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Abstract

The mutual relation between quantum Micro and classical Macro
is clanified by a unified formulation of instruments describing mea-
surement processes and the associated amplification processes, from
which some perspective towards a description of emergence processes
of spacetime structure is suggested.

1 Sectors as Quantum-Classical Boundary

In the discussion on the mutual relations between micro- and macroscopic
levels in the physical nature, it is important to identify the location of
quantum-classical boundary. As is well known, however, the quantum theory
lacks an intrinsic length scale to distinguish between quantum and classi-
cal levels, and hence, we need to find such an effective “boundary“ in each
problem according to its specific configuration of relevant scales. Once we
succeed in it, the theoretical description of such a boundary can be given in
terms of the notion of sectors. So, let me start from a brief account of the no-
tions of sectors, inter-sectorial structures, order parameters to parametrize
sectors and so on. According to these notions, we can formulate in a clear-
cut manner the most important aspects of the mutual relations between the
microscopic quantum world and the macroscopic classical levels, which is
to be interpreted as a mathematical formulation [1] of the physically essen-
tial idea of “quantum-classical correspondence“ : the “boundary“ and the
gap between the former with non-commutative algebras of quantum phys-
ical variables and the latter with commutative algebras can be described
by means of the notion of a (superselection) sector structure consisting of a
family of sectors (or pure phases). To define it, we need to classify represen-
tations and states of a $C^{*}$-algebra $\mathfrak{U}$ of quantum observables according to
the quasi-equivalence $\pi_{1}\approx\pi_{2}[2]$ defined by the unitary equivalence of rep-
resentations $\pi_{1},\pi_{2}$ up to multiplicity, which is equivalent to the isomorphism
of representing von Neumann algebras $\pi_{1}(\mathfrak{U})’’\simeq\pi_{2}(\mathfrak{U})’’$ . A sector, or, a pure
phase in the physical contexts, is then defined by a quasi-equivalence class
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of factor representations and states corraeponding to avon Neumann alge-
bra with atrivial centre which is aminimal unit among quasi-equivalence
classes.

Representations belonging to different sectors $\pi_{a},$ $\pi_{b}$ are mutually disjoint
with no non-zero intertwiners, namely, any bounded operator $T$ Rom the
representation space $fl_{\pi_{a}}$ of $\pi_{a}$ to that $\ovalbox{\tt\small REJECT}_{\pi_{b}}$ of $\pi_{b}$ vanishae, $T=0$ , if it satisfiae
$T\pi_{a}(A)=\pi_{b}(A)T$ for $\forall A\in \mathfrak{U}$ . If $\pi$ is not afactor representation belonging
to asrtor, it can be uniquely decomposed into the direct sum (or integral)
of sectors, through the spectral decomposition of anon-trivial commutative
$algebra3(\pi(\mathfrak{U})’’)=\pi(\mathfrak{U})’’\cap\pi(\mathfrak{U})’=3_{\pi}(\mathfrak{U})$ as the centre of $\pi(\mathfrak{U})’’$ admitting a

$simul\tan\infty us$ diagonalization”. Here each aector contained in $\pi$ is faithfully
parametrized by the Gel’fand spectrum Spec$(3_{\pi}(\mathfrak{U}))$ of the centre. Thus,
commutative classical $ob\Re rvables$ belonging to the centre $3_{\pi}(\mathfrak{U})$ physically
plays the role of macroscopic order parameters and Spec$(3_{\pi}(\mathfrak{U}))$ can be
regarded ae the classifying spaoe of sectors to distinguish different sectors.
In this way, we flnd in amixed phase the coexistence of quantum$(=intra-$

sectorial) and classical systems, which constitute an inter-secto$r\cdot id$ structure
concisely daecribed by the centre $3_{\pi}(\mathfrak{U})$ consisting of order parameters.

The traditional understanding of asector is a“coherent subspace” where
the “superpoeition principle” holds, but this “definition” applies only to sec-
tooe containing irreducible repraeentations and pure states which are mean-
ingful only in the contexts discussing the global aepects of quantum fields
in the vacuum situation. $Mor\infty ver,$ it lea&to such amisleading interpre-
tation of a“superselection rule” ae an obstruction to the superpoeition of
state vectors belonglng to different sectors; actually the suPerpoeition of
this sort is never “forbidden” but it simply reduces to statistical midures
instead of superposed pure states, for lack of observables with non-vtishing
off-diagonal terms connecting different srtors. In sharp contrast, the above
general definition baeed on factoriality is applicable to any pure phasae as-
sociated with reducible factor repreaentations and mixed states which are
common in the thermal $and/or$ local aspects of quantum fields (latter even
in the vacuum situations), owing to the inevitable relevance of non-type $I$

representations (for which irreducible representations are almost useless).

