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The Smith Isomorphism Question: A review and new results
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In 1960, P. A. Smith [Smi60] raised an isomorphism question:

Smith Isomorphism Question. Whether the two tangential G-modules at two fixed
points of an arbitrary smooth G-action on a sphere with exactly two fixed points are iso-
morphic to each other?

Following [Pet82], two real G-modules V and W are called Smith equivalent if there
exists a smooth action of G on a sphere S such that S€ = {x, y} for two points x and y at
which T,(S) = V and T,(S) = W as real G-modules.

Let RO(G) denote the real representation ring of G. Define the Smith set Sm(G) to
be

Sm(G) ={[V] — [W] € RO(G) | V and W are Smith equivalent}.
The Smith Isomorphism Question can be restated as follows.

Smith Isomorphism Question. /s it true that Sm(G) = 0?

Itis easy to show that the answer is affirmative if G is a group such that each element
has the order 1, 2 or 4. A

In nineteen sixties, the first breakthrough was due to M. F. Atiyah and R. Bott [AB68,
Theorem 7.15):

Theorem 1 (Atlyah-Bott). /fG = C,,, p an odd prime, then Sm(G) = 0.
Shortly thereafter, J. Milnor [Mil66, Theorem 12.11] extended their result:
Theorem 2 (Milnor). If G is a compact group and the action semi-free, then Sm(G) = 0.

In nineteen seventies, by using the G-signature theorem, C. U. Sanchez [San76) ob-
tained a stronger result: '

Theorem 3 (Sanchez). Let X be a rational-homology sphere supporting an action of C.,
(n odd) as a group of diffeomorphisms with only two fixed points x andy and satisfying
the condition that

for every proper subgroup H of C,,, either F(H,X) = {x,y} or F(H,x,X) =
F(H,y, X) holds. '
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Then T, (X) = T,(X).
In fact, by Sanchez Theorem and Smith theory, we obtain the following Corollary.
Corollary 4. In either of the following cases, Sm(G) = 0.
(1) G is a group with odd-prime-power order.
(2) G is a group with |G| = pq, where p and q are odd primes.

By using G-equivariant surgery, T. Petrie [Pet79], [PR85] obtained the first counterex-
ample to the question:

Theorem 5 (Petrie). If G is an odd order finite abelian group with at least four non-cyclic
Sylow subgroups, then Sm(G) # 0.

In nineteen eighties, S. E. Cappell and J. L. Shaneson [CS82] gave first counterex-
amples to the question for G a cyclic group:

Theorem 6 (Cappell-Shaneson). /f G is the cyclic group of order 4m such that m > 2
then Sm(G) # 0.

By character theory, we have Sm(Dg) = 0 and Sm(Cs) = 0. So, Cg is the smallest
group with Sm(G) # 0.

T. Petrie and his collaborators obtained a lot of results about s-Smith equivalence,
see [Pet83], [PR84], [Cho85], [CSu85], [Suh85], [Cho88). K. H. Dovermann and T. Petrie
[DP85] constructed non-isomorphic Smith equivalent representations of odd order cyclic
groups.

Theorem 7 (Dovermann-Petrie). Let G be an odd-order cyclic group such that the order
of G has at least 3 prime divisors. If there exist real G-modules A and B satisfying the
following conditions, then Sm(G) # 0.

(0) AZB,

(1) A% = B9 = 0 for each g € G which generates a subgroup of prime power index in
G,

(2) dim AX = dim BX whenever |G /X| is divisible by at most 3 distinct primes,
(3) ResS A = ResS B whenever |P| is a prime power,

(4) v(A? — BP)(g) = =1 whenever |P| is a prime power.and g € G generates a
subgroup of prime power index in G.

The groups exhibited in that paper were very large. As J. Ewing computed, their
order were at least 102812917, K. H. Dovermann and L. C. Washington [DW89)] showed
that such non-isomorphic Smith equivalent representations also exist for odd order cyclic
groups of small order. For example, their orders canbe 5-11-19.29and 3-13.17.23.
K. H. Dovermann and D. Y. Suh [DS92] constructed non-isomorphic Smith equivalent
representations in the following cases.



45

Theorem 8 (Dovermann-Suh). /f G is a group with real G-modules A and B as in The-
orem 7, then Sm(G x Cy) #0.

Theorem 9 (Dovermann-Suh). If G is a finite abelian group with at least 3 non-cyclic
Sylow subgroups, with real G -representations A and B satisfying the following conditions,
thenSm(G) # 0.

