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Abstract

In this paper, we propose a fundamental solution method for the problems of two-
dimensional Stokes flow past a one-dimensional periodic array of cylinders. In the
presented method, the solution is approximated by a superposition of the periodic
Stokeslets, the periodic fundamental $8olutions$ of the Stokes flow equation. The
numerical example included in this paper show the effectiveness of the presented
method.

1 Introduction

Flow problems with spatial periodicity are attracting subjects from the
viewpoint of theoretical fluid mechanics and important in applications to
science and engineering. The aim of this paper is to present a fundamental
solution method for the problems of two-dimensional Stokes flows past a
one-dimensional periodic array of cylinders as shown in Figure 1.

There are many works on spatially periodic flows a.s follows. As a
work on periodic potential flows, Ogata et al. presented a charge sim-
ulation method (fundamental solution method) for numerical conformal
mappings of two-dimensional Euclidean domains, which is identified with
one-dimensional complex domain, with one-dimensional periodic periodic-
ity [19] and applied their method to the analysis of two-dimensional poten-
tial flow past a one-dimensional array of cylinders. As a work on periodic
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Oseen flow, T$\cdot$aIIldda and Fujikawa studied the problem of steady two-
$cli_{Il1}ellsioI\iota a1$ Oseen flow past an infinite row of circular cylinders [22]. As
works $011$ periodic Stokes flow, the problems with which we are concerned in
this paper, Hasimoto prcsented the periodic fundamental solution method
of the two of thrce-dimcnsional Stokes flow equation and applied it to
the analysis of Stokes flow past a periodic array of spheres [7], which was
improved by Sangani and Acrivos [20]. Ishii presented the fundamental
solution of three-dimensional Stokes fiow with planar periodicity and ap-
plied it to the study of three-dimensional Stokes flow problem with planar
arrays of small spheres [8]. In addition, as works on application of periodic
Stokes flow studies, Liron presented studies of Stokes flow due to an infinit
array of Stokeslets, which are applied to the analysis of ciliary transport
[12. 13, 14].

The fundamental solution method is a numerical solver of partial dif-
ferential equation problems and is widely used in science and engineering,
especially. in potential problems, where the method is usually called the
“charge simulation method” $[15, 21]$ , for the reasons that it is easy to pro-
gram, (ii) its computational cost is low and (iii) it achieves high accuracy
under some conditions. In this method, the solution is approximated by
a linear combination of the fundamental solutions of the partial differen-
tiation operator with singularities outside the problem domain. In terms
of physics, the potential which is the solution of a potential problem is
approximated by a superposition of the Coulomb potentials due to the
charges positioned outside the problem domain. Katsurada and Okamoto
showed the solvability and the high accuracy of the fundamental solution
method from theoretical viewpoints [9, 10, 11]. As works on applications
of the fundamental solution method, Amano et al. presented numerical
conformal mappings by the fundamental solution method [1, 2, 3]. Related
to this paper, Chuwang and Wu presented a fundamental solution method
for Stokes flow problems, whose approximation is based on the Stokeslet
[4].

It is, however, difficult to apply the fundamental solution method by
Cl$mwaIlg$ and Wu to our problem of periodic Stokes flow because the ap-
proximation of Chuwang and Wu’s method may not be able to approxi-
mate accurately the solution of our periodic problem which may include
periodic functions. In the method presented in this paper, we modify
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tlze Stokeslet so that it illustrates the flow due to an infinite periodic ar-
ray of concentrated forces of equal magnitude and construct an approx-
imate solution by a linear combination of the above periodic Stokeslet.
It is expected that this method inherits the advantages of the ordinary
fundamental solution method and can approximate the solution including
periodic functions with high accuracy. We here remark that, as work re-
lated to our method, Ogata et al. presented fundamental solution methods
for two-dimensional potential problems with one-dimensional periodicity
[19], two-dimensional Stokes flow problems with a two-dimensional peri-
odic array of cylinders [18], three-dimensional Stokes flow problems with
a two or three-dimensional periodic array of obstacles $[16, 17]$ . Greengard
and Kropinski presented an integral equation method for two-dimensional
Stokes fl$ow$ problemsin double-periodic domains, which is based on elliptic
function theory and incorporated into the fast multipole method [6]. and
Zick and Homsy also presented an integral equation method for Stokes flow
problems with a periodic array of spheres, which is based on the periodic
fundamental solution of the Stokes flow equation [23].

