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1 Introduction
In $[6, 5]$ Buchanan, Gilbert and Khashanah investigated the extent to which
the most important parameters of the Biot model $[1],[2]could$ be recovered
by acoustic interrogation in an numerical experiment which simulated the
physical experiment of Hosokawa and Otani [14], (See also of McKelvie and
Palmer [15], Williams [17].) where a small specimen of cancellous bone was
placed in a tank of water between an acoustic source and receiver. It was
found that by using computer simulations we could estimate bone density
to within a percent. Other bone parameters, such as bulk modulus, shear
modulus, permeability, etc. were not so accurately determined.

The Biot model treats a poroelastic medium as an elastic frame with
interstial pore fluid. Cancellous bone is anisotropic, however, as pointed out
by Williams, if the acoustic waves passing through it travel in the trabecular
direction an isotropic model may be acceptable. We will simulate a two
dimensional version of the experiments described in McKelvie and Palmer
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and Hosokawa and Otani. The motion of the frame and fluid within the bone
are tracked by position vectors $u=[u, v]$ and $U=[U, V]$ . The constitutive
equations used by Biot are those of a linear elastic material with terms added
to account for the interaction of the frame and interstial fluid

$\sigma_{xx}$ $=2\mu e_{xx}+\lambda e+Q\epsilon$ , (1.1)
$\sigma_{yy}$ $=2\mu e_{yy}+\lambda e+Q\epsilon$ ,
$\sigma_{xy}$ $=\mu e_{w},$ $\sigma_{yx}=\mu e_{yx}$,

$\sigma$ $=Qe+R\epsilon$

where the solid and fluid dilatations are given by

$e= \nabla\cdot u=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y},$ $\epsilon=\nabla\cdot U=\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}$ . (1.2)

The stress-strain relations are
$e_{xx}= \frac{\partial u}{\partial x},$ $e_{xy}=e_{yx}= \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x},$ $e_{yy}= \frac{\partial v}{\partial y}$ . (1.3)

The parameter $\mu$ , the complex frame shear modulus can be measured. The
other parameters $\lambda,$ $R$ and $Q$ occurring in the constitutive equations are
calculated from the measured or estimated values of the parameters given in
Table 4 using the formulas

$\lambda=K_{b}-\frac{2}{3}\mu+\frac{(K_{r}-K_{b})^{2}-2\beta K_{r}(K_{r}-K_{b})+\beta^{2}K_{r}^{2}}{D-K_{b}}$ (1.4)

$R= \frac{\beta^{2}K_{r}^{2}}{D-K_{b}}$

$Q= \frac{\beta K_{r}((1-\beta)K_{r}-K_{b})}{D-K_{b}}$ .

where
$D=K_{r}(1+\beta(K_{r}/K_{f}-1))$ . (1.5)

The bulk and shear moduli $K_{b}$ and $\mu$ are often given imaginary parts to ac-
count for frame inelasticity. Equations (1.1), (1.2) and (1.3) and an argument
based upon Lagrangian dynaImics are shown in [1] to lead to the following
equations of motion for the displacements $u,$ $U$ and dilatations $e,$ $\epsilon$

$\mu\nabla^{2}u+\nabla[(\lambda+\mu)e+Q\epsilon]=\frac{\partial^{2}}{\partial t^{2}}(\rho_{11}u+\rho_{12}U)+b\frac{\partial}{\partial t}(u-U)$ (1.6)

$\nabla[Qe+R\epsilon]=\frac{\partial^{2}}{\partial t^{2}}(\rho_{12}u+\rho_{22}U)-b\frac{\partial}{\partial t}(u-U)$ .
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Table 1: Parameters in the Biot model

Here $\rho_{11}$ and $\rho_{22}$ are density parameters for the solid and fluid, $\rho_{12}$ is a density
coupling parameter, and $b$ is a dissipation parameter. These are calculated
from the inputs of Table 4 using the formulas