2 Instruments for Intra-sectorial Searches

While the inter-secton$al$ structure can successfully be treated by means of
the notions of sectors and of the macroscopic order parameters belonging to
the centre, this is not sufficient for a satisfactory description of a given quan-
tum system unless we combine it with the analysis of the intrinsic quantum
structures within each sector, not only theoretically but also operationally
(up to the resolution limits imposed by quantum theory itself). Since all the
states in a sector share the same spectrum of the centre, however, the order
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parameters are of little use in the search of the intra-sectorial structures
within a sector. For the purpose of detecting these invisible microscopic
quantum structures we need a general scheme of quantum measurement
which has been proposed in $[3, 4]$ by extending the standard scheme [5] to
systems with infinite degrees of freedom. This is based upon the notion of
a maximal abelian subalgebra (MASA, for short) $A$ of a factor von Neu-
mann algebra $\mathcal{M}=\pi(\mathfrak{U})’’$ describing a fixed sector, defined by the relation
$A=A’\cap \mathcal{M}$ ; if we adopted the familiar condition $A=\mathcal{A}’$ it would exclude
the cases with $\mathcal{M}$ of non-type I common in quantum systems with infinite
degrees of Raedom. Given such a MASA $A=A’\cap \mathcal{M}$ , the precise form
of the measurement coupling can be specified between the observed system
and the apparatus required for implementing a measurement, on the basis
of which the central notion of instrument can concisely be formulated. The
essence of the formulation can be summarized in terms of the following basic
ingredients:

1. A (factor) von Neumann algebra $\mathcal{M}(:=\pi(\mathfrak{U})’’)$ describing the observed
system (in a fixed sector $\pi$) and it$s$ MASA $\mathcal{A}=\mathcal{M}\cap A’=\mathcal{M}^{\mathcal{U}(A)}$ with
the group $\mathcal{U}(A)$ of all unitaries in $A$. Under the physically natural
assumption that the representation Hilbert space $\alpha_{\pi}$ of the present
system $\mathcal{M}$ can be taken as separable, $A$ as observables to be measured
is generated by a locally compact abelian (Lie) group $\mathcal{U}\subset A=\mathcal{U}^{u}$

(with a Haar measure $d\mu$). Since the results of a measurement of $\mathcal{A}$

are given by the measured data belonging to Spec$(A)$ , the algebra of
the measuring system can be identified with the subalgebra $\mathcal{A}$ itself of
the observed system $\mathcal{M}$ .

2. The measurement coupling between the observed and the measur-
ing systems is specified by a representation $W_{U}$ of the Kac-Takesaki
operator (K-T operator, for short) $W$ of the group $\mathcal{U}$ defined by
$(W\eta)(u, v)$ $:=\eta(v^{-1}u,v)$ for $\eta\in L^{2}(\mathcal{U}\cross \mathcal{U},d\mu\otimes d\mu),u,$ $v\in \mathcal{U}$ and char-
acterized by the so-called pentagonal relation $W_{12}W_{23}=W_{23}W_{13}W_{12}$ .
When the action $\mathcal{M}\cap \mathcal{U}$ of the measuring system is implemented,
$\alpha_{u}(M)=U_{u}MU_{u}^{-1}(M\alpha\in \mathcal{M}, u\in \mathcal{U})$, by a unitary representation $U$

of $\mathcal{U}$ on the (standard) representation Hilbert space $L^{2}(\mathcal{M})$ of $\mathcal{M}$ , the
representation $W_{U}$ of $W$ corresponding to $\alpha=AdU$ is defined by

$(W_{U}\xi)(u):=U_{u}(\xi(u))$ for $\xi\in L^{2}(\mathcal{M})\otimes L^{2}(\mathcal{U}, d\mu)$ ,

satisfying the (modified) pentagonal relation

$(W_{U})_{12}W_{23}=W_{28}(W_{U})_{13}(W_{U})_{12}$ ,

and the intertwining relation $W_{U}(1\otimes\lambda_{u})=(U_{u}\otimes\lambda_{u})W_{U}$ . Here the
suffices indicate the positions in the tensor product $L^{2}(\mathcal{M})\otimes L^{2}(\mathcal{U})\otimes$

195



$L^{2}(\mathcal{U})$ to which the operators act and $\lambda_{u}$ is the regular representa-
tion of $\mathcal{U}$ defined by $(\lambda_{u}\eta)(v):=\eta(u^{-1}v)$ on $\eta\in L^{2}(\mathcal{U})$ . The sim-
plest standard choice of $\alpha$ common in the context of measurements is
$\alpha_{u}(M)=uMu^{-1}$ (for $M\in \mathcal{M}$ ), $U_{u}=u$ , which neglects the effect
of the intrinsic dynamics of the observed system on the measurement
process. In terms of the Lie generators $X_{a}$ of the unitary representa
tion $U$ such that $U_{u}= \exp(\sum_{a}X_{a}\varphi^{a}(u))$ , the couplin$g$ term can be
written by $W_{U}=\exp(X_{a}\otimes\varphi^{a}(\hat{u}))$ , where $\varphi^{a}(\hat{u})$ denotes an operator
on $L^{2}(\mathcal{U})$ defined by $(\varphi^{a}(\hat{u})\eta)(u)=\varphi^{a}(u)\eta(u)$ for $\eta\in L^{2}(\mathcal{U}),$ $u\in \mathcal{U}$