The contents of this paper are as follows. In Section 2, we formulate
mathematically our problem and prepare some notations. In Section 3, we
present a fundamental solution method for our problems. In Section 4, we
show a typical numerical example of our method. In Section 5, we givc
concluding remarks.

2 Formulation of Problems

We first formulate our problem mathematically and give some notations.
Throughout this paper, we denote by $\mathbb{Z}$ the set of all the integers and by $\mathbb{Z}$

the set of all the complex numbers. We denote the Cartesian coordinates
of the two-dimensional Euclidean plane $\mathbb{R}^{2}$ by $(x_{1}, \prime x_{2})$ and identify a point
$(x_{1},x_{2})\in \mathbb{R}^{2}$ with the complex number $z=x_{1}+ix_{2}\in \mathbb{C}$ .

We here consider thc problem of a stationary two-dimensional Stokes
flow past a one-dimensional periodic array of cylinders as shown in Figure
1). In the figure, $D_{n},$ $n\in \mathbb{Z}$ are the cylinders of the same shape which
are arranged in a one-periodic array of period $ia(a>0)$ . In terms of
mathematics, $D_{n_{J}}.n\in \mathbb{Z}$ are simply-connected domain in the complex
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plaIie $\mathbb{C}$ alid rnutually related by tlie equality

$D_{n}=D_{0}+ina=\{z+ina|z\in D_{0}\}$ , $\forall n\in \mathbb{Z}$ (1)

$\overline{\swarrow}^{c_{:}}$ is the region of the Stokes flow past an array of cylinders $D_{r\iota}$

$\ovalbox{\tt\small REJECT}=\{z\in \mathbb{C}||{\rm Re} z|<d, z\not\in\overline{D_{n}}, \forall n\in \mathbb{Z}\}$ (2)

with a positive constant $d$ , where the flow is assumed to be uniform suf-
ficiently far from the obstacles (the cylinders $D_{n}$ ) and we will pose below
the boundary condition that the flow is uniform at ${\rm Re} z=\pm d$ .

Figure 1: Two-dimensional Stokes flow past a one-dimensional periodic array of cylinders.

3 Fundamental Solution Method

Our problem of the periodic Stokes flow is given in terms of mathematics by
the boundary value problem of the Stokes flow equation and the continuity

122



equatioIi

Stokes flow equation $\mu\Delta v-\nabla p=0$ in 9 (3)
continuity equation $\nabla\cdot v=0$ in 9 (4)

boundary conditions $v=0$ on $\partial D_{n}(n\in \mathbb{Z})$ (5)
$v=(U,0)$ on $lx_{1}=\pm d$ . (6)

From (4), there exists a stream function $\Psi(x_{1}, x_{2})$ such that it gives the
velocity $v=(v_{1}, v_{2})$ by

$v_{1}= \frac{\partial\Psi}{\partial x_{2}}$, $v_{2}=- \frac{\partial\Psi}{\partial x_{1}}$ . (7)

From (3) and (7), we can easily find that

$\Delta^{2}Psi=0$ , (8)

that is, the stream function $\Psi$ is a biharmonic function. Therefore, the
stream function can be written as

$\Psi(z)={\rm Im}\{\overline{\sim_{\wedge\prime}\sim}\varphi(z)+\int^{z}\psi(z’)dz’\}$ $(z=x_{1}+ix_{2})$ (9)

with analytic functions $\varphi(z),$ $\psi(z)$ , which is called “Goursat’s representa-
$tion[5]$ . Based on (9), the complex velocity is written as

$\dagger l^{r}\equiv v_{1}-iv_{2}=2i\frac{\partial\tilde{\Psi}}{\partial}=\overline{z}\varphi’(z)-\overline{\varphi}(\overline{z})+\psi(z)$ . (10)

As a fundamental solution of the Stokes flow equation (3) and the conti-
nuity equation (4), we know the “Stokeslet”, the flow such that the analytic
function $\varphi(z)_{:}\psi(z)$ in (9) is given by