$\rho_{11}=(1-\beta)\rho_{r}-\beta(\rho_{f}-m\beta)$

$\rho_{12}=\beta(\rho_{f}-m\beta)$

$\rho_{22}=m\beta^{2}$

$b= \frac{F(a\sqrt{\omega\rho;/\eta})\beta^{2}\eta}{k}$

where
$m= \frac{\alpha\rho_{f}}{\beta}$

and the multiplicative factor $F(\zeta)$ , which was introduced in [2] to correct
for the invalidity of the assumption of Poiseuine flow at high frequencies, is
given by

$F( \zeta)=\frac{1}{4}\frac{\zeta T(\zeta)}{1-2T(\zeta)/i\zeta}$ (1.7)

where $T$ is defined in terms of Kelvin functions

$T( \zeta)=\frac{ber’(\zeta)+ibei’(\zeta)}{ber(\zeta)+ibei(\zeta)}$ .
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Table 2: Estimated values of some Biot parameters at different porosities
taken $hom$ McKelvie and Palmer or Hosokawa and Otani.

The article of McKelvie and Palmer contains estimates of the Biot param-
eters of cancellous bone in the humt $os$ calcis (heel bone) for the normal
$(\beta=0.72)\bm{t}d$ severely osteoporotic $(\beta=0.95)$ casae while the article of
Hosokawa and Otani has estimates for bovine femoral bone for poroeities
of $\beta=0.75,0.81$ td 0.83. Table 2contains estimates of these six Biot
parameters for five bone specimeo. In obtainlng them we followed the esti-
mation procedures used by Williams, McKelvie and Palmer, and Hosohwa
and Otani. In generating test problems for aparameter recovery algorithm
an estimate of the range of values aparameter might take is needed. Here
$\ddagger s$ adiscussion of how the values of the Biot parameters in Table 2were
calculated and our estimate of the range of values for each parameter:

For purposes of comparison we also computed the mean and standard
deviation of all Phase 3answers whose objective function vdue was within
afactor of 2of the lowest value and used these to find a95% confidence
interval for the met. The result is shown in Table 3. Iotances of underesti-
mation, indicated by, were more common, however only the underestima-
tion of the error for the structure factor in Problem $83w$ was severe. On the
other hand the overestimati$oo$ of the error were less severe than with min-
$imum/maximum/midpointapp_{1}\cdot oach$ and on the whole better characterize
the actual erlors.

This $sugg\infty ted$ that perhaps the Biot model, which was the basis of our
numerical experiment, $wa\epsilon$ not sufficient to accurately model the acoustic
response of cancellous bone. It is well known that the strength of bone
depends heavily on its micro-structure [13]. Hence, it is imperative to develop
new ultrasound methods for assessing the micro-structure in nivo.
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rroDlem $p$ $\kappa$ . $a$ $\alpha$ $neK_{b}$ ne $\mu$

71w Error 0.12% 1.83% 5.41% 0.55 $0$ 0.71 $0$ 3.44%
Est. Err 0.22% 8.34% 9.49% 1.10% 11.27% 3.61%

75w Error 0.00% 21.20% 22.86% 0.34% 9.19% 6.34%
Est. Err 0.19% 30.41% 38.40% 1.19% 12.24% 15.15%

79w Error 0.14% 1.17% 4.10% 0.32% $7.6W_{0}$ 1.64%
Est. Err 0.12%* 36.14% 44.77% 0.99% $9.\mathfrak{X}\%$ $1.44\%^{*}$

83w Error 0.94% 23.30% 25.94% 2.78% 0.02% 0.02%
Est. Err $1.2W_{0}$ 17.71%* 17.87%* 0.87%* 0.99% 0.66%

87w Error 0.03% 2.57% 4.15% 0.33% 6.86% 7.10%
Est. Err 0.30% 32.76% 27.61% 0.90% 39.87% 13.19%

91w Error 0.56% 23.52% 17.41% 1.24% 21.12% 34.73%
E冶$t$ . Err 0.99% 17.14%* 16.44%* 0.86%* 26.49% 22.22%*

Average
Worst

Table 3: Phase 3 percentage errors when using mean values for Problems
$71w,$

$\ldots,$
$91w$ . Estimated errors are calculated from 95 percent confidence

intervals.

