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1 Introduction

We shall give a very natural and numerical real inversion formula of the
Laplace transform

€h®) =16 = [ emFeE, p>0 (L)
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for functions F of some natural function space. This integral transform is,
of course, very fundamental in mathematical science. The inversion of the
Laplace transform is, in general, given by a complex form, however, we are
interested in and are requested to obtain its real inversion in many practical
problems. However, the real inversion will be very involved and one might
think that its real inversion will be essentially involved, because we must
catch "analyticity” from the real or discrete data. Note that the image
functions of the Laplace transform are analytic on some half complex plane.
For complexity of the real inversion formula of the Laplace transform, we
recall, for example, the following formulas:

im E° ()™ o0 () = Py

n—soco0 m! t

(Post [15] and Widder [25,26]), and

e (1 £2) [ (3)) =0

([25,26]). Furthermore, see [1-7,10,11,17,18,21] and the recent related articles
[10] and 11]. See also the great references [27,28]. The problem may be
related to analytic extension problems, see [10] and [11].

In this paper, we shall give new type and very natural real inversion
formulas from the viewpoints of best approximations, generalized inverses
and the Tikhonov regularization by combining these fundamental ideas and
methods by means of the theory of reproducing kernels. However, in this
paper we shall propose a new method for the real inversion formulas of the
Laplace transform based essentially on a Fredholm integral equation of the
second kind. We may think that these real inversion formulas are practical
and natural. We can give good error estimates in our inversion formulas.
Furthermore, we shall illustrate examples, by using computers.

2 Background General Theorems

Let E be an arbitrary set, and let Hx be a reproducing kernel Hilbert space
(RKHS) admitting the reproducing kernel K(p,q) on E. For any Hilbert
space H we consider a bounded linear operator L from Hg into H. We are
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generally interested in the best approximate problem

(nf ILf — dlls (2.2)

for a vector d in ‘H. However, when there exits, this extremal problem is
involved in the both senses of the existence of the extremal functions in (2.2)
and their representations. See [16] for the details. So, we shall consider its
Tikhonov regularization.

We set, for any fixed positive oo > 0

1
TL+al:P)

where L* denotes the adjoint operator of L. Then, by introducing the inner
product

Ki(pa)=

(f’ g)HK(L;a) = a(fa g)HK + (Lf1 Lg)?-ta (23)

we shall construct the Hilbert space Hx(L;a) comprising functions of Hg.
This space, of course, admits a reproducing kernel. Furthermore, we obtain,
directly

Proposition 2.1 ([18]) The estremal function fa.(p) in the Tikhonov reg-
ularization

fiex;,fx{anfn%,,( +lld - LB} (24)

erists uniquely and it is represented in terms of the kernel Ki(p,q;c) as
follows:

fau(p) = (d, LKL(-,p; @)y (2.5)

where the kernel Ki(p,q; o) is the reproducing kernel for the Hilbert space
Hy(L; @) and it is determined as the unigque solution K (p,g; ) of the equa-
tion:

. 1 -
K(p,g;a) + —(LK,, LKp)u = EK (p, q) - (2.6)
with _ _
K,=K(,q;a) € Hx for q€E, (2.7)

and
K,=K(-,p) € Hx for peE.
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In (2.5), when d contains errors or noises, we need its error estimate. For
this, we can obtain the general result:

Proposition 2.2 ([14]). In (2.5), we have the estimate

faa(®)] < —\}—afk(p—‘,mndnﬂ.

For the convergence rate or the results for noisy data, see, ([9]).

3 A Natural Situation for Real Inversion For-
mulas |

In order to apply the general theory in Section 2 to the real inversion formula
of the Lapace transform, we shall recall the "natural situation” based on
[17,13].

We shall introduce the simple reproducing kernel Hilbert space (RKHS)
Hy comprised of absolutely continuous functions F' on the positive real line

R™* with finite norms
00 1 1/2
{ / ]F’(t)lz—etdt}
0 t

and satisfying F(0) = 0. This Hilbert space admits the reproducing kernel
K(t,t) |

min(t,t')
K(t,¢) = / ge~Ede (3.8)
0
(see [9], pages 55-56). Then we see that

| 1@t < 31F I, (39)

that is, the linear operator on Hg

(LF)(p)p

into Lo(R*,dp) = Lo(R™") is bounded ([17]). For the reproducing kernel
Hilbert spaces Hy satisfying (3.9), we can find some general spaces ([17]).
Therefore, from the general theory in Section 2, we obtain
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Proposition 3.1 ([17]). For any g € Lo(R*) and for any a > 0, the best
approzimation Fy , in the sense

FeHg

nf {a [TIFOPI+1EDGD - ol e |

* %* 1 *
=a [ RO+ ICR) O - olhwn  (310)

erists uniquely and we obtain the representation

Fo() = / " 9®) (CKa(,1)) (€)6de. (3.12)

Here, K,(-,t) is determined by the functional equation

Ka(t,t) = 2K(0,8) — =(CKat) 05, LK) @) rarry (3:12)
for |
Ka,t’ = Ka('at’)
and |
K; = K('7 t)

4 New Algorithm

We shall look for the approximate inversion Fy () by using (3.11). For this
purpose, we take the Laplace transform of (3.12) in ¢ and change the variables

tand ¢ asin
(LKq(51))(€)
= ~(LK(E)(E) - > (LKar) Op, (CEE)P) @) ramn. (413)
Note that

—tet—et+1  for t<¢
K, t) = { ~te? —e ¥ +1 for t>t¢.
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(LK (1)) (p)

. -1 1
= St s T T s R (414)
= —qt’ Y r__ 1
fo O (4.15)

Therefore, by setting

(EKa('7 t))(&)g = Ha(ga t)7

which is needed in (3.11), we obtain the Fredholm integral equation of the
second type

oHal6,)+ [ Haln, )z

e et 1 1
T+l (t+£+1)+(£+1)2' (416

5 Numerical Experiments
We shall give a numerical experiment for the typical example
—tet—et4+1 for 0<t<1
Fo(t) =
1—2e! for 1<t,

whose Laplace transform is

(LFo)(p) = [1— (p+2)e @], (5.17)

p(p+1)2
We set

9(§) = (LFo)()¢
in (3.11) with (CK,(-,t))(€)€ = Ha(§,t), then
Frg(t) ~ Fo(t)

for a small o ?
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For fixed t, we calculate the integral (4.16) over [0, 50] with span 0.01 by
the trapezoidal rule. Here we solve the linear simultaneous linear equations
of 5000 by using Matlab. For t, we take the values over [0, 5] with span 0.01.
By (3.11), we caluculate the inversion by the trapeziodal rule over [0, 50] with
the span 0.01.

0.25} ) //——~

Figure 1: For Fy(t).and for o = 107%,1072,104,1078,10710.
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Figure 2: For F(t) = x(t,[1/2,3/2]), the characteristic function and for
o =10"1,107%,10"%,107"%,107"°. (LF)(p) = 3 (exp(—3p) — exp(—3p)).

Figure 3: For U(t,[l,00]), the step function and for a =
1071,1074,1078,1012,1078, (LU)(p) = }l,e"’.
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Figure 4: For F(t) = 1/2t? exp(—2t) and for a = 1071,1074,1078. (LF)(p) =
(P':2)§ '

Figure 5: For H,(£,t) and for a = 1074,
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Figure 6: For H,(¢,t) and for a = 1078,
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