(0) A 2B,
(1) AX = BX =0 whenever|G/K| is a prime power,
(2) dim AX = dimBX forallK C G, |

(3) Res§ A = ResS B whenever|P| is a prime poweh

A finite group G is an Oliver group if and only if G never admits a normal series
PaH«G

such that |P| and |G /H| are prime powers and H/P is a cyclic group. For a finite group G,
the following three claims are equivalent ([Oli75], [LM98]).

(1) G is an Oliver group.
(2) G has a smooth one-fixed-point action on a sphere.
(3) G has a smooth fixed-point-free action on a disk.

For an element g € G, let (g) denote the conjugacy class of g in G. The union (g)* =
(g) U (g™") is called the real conjugacy class of g in G. Let ag denote the number of the
real conjugacy classes (g)* in G such that the order of g is not a prime power.

In 1996, in the case where G is an Oliver group, E. Laitinen [LP99, Appendix] lighted
the question again with an conjecture.

Laitinen Conjecture. /f G is an Oliver group with ag > 2, then Sm(G) # 0.
E. Laitinen and K. Pawatowski proved two theorems [LP99]:

Theorem 10 (Laitinen-Pawatowskli). /f G is a finite perfect group with ag > 2, then
Sm(G) # 0.

Theorem 11 (Laitinen-Pawatowski). /f G = A,, SL(2,p) or PSL(2,q) with ag > 2,
where n is a natural number andp and q are primes, then Sm(G) # 0.

A real G-module V is called a gap module if it satisfies

(1) dim V? > 2dim VH for any subgroup P C G of prime power ofder and any subgroup
H C GwithP C H, and

(2) YN =0 for any normal subgroup N C G such that |G/N| is a prime power.
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A finite group G is called a gap group if G admits a gap module. We refer to [MSYO00],
[Sum01] and [SumO04] for more information about gap groups. Let PZL(2,27) denote the
splitting extension of PSL(2, 27) by the group Aut(F,;). K. Pawatowski and R. Solomon
[PaS02] answered the Smith isomorphism question in various cases:

Theorem 12 (Pawatowski-Solomon). In either of the following cases, Sm(G) # 0 holds.
(1) G is a finite Oliver group of odd order (thus ag > 2, and G is a gap group).

(2) G is a finite Oliver group with a cyclic quotient of order pq for two distinct odd primes
p and q (thus ag > 2, and G is a gap group).

(3) G is a finite non-solvable gap group with ag > 2, and G % PZL(2,27).

Theorem 13 (Pawatowski-Solomon). In either of the following cases, if ag < 2 then
Sm(G) =0.

(1) G is a finite non-abelian simple group.

(2) G = PSL(n, q) orSL(n, q) foranyn > 2 and any prime power q.
(3) G = PSp(2n, q) or Sp(2n, q) foranyn > 1 and any prime power q.
(4) G=A,orS, foranyn > 2.

We refer to the articles [PR84], [CS85], [DPS85), [MaP85], [Paw00] for survey of
related results. K. Pawatowski and R. Solomon [PaS02, Theorem A.3] pointed out that
Aut(Ag) is a non-solvable Oliver group such that ag = 2. In 2006, M. Morimoto [Mor07a]
gave a counterexample to Laitinen Conjecture:

Theorem 14 (Morimoto). /f G = Aut(Ag) then ag = 2, and Sm{G) = 0.

K. Pawatowski and T. Sumi [PaS07] claim Sm(G) # 0 for many Oliver groups G such
that ag > 2 and G is not a gap group, although only the sketchiest ideas of proofs are
given. Let G" denote the smallest normal subgroup N of G such that G/N is nilpotent.

Announce 15 (Pawatowski-Sumi). Let G be a finite Oliver group such that G/G"' is
isomorphic to neither p-group for a prime p, C, x P for an odd prime p and a p-group P,

nor P, x C3 for a 2-group P, such that all elements of P, are self-conjugate: (g) = (g~}).

Then Sm(G) # 0.

Announce 16 (Pawaiowskl-Suml). If a finite Oliver group G has an element of order
pqr for distinct primes p, q and r, then Sm(G) # 0.

Announce 17 (Pawatowski-Sumi). Let G be a finite Oliver group with non-trivial center.
If the order of G™ is divisible by at least three primes, then Sm(G) # 0.
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Many authors have studied the Smith equivalence for various finite groups. But the
Smith sets Sm(G) were rarely determined. In particular, when G is a non-solvable, non-
perfect group, Smith set Sm(G) was not determined except the case Sm(G) = 0. We
have interested in the group S5 x C,, because it is not a gap group, but it's subgroup
As x C; is a gap group.