2 Two-scale Convergence
Using the method of homogenization, we described the microstructure of
the composite material, bone plus blood-marrow, in terms of a cell problem
where all ingredients exist in equilibrium [8]. The two-phases of material are
assumed to have the following constitutive equations

$\sigma^{\epsilon}=\theta^{\epsilon}\sigma^{f,\epsilon}+(1-\theta^{\epsilon})\sigma^{l,e}$ , (2.1)

The viscoelastic behavior of the trabeculae is modelled by a Kelvin-Voigt
constitutive equation

$\sigma_{1j}^{\iota,\epsilon}=(A^{\iota}+iwB^{\iota})_{1jkl}e(u^{e})_{kl}$ . (2.2)

Here $\omega$ is the wave frequency and $e(u^{\epsilon})$ is the strain tensor defined by

$e(u^{\epsilon}):j= \frac{1}{2}(\partial_{1}u_{j}^{e}+\partial_{j}u_{i}^{\epsilon})$ $i,j=1,2,3$ .

The constants $A_{1jkl}^{\iota}$ are the elasticity coefficients of the solid are assumed to
have the classical symmetry and positivity conditions. The constants $B_{jjkl}^{\iota}$
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describe viscosity of the solid, with the classical symmetry and positivity
conditions.

The marrow was modelled as a slightly compressible viscous barotropic
fluid with the constitutive equations

$\sigma_{\ovalbox{\tt\small REJECT}}^{e}=(A^{f}+iwB^{f})_{1jkl}e(u^{\epsilon})_{kl}$. (2.3)

In (2.3),
$A_{ijkl}^{f}=c^{2}\rho_{f}\delta_{ij}\delta_{kl}$ , $B_{1jkl}^{f}=2\eta\delta_{1k}\delta_{jl}+\xi\delta_{1j}\delta_{kl}$ . (2.4)

Here, $c$ is the sound speed, $\rho_{f}>0$ is a constant density of the marrow at rest,
$\eta,\xi$ are constant viscosities which are subject to the following conditions:

$\eta>0$ , $\frac{\xi}{\eta}>-\frac{2}{3}$ .

IFhrom (2.4) one can obtain more explicit constitutive equations

$\sigma^{f,\epsilon}$ $:=c^{2}\rho_{f}\nabla\cdot u^{\epsilon}I+2i\omega\eta e(u^{\epsilon})+iw\xi\nabla\cdot u^{\epsilon}I$ . (2.5)

The equations of motion for the trabeculae (solid part) are given by

$-\omega^{2}\rho_{*}u^{\epsilon}-$ div $(\sigma^{\iota,\epsilon})=F\rho_{l}$ in $\Omega_{l}^{\epsilon}$ , (2.6)

Here the trabeculae stress is defined in (2.2), and $p_{s}>0$ is the constant
density of the trabeculae at rest.

In the marrow part,

$-\omega^{2}\rho_{f}u^{\epsilon}-div(\sigma^{f,e})=F\rho_{f}$ in $\Omega_{f}^{\epsilon}$ , (2.7)

The transition conditions between fluid and solid parts are given by the
continuity of displacement

$[u^{\epsilon}]=0$ on $\Gamma_{\epsilon}$ , (2.8)

where $[\cdot]$ indicates the jump across the boundary of $\Gamma_{\epsilon}=\partial\Omega_{*}^{\epsilon}\cap\partial\Omega_{f}^{\epsilon}$ , and the
continuity of the traction

$\sigma^{\iota,\epsilon}\cdot\nu=\sigma^{f,\epsilon}\cdot\nu$ on $\Gamma_{e}$ . (2.9)

At the exterior boundary we imposed zero Dirichlet condition:

$u^{\epsilon}=0$ on $\partial\Omega$ . (2.10)
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This led to a weak formulation of the slightly compressible problem as
$-w^{2} \int_{\Omega}\rho^{\epsilon}u^{\epsilon}(x)\overline{\phi}(x)+\int_{\Omega}\theta^{\epsilon}(A^{f}+iwB^{f})e(u^{\epsilon})$ : $e(\overline{\phi})+$ (2.11)