$\varphi(z)=-Q_{0}\log(z-\zeta_{0})$ , (11)

$\psi(\approx)=\overline{Q_{0}}(z-\zeta_{0})\log(z-\zeta_{0})-Q_{0^{\frac{z-2{\rm Re}\zeta_{0}}{z-(0}}}$ (12)

where $Q_{()}$ is a complex constant and $\zeta_{0}$ is a fixed point in the complex
plane, and the complex velocity is given by

$W=2\overline{Q_{0}}\log|z-\zeta_{0}|-2Q_{0^{\frac{{\rm Re}(z-\zeta_{0})}{z-\zeta_{0}}}}$. (13)
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Ill terms of physics, the Stokeslet is a Stokes flow due to a concentrated
$force-8\pi\mu Q_{0}=-8\pi\mu({\rm Re} Q_{0}, {\rm Im} Q_{0})$ on the point $\zeta_{0}$ in the complex plane.
Therefore, in the fundamental solution method for ordinary Stokes flow
problem in a domain 9, the analytic function $\varphi(z),$ $\psi(z)$ in (9) are ap-
proximated by

$\varphi(z)\simeq-\sum_{j=1}^{N}Q_{j}\log(z-\zeta_{j})$ , (14)

$\psi(z)\simeq\sum_{j=1}^{N}\overline{Q_{j}}(z-\zeta_{j})\{\log(z-\zeta_{j})-1\}$ , (15)

and, then, the complex velocity is approximated by

$W \simeq 2\sum_{j=1}^{N}\overline{Q_{j}}1og|z-\zeta_{j}|-2\sum_{j=1}^{N}Q_{j^{\frac{{\rm Re}(z-\zeta_{j})}{z-\zeta_{j}}}}$ . (16)

In (14-16), $\zeta_{j},$ $j=1,2,$ $\ldots,$
$N$ are the singularity points given in the exte-

rior of I and $Q_{1,}.Q_{2},$ $\ldots,Q_{N}$ are the complex coefficients to be determined
so that the flow satisfies the boundary conditions in a sufficient accuracy.
In terms of physics, the above approximation (14-16) illustrates the su-
perposition of the Stokes flows due to the concentrated $forces-8\pi\mu Q_{j}=$

$-8\pi\mu({\rm Re} Q_{j}, {\rm Im} Q_{j}),$ $j=1,2,$ $\ldots$ , $N$ on the point $\zeta_{j},$ $j=1,2,$ $\ldots$ , $N$ .
It is, however, difficult to approximate the solution of our problem by

the ordinary fundamental solution method (14-16) because these approxi-
mation are not periodic functions. Therefore, we have to modify the above
fundamental solution method so that it can approximate the periodic so-
lutions of our problems. A primitive IIlodification may be arranging the
Stokeslets in a periodic array, that is, approximate the analytic functions
$\varphi(z),$ $\psi(z)$ by

$\varphi(z)\simeq-\sum_{n\in \mathbb{Z}}\sum_{j=1}^{N}Q_{j}\log(z-(\zeta_{j}+ina))$ , (17)

$y’!(z) \simeq\sum_{n\in \mathbb{Z}}1\sum_{j=1}^{v}\{\overline{Q_{j}}\log(z-(\zeta_{j}+ina))-Q_{j}\frac{z-2{\rm Re}(\zeta_{j}+ina)}{z-(\zeta_{j}+ina)}\}$ , (18)
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but the infinite sums in the above approximation are generally divergent as
tlrey are. Then, we modify the infinite sums so that they are convergent,
IldIIlely,

$\sum_{\prime,n\in\wedge}\sum_{jn=1}^{N}Q_{j}\log(z-(\zeta_{j}+ina))arrow\sum_{j=1}^{N}Q_{j}\{\log(z-\zeta_{j})+\sum_{n\neq 0}[\log(1-\frac{\prime\sim\prime-\zeta_{j}}{ina})+\frac{z-\zeta_{j}}{ina}]$

$= \sum_{j=1}^{N}Q_{j}$ log sinh $[ \frac{\pi}{a}(z-\zeta_{j})]$ , (19)

