVH@)d,  seD. (4.4)

Remark It is interesting to compare the results in Propositions 4.1 and 4.2 in the following
forms:

@ @e. = [ (@080 “.5)
@)= [(EOTHO. (4.6)
Then one can expect a direct relation between the creation and annihilation integrals, namely,

G ®) =6E"

In fact, the above relation is true for several classes of E. However, for the proof the domains

for the creation and annihilation integrals introduced in this note is not sufficient and we need

to introduce their complementary domains. The full details will appear in the forthcoming
paper Jl-Obata [6].

4.4 Conservation Integral

The conservation integral is defined to be the adjoint map of the conservation gradlent
From (3. 17) we obtain the following diagram:

LR, L(E), D)) — L*(R, L(E),T(H)))

o] |»
. L(E)TH) ——  L(E).D).
In a similar fashion as in Propositions 4.1 and 4.2 we have the following
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Proposition 4.3 For E € L2(R, L((E), T(H))) it holds that
8’E)p = 6(EVe), ¢ €(E), 4.7
where EV¢ € L*(R,T(H)) is defined by EV(t) = E(£)(V(t)).

Remark For comparison with (4.5) and (4.6) we record the following

EE) ) = fk CEOVHO), VYO dt.

Remark The results in Propositions 4.1-4.3 clarify the relation to the works by Belavkin
[1] and Lindsay [8]. In their approaches, using the classical stochastic integrals for suitably
chosen E = {Z(¢)} and ¢, the quantum stochastic integrals are defined by the right-hand sides
of (4.2), (4.4) and (4.7). Our quantum stochastic integrals are defined directly for Z = {E()}.

These two approaches yield the same quantum stochastic integrals for a common domain.

Remark In some literatures the Hitsuda—Skorohod integral is denoted by

6(Y) = fn Y(1)6B;,

where {B,} is the standard Brownian motion, see e.g., Nualart [11]. It would be then reasonable
to write

' (B = f Eo4;, 6 (B)= f E(N64;,, (B = f B()0A;,
R R R
where {4}, {4} and {A,} are the creation, annihilation and conservation processes.

Acknowledgements This work was supported by the Korea-Japan Basic Scientific Cooper-
ation Program (2005-2007) “Noncommutative Aspects in Stochastic Analysis and Applica-
tions to Mathematical Models.” The second author thanks Professor Ji for his kind hospitality
at Chungbuk National University in March, 2007, where this work was completed.

References

[1] V. P. Belavkin: 4 quantum nonadapted Ito formula and stochastic analysis in Fock scale,
J. Funct. Anal. 102 (1991), 414-447.

[2] R. L. Hudson and K. R. Parthasarathy: Quantum Ito s formula and stochastic evolutions,
Commun. Math. Phys. 93 (1984), 301-323.

[31 U. C. Ji: Stochastic integral representation theorem for quantum semimartingales, J.
Funct. Anal. 201 (2003), 1-29.

[4] U. C. Ji and N. Obata: Quantum white noise calculus, in “Non-Commutativity, Infinite-
Dimensionality and Probability at the Crossroads (N. Obata, T. Matsui and A. Hora,
Eds.),” pp. 143-191, World Scientific, 2002.



156

[5] U. C. Ji and N. Obata: Admissible white noise operators and their quantum white noise
derivatives, in “Infinite Dimensional Harmonic Analysis ITI (H. Heyer, T. Hirai, T. Kawa-
zoe, K. Saito, Eds.),” pp. 213-232, World Scientific, 2005.

[6] U. C. Ji and N. Obata: Quantum stochastic gradients, preprint, 2007.
[7]1 H.-H. Kuo: “White Noise Distribution Theory,” CRC Press, 1996.

[8] J. M. Lindsay: Quantum and non—causal stochastic integral, Probab. Theory Related
Fields 97 (1993), 65-80.

[9] P. Malliavin: “Stochastic Analysis,” Springer-Verlag, 1997.

[10] P-A. Meyer: “Quantum Probability for Probabilists,” Lect. Notes in Math. Vol. 1538,
Springer-Verlag, 1993.

[11] D. Nualart: “The Malliavin Calculus and Related Topics,” Springer-Verlag, New York,
1995.

[12] N. Obata: “White Noise Calculus and Fock Space,” Lect. Notes in Math. Vol. 1577,
Springer-Verlag, 1994.

[13] N. Obata: Generalized quantum stochastic processes on Fock space, Publ. RIMS, Kyoto
Univ. 31 (1995), 667-702. .

[14] K R Parthasarathy: “An Introduction to Quantum Stochastic Calculus,” Birkhduser,
1992.