$\int_{\Omega}(1-\theta^{\epsilon})(A^{l}+iwB^{\iota})e(u^{\epsilon}):e(\overline{\phi})=\int_{\Omega}F\rho^{e}\overline{\phi},$
$\forall\phi\in H_{0}^{1}(\Omega)^{n}$ ,

where $-$ denotes the complex conjugate. In [8] we constructed the cell problem
by assuming that $u^{1}$ is representable in the form

$u^{1}(x, y)=N^{m}(y)e_{x}(u^{0})_{n}(x)+M^{n}(y,w)e_{x}(u^{0})_{m}(x)$ , (2.12)
where the summation convention is assumed. Here the $u^{1}(x, y)$ are vectors
and, therefore, the matrices $N^{m}$ and the $M^{pq}$ have vector components, i.e.
the right hand side is a linear combination of these vectors with scalar coef-
ficients $(e_{x}(u^{0}))_{pq}$ .

The strong form of the variation formulation requires that we find $N^{N}$

such that
div $(K_{N}(\mathcal{E}^{m}+e_{y}(N^{m})))=0$ in $\mathcal{Y}$ , (2.13)

$B^{f}(\mathcal{E}^{pq}+e_{y}(N^{m}))\nu=A^{t}(\mathcal{E}^{pq}+e_{y}(N^{pq}))\nu$, on $\partial \mathcal{Y}_{f}\cap\partial \mathcal{Y}_{\epsilon}$ ,

$[N^{m}]=0$ , on $\partial \mathcal{Y}_{f}\cap\partial \mathcal{Y}_{\epsilon}$ .
Here

$K_{N}=i\omega\theta B^{f}+(1-\theta)A^{\iota}$ . (2.14)
Similarly, the strong form of the variation equation for $M^{m}$ is to find a
solution of

div $(K_{M}(\mathcal{E}^{N}+e_{y}(M^{m})))$ (2.15)
$=$ -div $(K_{M}e_{y}(N^{pq}))$ in $\mathcal{Y}$ ,

( $A^{f}$ 十劫 $B^{f}$ ) $(\mathcal{E}^{m}+e_{y}(M^{m})+e_{y}(N^{m}))\nu$

$=(A^{\iota}+i\omega B^{\iota})(\mathcal{E}^{m}+e_{\nu}(M^{m})+e_{y}(N^{m}))\nu$

On $\partial \mathcal{Y}_{f}\cap\partial \mathcal{Y}_{l}$ ,

$[M^{m}]=0$ , on $\partial \mathcal{Y}_{f}\cap\partial \mathcal{Y}_{\iota}$,
where

$K_{M}=\theta(A^{f}+i\omega B^{f})+(1-\theta)(A^{\epsilon}+iwB^{\iota})$ . (2.16)
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3 Isotropic Case
For isotropic trabeculae we may write out explicitly the equations for the
vectors components of the $N^{m}$

$N^{m}=[N_{1}^{pq}, N_{2}^{m}]$ .
They are seen to $SatiS\mathfrak{h}^{r}$ the system of partial differential equations $[8, 9]$

$( \lambda+2\mu)\frac{\partial^{2}N_{k}^{pq}}{\partial y_{k}\partial y_{l}}+2\mu\triangle N_{l}^{pq}=0$ in 蕩

$( \eta+2\xi)\frac{\partial^{2}N_{k}^{W}}{\partial y_{k}\partial y_{l}}+2\eta\triangle N_{l}^{pq}=0$ in $\mathcal{Y}_{f}$ . (3.1)

We may express these as matrix equations

$(\lambda+2\mu)HN^{m}+2\mu\triangle N^{m}=0$ in $\mathcal{Y}_{e}$ , (3.2)
and

$(\eta+2\xi)HN^{n}+2\eta\triangle N^{m}=0$ in $\mathcal{Y}_{f}$ . (3.3)

where $H$ is the Hessian operator, i.e.