$\sum_{n\in Z}\sum_{j=1}^{N}Q_{j^{\frac{z-2{\rm Re}(\zeta_{j}+ina)}{\sim\prime-(\zeta_{j}+ina)}=}}.\sum_{j=1}^{N}Q_{j}(z-2{\rm Re}\zeta_{j})\sum_{n\in \mathbb{Z}}(\frac{1}{z-\zeta_{j}-ina}+\frac{1}{ina})$

$arrow\sum_{j=1}^{N}Q_{j}(z-2{\rm Re}\zeta_{j})\{\frac{1}{z}+\sum_{n\neq 0}(\frac{1}{\approx-\zeta_{j}-ina}+\frac{1}{ina})\}$

$= \frac{\pi}{a}\sum_{j=1}^{N}Q_{j}(z-2{\rm Re}$ (;) coth $[ \frac{\pi}{a}(z-\zeta_{j})]$ ,

(20)
and we have

$\varphi(z)\simeq\varphi_{N}(z)\equiv-\sum_{j=1}^{N}Q_{j}$ log sinh $[ \frac{\pi}{a}(z-\zeta_{j})]$ , (21)

$\psi(z)\simeq\psi_{N}(z)\equiv\sum_{j=1}^{N}\overline{Q_{j}}$ log sinh $[ \frac{\pi}{a}(z-\zeta_{j})]-\frac{\pi}{a}\sum_{j=1}^{N}Q_{j}(z-2{\rm Re}\zeta_{j})$ coth $[ \frac{\pi}{a}(z-\zeta_{j})]$ .
(22)

These give an approximate complex velocity by
$W\simeq W_{N}\equiv u_{1}^{(N)}-iu_{2}^{(N)}$

$\equiv 2\sum_{j=1}^{N}\overline{Q_{j}}$ log sinh $[ \frac{\pi}{a}(z-\zeta_{j})]|-\frac{2\pi}{a}\sum_{j=1}^{N}Q_{j}{\rm Re}(z-\zeta_{j})$ coth $[ \frac{\pi}{a}(z-\zeta_{j})]$ .
(23)

The approximation (21-23) is suitable for our problem of periodic Stokes
flow because it is expressed by periodic functions of period $ia$ , and it is
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expected to iIlherit the advaIltages of the ordinary $fuIldaInental$ solution
luethod that it is easy to compute and it gives approximation with high
accuracy. This approximation is given by a linear coInbination of tfie ‘Mpe-
riodic Stokeslct”, the periodic fundamental solutions of the Stokes flow
equation and the continuity equation and, in terms of physics, it illus-
trates the superpositions of the flows due to an infinite periodic array of
concentrated forces $-8\pi\mu Q_{j}=-8\pi\mu({\rm Re} Q_{j}, {\rm Im} Q_{j}),$ $j=1,2,$ $\ldots$ , $N$ on
the points $\zeta_{j}+ina,$ $n\in \mathbb{Z}$ .

The complex coefficients $Q_{j}$ are determined by the collocation condition,
the condition that the approximate velocity (23) satisfies the boundary
conditions (6) only at a finite number of boundary points. Namely, we
choose boundary points

$(+)$ $(+)$

$z_{1}^{(0)},$ $z_{2}^{(0)},$

$\ldots,$ $z_{N_{0}}^{(0)}\in\partial D_{0}t-$

) $(-)$
$\approx 1$ , $z_{2}$ , ..., $z_{\bigwedge_{+}^{\gamma}}^{(+)}\in\{z\in \mathbb{C}|{\rm Re} z=d\}$ , $z_{1}$ , $z_{2}$ , ..., $z_{N_{-}}^{(-)}\in\{z\in \mathbb{C}|{\rm Re} z=-d\}$

$(N_{0}+N_{+}+N_{-}=N)$

(24)
and pose the boundary contitions (6) on $M_{N}^{J’}$ at the above points

$\ddagger\phi_{N}^{t^{*}}(z_{i}^{(0)})=0$ $i=1,2,$ . . ., $N_{0}$ , (25)
$W_{N}(z_{i}^{t+)})=U$ $i=1,2,$ $\ldots,$

$1V+$ , (26)
$W_{N}^{r}(z_{i}^{t-)})=U$ $i=1,2,$ $\ldots,$

$N_{-}$ . (27)
The equations (25-27) form a system of linear equations with respect to
the coefficients $Q_{1},Q_{2},$

$\ldots$ , $Q_{N}$ . We determine the coefficient$sQ_{j}$ by solving
the above system of linear equations and obtain the approximate velocity
$\iota\prime \mathfrak{s}_{N}^{r}$ .