(similarly to the position operator $\hat{x}$ in quantum mechanics, where
the displacement unitary $\lambda_{x}=\exp(-i\hat{p}x)$ corresponds to the unitary
operator $\lambda_{u}$ in the present context).

3. By restriction to $\mathcal{U}$ our measured data $\chi\in Spec(\mathcal{A})$ can be embed-
ded as a group character $\chi r_{u}$ of $\mathcal{U}$ into the dual group $\hat{\mathcal{U}}$ which is
again a locally compact abelian group. By Fourier-transforming $W_{U}$

to $\overline{W_{U}};=(id\otimes \mathcal{F})W_{U}(id\otimes \mathcal{F})^{-1}$ with $( \mathcal{F}\xi)(\gamma);=\int_{\mathcal{U}}\overline{\gamma(u)}\xi(u)d\mu(u)$

for $\xi\in L^{2}(\mathcal{U},d\mu)$ , we define an instrument $\mathcal{I}$ for measuring $\mathcal{A}$ by

$\mathcal{I}(\Delta|\omega)(M):=(\omega\otimes m_{\mathcal{U}})(\overline{W_{U}}(M\otimes\chi_{\Delta})\overline{W_{U}^{*}})$ ,

for $M\in \mathcal{M},$ $\chi_{\Delta}\in \mathcal{A}=L^{\infty}(Spec(A))$ . While the identity element
$\iota\in\hat{\mathcal{U}}$ for a non-compact $\mathcal{U}$ is not represented by a normalized vector
in $L^{2}(\mathcal{U})$ , the above invariant mean1

$mu$ over $\mathcal{U}$ physically plays the
role of the neutrd position $\iota$ of the measuring apparatus. All the
ingredients relevant to a measurement process are incorporated in this
instrument $\mathcal{I}$, such as the probability distribution $p(\Delta|\omega)=\mathcal{I}(\Delta|\omega)(1)$

of measured values of observables in $\mathcal{A}$ to be found in a Borel set
$\Delta\subset Spec(\mathcal{A})$ and as the state chan$ge$ from an initial state $\omega$ to a final
state $\mathcal{I}(\Delta|w)/p(\Delta|w)$ caused by the read-out of measured $valuae\in\Delta$

[5], according to which a process of the so-called (reduction of wave
packets” is described.

4. Since $\mathcal{U}$ is abelian, we can consider the spectral decomposition, $U_{u}=$

$\int_{\chi\in Spec(A)\subset\hat{\mathcal{U}}}\overline{\chi(u)}dE(\chi)(u\in \mathcal{U})$ , of the unitary representation $U$ (ow-
ing to the so-called SNAG theorem). Using this and the Fourier trans-
form $V=(\mathcal{F}\otimes \mathcal{F})W$

“ $(\mathcal{F}\otimes \mathcal{F})^{-1}$ of $W$ as the K-T operator of the
dual group $\hat{\mathcal{U}}$ with the Plancherel measure $d\hat{\mu}$ satisfying the relation
$(V\eta-L(\gamma, \chi)=\eta(\gamma,\gamma^{-1}\chi)$ for $\eta\in L^{2}(\hat{\mathcal{U}}, d\hat{\mu})$ , we have a clearer picture
of $W_{U}: \overline{W_{U}}=\int_{\chi\in Spec(A)}dE(\chi)\otimes.\lambda_{\chi}^{*}=;V_{\tilde{U}}^{*}$ . In the Dirac notation

1To be precise, an invariant mean is a flnitely additive measure as a state on a commu-
tative $C^{*}$-algebra, but, in general, it cannot be extended to a a-additive measure. This
point may play crucial roles in selecting which kind of quantities are readable with others
non-readable.
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(of non-normalizable generalized eigenvectors), the action of $V_{\tilde{U}}$ on
$L^{2}(\mathcal{M})\otimes L^{2}(\hat{\mathcal{U}})$ is given for $\gamma\in\hat{\mathcal{U}},$ $\xi\in L^{2}(\mathcal{M})$ by $V_{\tilde{U}}(\xi\otimes|\gamma\rangle)=$

$\int_{\chi\in Spec(A)}dE(\chi)\xi\otimes|\chi\gamma\rangle$ .