$H$ $:=$ ( $\frac{\neg_{\nu_{f}}\partial\partial\partial^{2}}{\partial y_{1}\partial y_{2}}$

$\frac{\partial^{2}}{\partial y\partial y2,\frac{\partial^{2}1}{\partial y}2}$ ).
To determine the matrix solutions $\Lambda f^{m}$ , we introduce $Q^{m}=A\cdot I^{n}+N^{m}$ , solve
the problems for $Q^{m}$ and then obtain the solutions for $\Lambda\cdot I^{m}$ . We obtain the
following equation holding in $\mathcal{Y}_{J}[9]$

$i.\omega\eta\triangle Q^{m}+(c^{2}\rho_{f}+i\omega\xi+i\omega\eta)HQ^{m}=0$ in $\mathcal{Y}_{f}$ (3.4)
We obtain the weak formulation of the effective equation

$\int_{\ddagger l}\rho F\cdot\overline{\varphi}=-\omega^{2}\int_{\Omega}\rho u^{0}\cdot\overline{\varphi}+\int_{\Omega}[A^{*}+i\omega B^{*}+C^{\star}(w)]e(u^{0}):e(\overline{\varphi})$. (35)

This leads to
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THEOREM 1 Let $u^{e}$ be the unique solution in $H_{0}^{1}(\Omega)$ of
$\mathcal{L}_{\epsilon}u^{\epsilon}=Fp^{\epsilon}$ in $\Omega$

(3.6)
$u^{\epsilon}=0$ on $\partial\Omega$

where $\mathcal{L}_{e}$ denotes the second order partial differentid operator

$\mathcal{L}_{\epsilon}u^{\epsilon}=$ –div $(((1-r)\sigma^{\iota,e}+r\sigma^{f,\epsilon})e(u^{\epsilon}))-w^{2}p^{\epsilon}u^{\epsilon}$ ,

$\theta^{e}\equiv\theta(\frac{x}{\epsilon})$ is the $cha\mathfrak{w}cte\dot{n}stic$ function of the mamrow part $rr_{f}$ and

$p^{e}=\theta^{\epsilon}\rho_{f}+\rho_{l}(1-\theta^{\epsilon})$ .

Then, there exist a subsequence $\{u^{\epsilon}\}$ , not relabeled, such that $\{u^{\epsilon}\}$ converges
weakly in $H_{0}^{1}(\Omega)$ to a limit $u^{0}\in H_{0}^{1}(\Omega)$ , and $f$ converges $wed\cdot-\star$ in $L^{\infty}(\Omega)$

to $p$ . The pair $u^{0},p$ is a weak solution of the homogenized equation

$\mathcal{L}u=F\rho$ in $\Omega$

(3.7)
$u=0$ on $\partial\Omega$

where $\mathcal{L}$ denotes the homogenized operator such that

$\mathcal{L}u=$ –div $x\{A^{*}e(u^{0})+iwB^{\star}e(u^{0})+C^{\star}(\omega)e(u^{0})\}-w^{2}$pu

The effective constant tensors $A^{*},$ $B^{*}$ are defined, in (??), (??), respec-
tively. The effective ftequency dependent tensor $C^{*}(\omega)$ is defined in $a?$).
The vectors $N^{m},$ $M^{m}$ that appear in $\sigma?$)$-(??)$ are solutions of the auciliary
cell problems $r$?), (??), respectively.