4 Numerical Example

We here show a numerical example of the presented $met_{1}hod$ . All the com-
putations were carried out using programs coded in $C++with$ double
precision working.

The example is the problem of Stokes flow past a periodic array of
circular cylinders, that is, the Stokes flow problem in the domain

$1^{c}=\{z\in \mathbb{C}||{\rm Re} z|<d, z\not\in D_{n}, \forall n\in \mathbb{Z}\}$ (28)
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with

$D_{n}=\{\approx\in \mathbb{C}||z-na|<r\}$ , $n\in \mathbb{Z}$ . (29)

The collocation points and the singularity points are taken as

$\sim\sim i(0)=\gamma$. exp $( i\frac{2\pi(i-1)}{N_{0}}),$ $\zeta_{i}^{(0)}=0.5r\exp(i\frac{2(i-1)}{N_{0}})$ , $i=1,2,$ $\ldots,$
$N_{0}$ ,

(30)

$\approx i(\pm)=\pm d+i(-\frac{a}{2}+\frac{a(i-1/2)}{\lrcorner V_{0}}),$

$\zeta_{i}^{(\pm)}=\pm\frac{3}{2}d+i(-\frac{a}{2}+\frac{a(i-1/2)}{N_{0}})(31)i=1,2,$
$\ldots,$

$1$

Figure 2 illustrates the velocity field of tbe flow obtained by the presented
fundamental solution method.

Figure 2: The velocity field of Stokes flow past a periodic array or circular cylinders
computed by the presented method. The figure (b) is a magnification of the figure (a).

In order to estimate the accuracy of the presented method, we computed
tlle error on the boundaries

$\epsilon(circle)=\sup_{z\in\partial D_{0}}\frac{|W_{N}(z)|}{U}$ . $\epsilon(left)=\sup_{B\epsilon z=-d}\frac{|7W_{N}(z)-U|}{U}$ , $\epsilon(rig1_{1}t)=s\iota\iota p\frac{|fW_{N}(z)-U}{U}{\rm Re} z=d$

(32)
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where the suprima are actually colnputed as the maxima on 1000 bouIldary
points distributed by using the uniform random numbers. Figure 3 shows
the error estimates (32) as the total numbers of the nodes $N=3N_{0}$ , though
we cannot distinguish between the error on the left boundary $\epsilon(left)$ and
the error on the right boundary $\epsilon(right)$ . From this figure, we find that the
errors on the left and right boundaries $\epsilon(left),$ $\epsilon(right)$ are of the order of
the square of the error on the surfaces of the cylinders $\epsilon(circle)$ with the
same number of the nodes, and the total error decays exponentially as the
number of nodes $N=3_{1}V_{0}$ increases.

$\dot{\Phi\xi}$

$0$ 50 100 150 200
$N$

Figure 3: The error $e8timate8$ of the presented method as functions of the total number
of the nodes $N=3N_{0}$ .

5 Concluding Remarks

In this paper, we presented the fundamental solution method for the prob-
lems of two-dimensional Stokes flow past a one-dimensional periodic array
of cylinders. We obtained our method by using the biharmonic function
theory based on analytic functions and by modifying the Stokeslet included
in the approximation so that the method gives a good approxiInation of
$tl\iota e$ solution including periodic functions. The numerical exaInples for a
problem with circular cylinders shows an exponential convergence of our
$method$ .

128



Acknowledgement

This work is supported by a Grant-in-Aid for Scientific Research (C) (No.18560054),
Japan Society for Promotion of Science.

References

[1] K. Amano, A charge simulation method for the numerical conformal
mapping of interior, exterior and doubly-connected domains, J. Com-
put. Appl. Math. 53 (1994) 353-370.