5. In terms of the above K-T operators, the crossed product $\mathcal{M}\rtimes\alpha \mathcal{U}$ is
defined on $L^{2}(\mathcal{M})\otimes L^{2}(\mathcal{U})$ as an important notion in the Fourier-Galois
duality in the following two equivalent ways: either as a von Neumann
algebra $\lambda^{\mathcal{M}}(L^{1}(\mathcal{U},\mathcal{M}))’’$ generated by the Fourier transform $\lambda^{\mathcal{M}}(\hat{F})$ $:=$

$\int_{\mathcal{U}}\hat{F}(u)U(u)d\mu(u)$ of M-valued $L^{1}$-functions $f\in L^{1}(\mathcal{U},\mathcal{M})$ with the
convolution product, $( \hat{F}_{1}*\hat{F}_{2})(u)=\int_{\mathcal{U}}\hat{F}_{1}(v)\alpha_{v}(F_{2}(v^{-1}u)d\mu(v)$, mapped
by $\lambda^{\mathcal{M}}$ into $\lambda^{\mathcal{M}}(\hat{F}_{1}*\hat{F}_{2})=\lambda^{\mathcal{M}}(\hat{F}_{1})\lambda^{\mathcal{M}}(ff_{2})$ , or, as a von Neumann al-
gebra $\pi_{\alpha}(\mathcal{M})\vee(1\otimes\lambda(\mathcal{U}))$ generated by $1\otimes\lambda(\mathcal{U})$ and by

$\pi_{\alpha}(\mathcal{M}):=\{\pi_{\alpha}(M):=Ad(W_{U}^{*})(M\otimes 1);M\in \mathcal{M}\}$ .
These two versions are related by the mapping $\alpha(W):=Ad(W_{U})$ ,

$\lambda^{\mathcal{M}}(L^{1}(\mathcal{U},\mathcal{M}))’’=(\mathcal{M}\otimes 1)\vee\{U_{u}\otimes\lambda_{u};u\in \mathcal{U}\}\alpha(W)^{-1}\alpha(W)$$\Leftrightarrow$ $\pi_{\alpha}(\mathcal{M})\vee(1\otimes\lambda(\mathcal{U})$ ,

which can be understood as the Schr\"odinger and Heisenberg pictures:
the former $(\mathcal{M}\otimes 1_{-})\vee\{U_{u}\otimes\lambda_{u};u\in \mathcal{U}\}$ is in the Schr\"odinger picture
with unchanged microscopic observables $\mathcal{M}\otimes 1$ and with the coupling
$U_{u}\otimes\lambda_{u}$ to change macroscopic states, while, in the latter, all the cou-
pling effects are concentrated in the observables $\pi_{\alpha}(\mathcal{M})$ in contrast to
the kinematical changes of macroscopic states caused by $\lambda(\mathcal{U})$ .

In the case of the instrument $\mathcal{I}$, the algebra to be observed is
the tensor algebra $\mathcal{M}\otimes A=\mathcal{M}\otimes L^{\infty}(SpecA)$ realized in the ini-
tial and final stages, raeprtively, before and after the measuring
processes according to the switching-on and -0ff of the coupling $\alpha$ :
$\mathcal{M}\otimes A=\mathcal{M}\rtimes\alpha-\neg d_{\lambda 4}\mathcal{U}arrow \mathcal{M}\rtimes\alpha \mathcal{U}arrow \mathcal{M}\otimes \mathcal{A}$, similarly to the scattering
processes. All the effects of the measurement coupling $\overline{W_{U}}$ are encoded
in the form of macroscopic state changes recorded in the spectrum of
the non-trivial centre $3(\mathcal{M}\otimes \mathcal{A})=A=L^{\infty}(Spec\mathcal{A})$ of $\mathcal{M}\otimes \mathcal{A}$ , playing
the same roles as the order parameters to $sp\bm{r}i6^{r}$ sectors in the inter-
sectorial context. For these reasons, the most natural physical essence
of the formalism based on an instrument $\mathcal{I}$ should be found in the in-
teraction picture, whose coupling term $\overline{W_{U}}=(id\otimes \mathcal{F})W_{U}(id\otimes \mathcal{F})^{-1}$ is
responsible for deforming the decoupled algebra $\mathcal{M}\otimes A$ into the above

‘crossed product $\mathcal{M}\rtimes\alpha \mathcal{U}$ .