4 Numerical Experiments

Using the physical values given in the table and the computed value for $\lambda$ we
were able to compute the coefficients in the effective equations from the $cen$

problem solutions $N_{ij}$ qnd $A^{f}I_{1j}i.j=1.2[9]$ . We show two of these coefficients
below. It is important to realize that these coefficients are in themselves only
used to compute the effective constant coefficients appearing in the effective
equations (3.7).
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Table 4: Parameters used in our model

The system of equations (3.7) for the parameters chosen becomes

$3.86^{p_{u}} \varpi+0.0867\frac{\partial^{2}u}{\partial x\partial y}+0.1018_{W^{v}}^{\theta^{2}}+2.9109\frac{\partial^{2}v}{\partial x\partial y}+0.9468_{W^{u}}^{\theta}+0.00007_{x}^{a_{v}}\frac{\partial}{\partial}\pi-u$

$0.08678_{\neg}^{p_{u}}\ +2$,8366 $\frac{\partial^{2}u}{\partial x\partial y}+3.7888_{W^{v}}^{\theta}+0.08651\frac{\partial^{2}v}{\partial x\partial y}+0.00005\frac{\theta}{\partial y}vu+0.9468a^{v}-v$

By computing the characteristic equation of the symbol of this pseudodiffer-
ential operator the roots are seen to be

$\frac{\xi}{\eta}=0.0177\pm 0.951i,$ $-0.0401\pm 1.040i$ .

and hence the system is elliptic, as expected.

5 The Slightly Compressible Monophasic Poly-
mer

Work is in progress [11] on a cancellous bone model where the interstitial
fluid is taken to be a non-Newtonian fluid. As before we assume an elastic
matrix

$p_{t} \frac{\partial^{2}u^{\epsilon}}{\partial t^{2}}-div(Ae(u^{\epsilon}))=F\rho_{\epsilon}$; (5.1)
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whereas, in the fluid part, $\Omega_{l}^{\epsilon}x$ ] $0,$ $T[.$ , we have a Stokes system describing the
motion

$p_{f^{\frac{\partial^{2}u^{\epsilon}}{\partial t^{2}}-}}$ div $(\sigma^{\oint,\epsilon})=F\rho_{f}$ (5.2)

in $rr_{f}x$ ] $0,$ $T[.$ ; whereas,

$\sigma^{f,\epsilon}$

$:=-p^{e}I+2\mu\eta_{p}(e[v^{\epsilon}])$ (5.3)

div $v=0$, in $\Omega_{f}^{e}x$ ] $0,T$ [, (5.4)

where $v=\dot{u}$ is the fluid velocity and $p^{\epsilon}$ is the fluid pressure. For the
slightly compressible case which occurs in acoustics we replace the pressure
by $c^{2}\phi ivu$ . A quantitative acoustic model must take into account that can-
cellous bone is mostly blood and marrow. Thi8 blood marrow mixture is
a polymer, which suggests that we model its viscosity as a non Newtonian
(shear dependent) fluid. There are two widely used shear-dependent viscosity
laws in practice. The first is the power law, or Ostwald-de Waele model

$\eta_{p}(e(\dot{u}))=\eta_{p}(e(\dot{u}))$ $:=\mu|e(\dot{u})|^{r-2}$ , $1<r<2,\mu>0$ , (5.5)

and the Careau law, which takes into account that polymers show a finite
nonzero constant Newtonian viscosity at very low shear rates [?],

$\eta_{p}(e(\dot{u}))=\eta_{p}(e(\dot{u}))$ $:=(m-\eta_{\infty})(1+\lambda|e(\dot{u})|^{2})^{\xi-1}+\eta_{\infty}$ (5.6)
$1<r<2$ , $m>\eta_{\infty}\geq 0$ , $\lambda>0$ .

We shall assume that $\eta_{p}$ obeys one of these lawes with exponent $r$ in what
follows.

The fluid stress is then given by

$\sigma^{f,\epsilon}:=[-c^{2}\rho divu^{\epsilon}I+2\mu\eta_{p}(e[v])]e(\dot{u})$ .