[2] K. Amano, A charge simulation method for numerical conformal map-
ping onto circular and radial slit domains, SIAM J. Sci. Comput. 19
(1998) 1169-1187.

[3] K. Amano, D. Okano, H. Ogata and M. Sugihara, Numerical conformal
mappings of unbounded multiply-connected domains by the charge
simulatioll method, Bull. Malaysian Math. Sci. Soc. 26 (2003) 3551.

[4] A.T. Chuwang and T.Y.-T. Wu, Hydrodynamics of low-Reynolds-
number flow. Part 2. Singularity method for Stokes flow, J. Fluid
Mech. 67 (1975) $78\overline{/’}-815$ .

[5] \’E. Goursat, Sur l’\’equation $\Delta\Delta u=0$ , Bull. Soc. Math. France 26
(1898) 236-237.

[6] L. Greengard and M.C. Kropinski, Integral equation methods for
Stokes flow in doubly-periodic domains, J. Eng. Math. 48 (2004) $15\overline{\prime}-$

170.

[7] H. Hasimoto, On the periodic fundamental solutions of the Stokes
equations and their application to viscous flow past a cubic array of
spheres, J. Fluid Mech. 5 (1959) 317-328.

[8] K. Ishii, Viscous flow past multiple planar arrays of small spheres, J.
Phys. Soc. Japan 46 (1979) 675-680.

[9] M. Katsurada, A mathematical study of the charge simulation method
II, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 36 (1989) 135-162.

129



[10] M. $Kat_{1}surada$ , Asymptotic error analysis of the $c\mathfrak{l}\iota arge$ simulation
lnethod in a Jordan region with an analytic boundary, J. Fac. Sci.
Uuiv. Tokyo, Sect. IA, Math. 37 (1990) 635-657.

[11] M. Katsurada and H. Okamoto, A mathematical study of the charge
simulation method I, J. Fac. Sci. Univ. Tokyo, Sect IA, Math. 35
(1988) 507-518.

[12] N. Liron, Fluid transport by cilia between parallel plates, J. Fluid
Mech. 86 (1978) 705-726.

[13] N. Liron, Stokeslet arrays in a pipe and their application to cliary
transport, J. Fluid Mech. 143 (1984) 173-195.

[14] N. Liron, Stokes flow due to infinite array of Stokeslets in three di-
mensions, J. Engrg. Math. 30 (1996) 267-297.

[15] S. Murashima, Charge Simulation Method and its Applications,
Morikita Shuppan, Tokyo, 1983 (in Japanese).

[16] H. Ogata, A fundamental solution method for three-dimensional
Stokes flow problems with obstacles in a planar periodic array, J. Com-
put. Appl. Math. 189 (2006) 622-634.

[17] H. Ogata and K. Amano, A fundamental solution method for three-
dimcnsional viscous flow problems with obstacles in a periodic array,
J. Comput. Appl. Math. 193 (2006) 302-318.

[18] H. Ogata, K. Amano, M. Sugihara and D. Okano, A fundamental
solution method for viscous flow problems with obstacles in a periodic
array, J. Comput. Appl. Math. 152 (2003) 411-425.

[19] H. Ogata, K. Amano and K. Amano, Numerical conformal mapping
of periodic structurc domaints, Japan J. Indust. Appl. Math. 5 (2002)
307-318.

[20] A. S. Sangani and A. Acrivos, Slow flow through a periodic array of
spheres, Internat. J. Multiphase Flow 8 (1982) 343-360.

[21] H. Singer, H. Steinbigler and P. Weiss, A charge simulation method for
the calculation of high voltage fields, IEEE Trans. Power Apparatus
Systems, PAS-93 (1974) 1660-1668.

130



[22] K. Taulada and H. Fujikawa, The steady two-dimensional flow of vis-
cous fluid at low Reynolds numbers passing through an infinite row
of equal parallel circular cylinders, Quart. J. Mech. Appl. Math. 10
(1957) 425-432.

[23] A.A. Zick and G.M. Homsy, Stoke$s$ flow through periodic array of
spheres, J. Fluid Mech. 115 (1982) 13-26.

131