3 Amplification in Intra-sectorial Measurements

While the notion of an instrument provides a sufficient tool for the operae
tional description of a measurement, the above state changes describe only
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microscopic changes of quantum states $\xi\otimes|\iota\rangle$ $arrow\xi_{\gamma}\otimes|\gamma\rangle$ of the composite
system of the observed system and the probe system taking place at their
microscopic contact point. The question remains untouched as to how the
invisible microscopic changes in the quantum states are transformed into
visible macroscopic changes of the measuring pointer, without which mea-
sured values $\in Spec(A)\subset\hat{\mathcal{U}}$ cannot be read out or registered. To answer
this question we need a mathematical formulation of the process of amplifi-
cation from the microscopic state changes in the probe system caused by the
measurement coupling into the macroscopic changes in the spatial positions
of the measurement pointer. While I am not aware of known results of this
sort, this kind of amplifying mechanism seems to be universally relevant to
any bridges between microquantum systems and $macr\triangleright classical$ world.

In the present approach, the mathematical essence of the amplification
processes can be seen in the following simple form [6] based upon the quasi-
equivalence $\lambda^{\otimes m}\approx\lambda^{\Phi n}(\forall m,n\in N)$ among arbitrary tensor powers $\lambda\emptyset n=$

$\lambda\otimes\cdots\otimes\lambda$ of the regular representation of a locally compact group $\hat{\mathcal{U}}$ via
the K-T operator $V$ related closely to the measurement coupling. When $V$

is applied arbitrarily many times to an initial state $\xi\otimes|\iota\rangle$ $\otimes|\iota\rangle$ $\cdots\otimes|\iota\rangle$ of the
composite system where $\xi=\sum_{\gamma\in\hat{\mathcal{U}}}\alpha_{\gamma}\xi_{\gamma}$ is an initial state of the observed
system, the resulting state becomes:

$V_{N,N+1}\cdots V_{23}(V_{\tilde{U}})_{12}(\xi\otimes|\iota\rangle\otimes|\iota\rangle\cdots\otimes|\iota\rangle)\vee N$

$= \sum_{\gamma\in\hat{\mathcal{U}}}c_{\gamma}V_{N,N+1}\cdots V_{34}V_{23}(\xi_{\gamma}\otimes|\gamma\rangle\otimes|\iota\rangle\cdots\otimes|\iota\rangle)$

$= \sum_{\gamma\in\hat{\mathcal{U}}}c_{\gamma}V_{N,N+1}\cdots V_{34}(\xi_{\gamma}\otimes|\gamma\rangle\otimes|\gamma\rangle\cdots\otimes|\iota\rangle)=\cdots$

$= \sum_{\gamma\in\hat{\mathcal{U}}}c_{\gamma}\xi_{\gamma_{\vee}^{\otimes|\gamma\rangle\otimes|\gamma\rangle\cdots\otimes|\gamma\rangle}}NN\gg 1arrow\sum_{\gamma\in\hat{\mathcal{U}}}c_{\gamma}\xi_{\gamma}\otimes[|\gamma\rangle^{\emptyset N}]$

,

(whose validity is, to be precise, restricted to the case with $\hat{\mathcal{U}}$ having a
discrete spectrum). However, the corresponding formula in the Heisenberg
picture given by

$A\otimes f_{2}\otimes\cdots\otimes f_{N+1}$

$-((V_{\tilde{U}})_{12}^{*}V_{23}^{*}\cdots V_{N,N+1}^{*}(A\otimes f_{2}\otimes\cdots\otimes f_{N+1})V_{N,N+1}\cdots V_{23}(V_{\tilde{U}})_{12}$

$=Ad((V_{\tilde{U}})_{12}^{*})Ad(V_{23}^{r})\cdots Ad(V_{V_{N,N+1}}^{*})(A\otimes f_{2}\otimes\cdots\otimes f_{N+1})$

$=Ad(V_{\tilde{U}}^{*})(A\otimes Ad(V^{*})(f_{2}\otimes Ad(V^{*})(\cdots\otimes Ad(V^{*})(f_{N}\otimes f_{N+1})))\cdots)$

for $A\in \mathcal{M}$ and $f_{i}\in L^{\infty}(\hat{\mathcal{U}})$ ,

is similar to the one appearing in Accardi’s formulation of quantum Markov
chain [7] which is indepedent of the discreteness of the spectrum. According
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to the general basic idea of “quantum-classical correspondence”, aclassical
macroscopic object can be identified with acondensed state of infinite num-
ber of quanta, as well exemplified by the macroecopic magnetization of Ising
or Heisenberg ferromagnets daecribed by the aligned $statae|+\rangle^{\otimes\infty}$ of infinite
number ofmicroscopic spins. Therefore, the above state $|\gamma\rangle^{\otimes N}$ (with $N\gg 1$ )
can physically be interpreted as repraeenting amacroscopic position of the
measuring pointer, and hence, the above repeated action of the K-T operator
$V$ describes acascade $proc\infty$ or adomino effect of (decoherence’ to $ampli\Phi$