For a prime p, let G'*! denote the smallest normal subgroup H such that the order of
G/H is a power of p (possibly 1). Let P(G) denote the set of all subgroups of G of prime

power order (possibly 1). Define £(G) by

{H < G|H > G for some prime p}.

A real G-module V is said to be £(G)-free if VI = 0 for any L € £(G). Define RO(G)5
to be the set

{IV] - [W] € RO(G) |V and W are £(G)-free and Res$ V = ResS W for all P € P(G)}.

Announce 18. The following equalities hold for G = S5 x C; andK = As x Cj.
(1) Sm(K) = Z? and Sm(G) = Z.
(2) Indg (Sm(K)) = Sm(G).

Here the map Ind§ : RO(K) — RO(G) is the induction homomorphism:

[Vl — [RIG] ®r V].

By means of GAP [GAPO06], The complex character of G = S5 x C; is as in Table 1,

la 2a 2b 2c 3a 6a 2d 2¢ 4a 4b 6b 6¢ 5a 10a
&ic 1 ] 1 1 1 1 1 1 1 1 1 1 1 1
&ac 1 =1 -1 1 1 =1 1 =1 -1 1 -1 ] 1 -1
&3c 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 T -1
&ac 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
&sc 4 4 -2 -2 1 1 0 0 0 0 1 1 -1 =1
¢ec 4 —4 -2 2 T -1 0 0 0 0 1 -1 =1 1
&7c 4 4 2 2 1 1 0 0 0 0O -1 =1 -1 4
&sc 4 -4 2 =2 1 -1 0 0 0 o -1 1 1
&oc 5 5 1 1 -1 =1 1 1 =1 -1 1 1 0 0
Eioc 5 -5 1 -1 -1 1 1 -1 -1 1 1T -1 0 0
&iic 5 5 -1 -1 -1 -1 1 1 1 1 -1 -1 0 0
e 5 =5 -—1 1 =1 1 1 -1 1 -1 -1 1 0 0
&3 6 6 0 0 o 0 -2 =2 0 0 0 0 1 1
&ac 6 —6 0 0 0 0 -2 2 0 0 0 0 1 -1

Table 1: The complex character of G = S5 x C;
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and the complex character of K = A5 x C; is as in Table 2.

ia 2a 3a 6a 2b 2c 5a 10a 5b 10b
S 1 1 1 1 1 1 1 1 1 1
e 1 -1 1 =1 1 =1 1 -1 1 -1
& 3 3 0 0 -1 -1 A A A A
&4c 3 3 0 0 -1 -1 A A A A
&c¢ 3 -3 0 0 -1 1 A —-A A -A
bc 3 -3 0 0 -1 1 A —-A A -A
¢ 4 4 1 1 0 0 —1 —=1 =1 —1
s 4 -4 1 -1 0 0 -1 1 =1 1
¢ 5 5 -1 -1 1 1 0 0 0 0
Sioc 5 -5 1 1 1 -1 0 0 0 0

Table 2: The complex character of K = A5 x C;

where w = exp 71. ——w4=1—\/gA——— 2 wd=

2
By Morimoto’s Surgery Theory ([Mor95] [Mor98]), we can prove that RO(G)

Sm(G) and RO(K)5 = Sm(K). Let {£;,1 < i < 14} be the Z-basis of RO(G) such
that the complification of &; is &ic, and {6;,1 < i < 8} the Z-basis of RO(K) such
that the complification of 4; is 8;c. By calculation, a Z-basis of RO(G)% is {y}, where
Y=285—286+28; 283 — &9+ Ero— Enn + E12 — E13 + E14, and the Z- baSlS of RO(K)%
is {x1,%2}, where x; = 83 — 85 — 267 + 263 + 69 — 819, X2 = 84 — 8¢ — 287 + 283 + 89 — 810.
Since the equalities

IS

1+

Indg &1 = &1 + &4, Indg 62 = &, + &3,
Indg 83 = &13, Ind§ 84 = &33,

Indg 85 = 14, Indg 8¢ = &4,

Indg &7 = &5 + &7, Indg 65 = £6 + &g,
Ind§ 8¢ = & + &1, Ind§ 810 = &10 + &1z,

hold, we obtain Ind§ (x1) = Indg (x2) = —y, which determines the induction map Ind$ :
Sm(K) — Sm(G).
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