The transition conditions between fluid and solid parts are given by the
continuity of displacement

$[u^{e}]=0$ on $\Gamma_{\epsilon}x$ ] $0,T$[, (5.7)

where $[\cdot]$ indicates the jump across the boundary, and the continuity of the
contact force

$\sigma^{\iota,e}\cdot\nu=\sigma^{f,e}\cdot\nu$ on $\Gamma x$ ] $0,T$ [. (5.8)
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At the exterior boundary we assume periodicity, namely that the

$\{u^{\epsilon},p^{e}\}$ are $L$ -periodic. (5.9)

To simplify our discussion we assume that there is no flow or deformation at
$t=0$, that is

$u^{\epsilon}(x,0)$ $=0$,
$\dot{u}^{e}(x, 0)$ $=$ $0$ in $\Omega$ . (5.10)

We may reformulate the system as a vaniational problem, namely find $u^{\epsilon}\in$

$C^{1}([0, T];L_{p\epsilon r}^{2}(\Omega)^{n})\cap C([0,T];H_{per}^{1}(\Omega)^{n})$ such that

$\int_{il}f\dot{v}^{\epsilon}(t)\varphi+\int_{iY}2\mu\eta_{p}(e(v^{\epsilon}(t)))e(v):e(\varphi)$ (5.11)

$+ \int_{\iota\iota:}AD(u^{\epsilon}(t)):e(\varphi)-\int_{f1_{\dot{f}}}c^{2}p$
div $u^{\epsilon}$ div $\varphi=\int_{\Omega}F\rho_{\epsilon}\varphi$

,

$\forall\varphi\in H_{per}^{1}(\Omega)^{n}$ , in $\theta(]0,T[)$

where
$u^{\epsilon}(O)=0$ , and $v^{\epsilon}(O)=0$ (5.12)

div $u=0$ in $\sigma r_{f}x$ ] $0,T|$ , (5.13)
$\rho_{\epsilon}=\chi_{\Omega}p_{f}+\chi_{\Omega}\rho_{l}$ , (5.14)

and $\chi_{A}$ is the characteristic function of $A$ . It is trivial to establish [11] the fol-
lowing a priori estimates starting with equations using the $C^{1}([0, T];H_{\mu r}^{1}(\Omega)^{n})$

short-time regularity and setting $\varphi=\infty\partial t$ as the test function in (5.11).

$\Vert\dot{u}^{\epsilon}\Vert_{L^{\alpha}]0,T[;L^{2}(\Omega)^{\hslash})}\leq C\Vert F\Vert_{L^{2}(]0,T[x\Omega)^{n}}=C(F)$ , (5.15)

$\Vert e(u^{\epsilon})\Vert_{L\infty(]0,T[jL^{l}(:)^{n})(\sigma\nu.)^{n^{2}})}i1\leq C(F)$, (5.16)

$\Vert e(\dot{u}^{\epsilon})\Vert_{L^{r}00,\tau[;L^{r}((\Omega j)^{n^{2}})}\leq C(F)$ . (5.17)

On the other hand by writing $e( u^{\epsilon}(t))=\int_{0}^{t}e(_{\partial\eta^{-}}^{g}(\eta))d\eta$ with H\"older’s in-

equality we have

$\Vert e(u^{\epsilon}(t))\Vert_{L^{r}(\Omega_{\dot{f}})^{\eta}}\leq t^{1/q}||e(\frac{\partial u^{e}}{\partial\eta})\Vert_{L^{r}(]0,T1^{x\Omega}j)^{n^{l}}}$
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from which
$\Vert e(u^{\epsilon})||_{\iota\infty(0,T;L^{r}(\Omega)^{2})}\leq\overline{C}(F)$ . (5.18)

Moreover, if $F\in H^{k}(0, T;L^{2}(\Omega)^{\mathfrak{n}})$ then

$\Vert\frac{\partial^{k+1}u^{\epsilon}}{\partial t^{k+1}}\Vert_{L(0,T_{j}L(\Omega)^{n})}\infty’\leq C||F\Vert_{H^{k}\langle]0,T[x\Omega)^{n}}=\tilde{C}(F)$ (5.19)

Likewise
$\Vert e(\frac{\partial^{k}u^{\epsilon}}{\partial t^{k}})\Vert_{\iota\infty(0,T;L^{2}(\Omega)^{\hslash})}\leq\tilde{C}(F)$ . (5.20)

We show that uniqueness and existence follow by using the results of [3], [4]
and following the procedure pf [10].
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