astate change at the microscopic end of the apparatus into the macroecopic
claaeical motion $\iotaarrow\gamma$ of the measuring pointer. It is remarhble here that
the quasi-equivalence of arbitrary tensor powers $\lambda^{\otimes n}$ of the $re_{1^{1ar}}$ repre-
sentation $\lambda guarant\infty$ the “unitarity” of the above amplification $proc\infty$,
which provides the mathematical basis for not only the “repeatablity hy-
pothesis” but also the poesibility of the recurrent quantum interference even
after the contact with the meaeuring apparatus under the situation that the
number $N$ of repetition naed not be regarded as areal infinity (as the size
of $N$ depen&on the length of the interval raeponsible for the amplification
process between the microscopic and macroscopic ends of the measurement
apparatus and also on the reaction rate of the flip from $|\iota\rangle$ to $|\gamma\rangle$ ). In this
raepect, the problem as to whether the situation is completely made classical
or not depen&highly on the relative configurations among mry large or
small numbers, which can consistently be daecribed in the $\theta amework$ of the
non-standard analysis (see, for instance, [8]). In relation to this, it is ako
interesting to note that the above amplification process is closely related to
aL\’evy $proc\infty$ through its (infinite divisibility” as follows: similarly to the
affine property $f(\lambda x+\mu y)=\lambda f(x)+\mu f(y)(\forall\lambda, \mu>0)$ of amap $f$ defined
on aconvex set which follows $hom$ the addivitiy $f(x+y)=f(x)+f(y)$ , we
can derive $\lambda\approx\lambda^{n/m}(\forall m,n\in N)$ from $\lambda\approx\lambda^{n}(\forall n\in N)$ , which means the
.infinite divisibility $(AdV^{*})^{t+s}\approx(AW^{*})^{t}(AW^{*})^{s}(t, s>0)$ of the $proc\infty$

induced by the above transformation. In this way, we see that simple indi-
vidual meaeurements with deflnite measured values are $conn\infty ted$ without
$ga_{\mathfrak{B}}$ with discrete $and/or$ continuous repetitions of measurements [9]. If this
formulation exhausts the eaeence of the problem, the remaining tasks rduce
to its physical and technological implementation through suitable choicae of
the media connecting the microecopic contact point between the system and
the apparatus to the measuring pointer.

4 From Amplification to Emergence of Macro

In the mutual relations between invisible Micro and visible Macro, we find
interesting recurrent patterns among dynamical systems, crossed products
to formulate coupled systems and processes to amplify the results of state
changing processes into readable data. The crucial roles are played here by
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the K-T operators and the Fourier duality to perform the spectral decom-
position. To understand their natural operational meaning we compare the
above scheme for an intra-sectorial search with the measurement of an inter-
sectorial structure associated with an unbroken internal symmetry, whose
basic ingredients are as follows:

1. A microscopic system described by a field algebra $S$ and a (compact)
group $G$ of internal symmetry constituting a dynamical system $S\wedge\alpha G$ .

2. The coupled system of observed and measuring systems is given by a
crossed product $S\rtimes\alpha G\simeq S^{G}\equiv \mathfrak{U}$ whose sector structure is parametrized
by order parameters belonging to the set $\hat{G}$ of equivalence classes of
irreducible unitary representations of $G$ .

3. Measured values (in a given representation $\pi$ of $S$) are registered in
Spec$(3_{\pi}(\mathfrak{U}))=\hat{G}$ : note the Fourier duality between $G$ acting on the
system and its dual $\hat{G}$ as sector indices to be measured.

4. The K-T operator relevant to measured data in $\hat{G}$ is given in the form
of $\hat{V}:=\sigma V^{*}\sigma$ defined in $L^{2}(\hat{G})=L^{2}(G)$ on the basis of the K-T opera-
tor $V$ of $G$ given by $(V\xi)(g_{1},g_{2})=\xi(g_{1}, g_{1}^{-1}g_{2})$ for $g_{1},$ $g_{2}\in G$ (where $\sigma$

is the flip operator on the tensor product Hilbert space). For an abelian
$G$ , we have through the Fourier transform $(\hat{V}\eta)(\gamma_{1},\gamma_{2})=\eta(\gamma_{1},\gamma_{1}^{-1}\gamma_{2})$

for $\gamma_{1},\gamma_{2}\in\hat{G}$ , which cannot, however, be literally reproduced for
a non-abelian $G$ owing to the relevance of multi-dimensional vector
spaces to representations $\gamma\in\hat{G}$ of $G$ .

In contrast, the problem of parameter estimate in covariant measure-
ments is formulated as follows:

1. an algebra to be observed is $\mathfrak{U}$ or $S\rtimes_{\alpha}G=\mathfrak{U}\otimes \mathcal{K}(L^{2}(G))$ .
2. The coupling between $\mathfrak{U}$ and $\hat{G}$ due to the co-action $\mathfrak{U}\wedge\hat{G}$ leads to

a crossed product $\mathfrak{U}\rtimes\hat{G}\simeq S$ as a measurement is a process to couple
the system to the dual variables of what to be observed.

3. What to be read out in this case as the outcome of the measurement
is $g\in G$ whose non-commutativity requires an optimized choice of
positive operator-valued measures (POVM’s, for short) deflned on $G$

taking values in the representation space of $S$.
$\backslash -$

4. In the Naimark extension of a POVM, the augmented algebra $\hat{S}$ of $S$

appears with a centre $3(\hat{S})=L^{\infty}(G)$ whose spectrum is $G$ (see [1]).
$Y$
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The duality of crossed products relevant to the above two cases can be
summarized as follows:

$\{\begin{array}{lll}coupledsystem am_{V\otimes}\Rightarrow^{P^{li\Psi}} \in\hat{G}_{read- out}S\rtimes\alpha G\simeq \mathfrak{U}coaction rightarrow sectorsc_{S\rtimes\hat{\alpha}}j\backslash \Downarrow\Uparrow O\hat{G}\simeq \mathfrak{U}\hat{G} \end{array}\}$

$dual\Leftrightarrow[$ $\hat{G}\cap^{\rtimes\hat{\alpha}}\Downarrow coup1edsystem\mathfrak{U}\simeq s\rtimes ac\Uparrow 0G:\mathfrak{U}\hat{G}\simeq S$ action

$ampli\Rightarrow^{\Phi}$

$reffi- out\in G$

$]$

We encounter a physically natural context of this sort in the description
of the sector structure associated with a spontaneous symmetry breakdown
$(SSB)$ of a bigger goup $G$ into an unbroken symmetry with it$s$ closed sub-
group $H$ , as follows:

1. The inter-sectorial structure (I) consisting of degenerate “vacua” as-
sociated with SSB: the breakdown of an internal symmetry described
by a group $G$ is known to cause the violation of the Haag duality
$\mathfrak{U}(O’)=\mathfrak{U}(O)’$ for the starting local net $O-\mathfrak{U}(O)=S(O)^{G}$ of
observable elements of quantum fields. Then it can be extended to
the Haag dual net given by $\mathfrak{U}^{d}(O);=\mathfrak{U}(O’)’$ to recover the Haag du-
ality. Through the Doplicher-Roberts reconstruction [10] applied to
$\mathfrak{U}^{d}$ , we find a field algebra $S=\mathfrak{U}^{d}\rtimes\hat{H}$ with a compact Lie group $H$

as a subgroup of $G$ to describe an unbroken symmetry of $S$. Using
the method developed in [1], we can construct an augmented Ofgebra
$\hat{S}=\mathfrak{U}^{d}\rtimes\hat{G}=S\rtimes(\overline{H\backslash G})$ from the coaction of $G$ on $\mathfrak{U}^{d}$ or equivalently
from that of a homogeneous space $H\backslash G$ on $S$ such that its induced rep-
resentation $\hat{\pi}$ from the vacuum representation of $S$ has automatically
the unitary implementers of the broken $G$ and that it has a non-trivial
centre $L^{\infty}(G/H)=L^{\infty}(G)^{H}$ on which the action of $G$ is ergodic. In
this way, the degenerate (vacua’ consistin$g$ of the base space $G/H$ of
the bundle of sectors can be detected as the spectrum of the order pa-
rameter $\grave{3}_{k}(\hat{S})=L^{\infty}(G/H)$ . The above second case of the parameter
estimate of $G$ in covariant measurements in the use of a POVM can
be reproduced if we take $H=\{e\}$ here. Note the parallelism between
the dynamical system $G_{t}\backslash G/H$ and the Galois group $G$ in dassical
Galois theory acting on the space $G/H$ of solutions.

2. The inter-sectorial structure (II) concerning sectors arising kom the
unbroken symmetry $H$ on one of degenerate “vacua”: the above Haag
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dual net algebra $\mathfrak{U}^{d}=S^{H}$ can be regarded as a coupled system $S\rtimes H\simeq$

$S^{H}=\mathfrak{U}^{d}$ of the field algebra $S$ with its unbroken symmetry group $H$

arising from the action of $H:S\wedge H\Rightarrow S\rtimes H=S^{H}=\mathfrak{U}^{d}$ in the use
of the Takesaki-Rkai duality of crossed product. This coupled system
is acted on by the group dual $\hat{H}$ , the latter ofwhich can be measured to
describe the sector structure of the unbroken $H$ on a “vacuum” chosen
among degenerate “vacua” (by means of, e.g., Casimir operators of
Lie$(H))$ . In this way, the sector structure due to a spontaneously
broken symmetry constitutes a sector bundle $Gx_{H}\hat{H}arrow G/H$ over
the homogeneous space $G/H$ with a standard fibre A.

3. Intra-sectorial structure: detected by means of a suitable MASA (cor-
responding to a Cartan subalgebra of Lie $(H)$ , for instance) of a factor
algebra $\pi_{\eta}(S^{H})^{\prime l}=\pi_{\eta}(\mathfrak{U}^{d})’’$ .

The relation above among a POVM of the space $G/H$ , its Naimark ex-
tension and the augmented algebra $\hat{S}$ with $3_{\hat{\pi}}(\hat{S})=L^{\infty}(G/H)=3_{\hat{\pi}}(\mathfrak{U}^{d})$ can
be naturally understood by means of the Stinespring theorem of dilations
based upon the complete positivity of a POVM. Note here the mutual rela-
tions among condensates, Goldstone modes and domain structures: in SSB
with $G$ broken down to $H$ , the condensates and Goldstone modes are both
related to $G/H$ but in quite a different manner. In the case with a Lie group
$G$ describing the spontaneously broken symmetry, the former corresponds
to the base space $G/H$ of the tangent bundle $T(G/H)$ and the latter to the
fibre space $T_{\dot{g}}(G/H)$ at each point $\dot{g}\in G/H$ as follows:

1. Condensates (responsible for SSB): the list of all the possible conden-
sates can be so parametrized by $G/H$ that each sector conesponds to
a point $\dot{9}\in G/H$ . I.e., the relation of $G/H$ to the condensates is that
the set $G/H$ exhausts all the possible choices of degenerate “vacua”,
among which only one point of $G/H$ can be realized as a sector at
each time.

2. Goldstone modes describe virtud fluctuations around a fxed choice
among the above condensates without changing it.

3. In the case with phase $\omega existenoe$, different choices of the conden-
sates are realized in different regions of the real space through which a
domain-structure is realized. “Real space” may be misunderstood as
prior to the emergence of different phases, whereas such a “real space“
may not be materialized without the coexistence of phases.

This last remark will play crucial roles in understanding classical geo-
metrical structures visible, at the macroscopic levels as something arising
from the processes of emergence from the invisible microscopic worlds.
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I would like to express my sincere thanks to Prof. L. Accardi and to
Prof. T. Hida for their encouragements. I am very grateful to Mr. H. Saigo
for the discussion on the possible delicate roles expected to be played by the
invariant mean $nu$ due to its $non-\sigma$-additivity as remarked in the footnote
in Sec.2.

References
[1] Ojima, I., A unified scheme for generalized sectors based on selection

criteria-Order parameters of symmetries and of thermality and physi-
cal meanings of adjunctions-, Open Systems and Information Dynam-
ics, 10 (2003), 235-279.

[2] Dixmier, J., $C$ ‘-Algebras, North-Holland, 1977; Pedersen, G., $C^{*}-$

Algebras and Their Automorphism Groups, Academic Press, 1979.

[3] Ojima, I., Micro-macro duality in quantum physics, pp.143-161 in Proc.
Intern. Conf. on Stochastic Analysis, Classical and Quantum, World
Scientiflc, 2005.

[4] Ojima, I. and Takeori, $M$ , How to observe quantum fields and recover
them from observational data? –Takesaki duality as a Micro-Macro
duality-, (math-ph/0604054 (2006)), to appear in Open Systems and
Information Dynamics, 14 (2007).

[5] Ozawa, M., Quantum measuring proeesses of continuous observables.
J. Math. Phys. 25, 7987 (1984); Publ. RIMS, Kyoto Univ. 21, 279-295
(1985); Ann. Phys. (N.Y.) 259, 121-137 (1997); Ozawa, M., Perfect
correlations between noncommuting observables, Phys. Lett. $A,$ $335$ ,
11-19 (2005).

[6] Ojima, I., L\’evy process and innovation theory in the context of Micro-
Macro duality, A brief summary of talks at the 5th L\’evy Seminar, 2006,
edited by T. Hida.

[7] Accardi, L., Noncommutative Markov chains, in Intem. School ofMath.
Phys., Camerino, pp. 268-295 (1974); Topics in quantum probability,
Phys. Rep., 77 (1981) 169-192.

[8] Ojima, I. and Ozawa, M., Unitary representations of the hyperfinite
Heisenberg group and the logical extension methods in physics, Open
Systems and Information Dynamics 2, 107-128 (1993).

[9] Ojima, I. and Tanaka, S., State preparation, wave packet reduction and
repeated measurements (in Japanese), Part III, Chapater 2, pp.235-
243 in “Quantum Information and Evolution Dynamics” ed. by Ohya,
M. and Ojima, I. (MakinoShoten, 1996).

203



[10] Doplicher, S. and Roberts, J.E., Why there is a field algebra with a
compact gauge group describing the superselection structure in particle
physics, Comm. Math. Phys. 131 (1990), 51-107.

204


