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1 Introduction
S.Eilenberg and D. Mongomery [2] gave the fixed point formula of acyclic

mappings which is a generalization of Lefschetz’s fixed point theorem. L.
G\’orniewicz [6] has studied set-valued mappings and fixed point theorems for
acyclic mappings. In this paper, the author shall give a proof of a coincidence
theorem for a Vietoris mapping and a compact mapping and prove Borsuk-
Ulam type theorems for a class of set-valued mappings.

When a closed subset $\varphi(x)$ in $Y$ is assigned for a point $x$ in $X$ , we say that
the correspondence is a set-valued mapping and write $\varphi:Xarrow Y$ by the Greek
alphabet. For single-valued mapping, we write $f$ : $Xarrow Y$ etc. by the Roman
alphabet. A set-valued mapping is studied particularly in Chapter 2 in [6].
We assume that any set-valued mapping is upper semi-continuous.

The following theorem is our main theorem (cf. Theorem 2.7). From the
theorem we obtain the fixed point theorem for admissible mapping.

Main Theorem 1. Let $X$ be an ANR space and $Y$ a paracompact Hausdorff
space. Let $p$ : $Yarrow X$ be a Vetoris mapping and’ $q$ : $Yarrow X$ be a compact
mapping. Then $(p^{*})^{-1}q^{*}$ is a Leray endomorphism. If the Lefschetz number
$L((p^{*})^{-1}q^{*})$ is not $ze$ハジ there exists a coincidencepoint $z\in Y$, that is, $p(z)=q(z)$.

Borsuk-Ulam type theorems are proved in the following theorems which
are the generalizations of Theorem 43.10 in L.G\’omiewicz [6]. (cf Theorem
3.5, Theorem 3.9). The author shall give the related results and the detail
proofs in [13].

Main Theorem 2. Let $N$ be a paracompact Hausdorff space with a $\hslash ee$ in$\cdot$

volution $T$ and $M$ an m-dimensional closed topological manifold. If a set.
valued mapping $\varphi$ : $Narrow M$ is $*$ -admissible and satisfies $\varphi^{*}=0$ for posi-
tive dimension and $c(N, T)^{m}\neq 0$, then there exists a point $x_{0}\in N$ such that
$\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$ . Moreover if $N$ is an n-dimensional closed topological
manifold, it holds dim $A(\varphi)\geqq n-m$ where $A(\varphi)=\{x\in N|\varphi(x)\cap\varphi(T(x))\neq\emptyset\}$.
Main Theorem 3. Let $N$ be a closed topological manifold with a $\hslash ee$ involu-
tion $T$ which has the homology group of the n-dimensional sphere and $M$ be
a closed topological manifold. If a set-valued mapping $\varphi$ : $Narrow M$ is admis-
sible and $\varphi(N)\neq M$ and $n\geqq m$, then there exists a point $x_{0}\in N$ such that
$\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$. Moreover it holds dim $A(\varphi)\geqq n-m$ and Ind$A(\varphi)\geqq n-m$ .
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2 Coincidence Theorem
We give some remarks about several cohomology theories. Alexander-

Spanier cohomology theory $\overline{H}$“(-) is isomorphic to the singular cohomology
theory $H^{*}(-)$ (cf Theorem 6.9.1 in [14]), that is,

$\overline{H}^{*}(X)\cong H^{*}(X)$

if the singular cohomology theory satisfies the continuity: $\lim_{\overline{\{U\}}}H^{*}(U)=$

$H^{*}(x)$ where $\{U\}$ is a system of neighborhood of $x$ .
For a paracompact Hausdorff space $X$ , it holds also the isomorphism be-

tween \v{C}ech cohomology theory $\check{H}$“(-) with a constant sheaf and Alexander
cohomology theory $\overline{H}^{*}(-)$ (cf Theorem 6.8.8 in [14])

$\check{H}^{*}(X)\underline{\simeq}\overline{H}^{*}(X)$ .
For a locally compact subset $A$ ofEuclidean neighborhood retract $X$ (cf. Chap-
ter 4 in [1]), it holds also the isomorphism between $6ech$ cohomology theory
$\check{H}$“ (-) and the singular cohomology theory $H^{*}(-)$

$\check{H}^{*}(A)=\lim_{\{U\}}H^{*}(U)arrow$

where $U$ is a neighborhood of $A$ in $X$ . For Euclidean neighborhood retract $X$ ,
it holds also the isomorphism $\check{H}^{*}(X)\cong H^{*}(X)$ . Hereafter we use Alexander-
Spanier (co)homology theory with a field as the coefficient and use the nota-
tion $H^{*}(X)$ instead of $\overline{H}^{*}(X)$ . When we have to distinguish them, we use the
corresponding notation.

For a covering $\mathcal{U}$ of $X$ , the simplicial complex $K(\mathcal{U})$ called the nerve of $\mathcal{U}$ is
defined in \S 1.6 of Chapter 3 in [14] and the simplicial complex $X(\mathcal{U})$ called the
Vietoris simplicial complex of $\mathcal{U}$ is defined in \S 5 of Chapter 6 in [14]. They are
chain equivalent each other (cf. Exercises $D$ of Chapter 6 in [14]). Clearly by
the definition ofAlexander cohomology theory, we have the isomorphism:

$\lim_{\{\mathcal{U}\}}arrow H^{*}(C^{*}(X(\mathcal{U}))\cong\overline{H}(X)$
.

We have the cross products $\overline{\mu}$ : $\overline{H}^{*}(X, A)\otimes\overline{H}^{*}(Y, B)arrow\overline{H}^{*}((X, A)\cross(Y, B))$

and $\mu$ : $H^{*}(X,A)\otimes H^{*}(Y, B)arrow H^{*}((X,A)\cross(Y, B))$ and the natural transfor-
mation $\tau$ : $\overline{H}(-)arrow H^{*}(-)$ which $satis\theta$ the commutativity $\mu(\tau\otimes\tau)=\tau\overline{\mu}$.

In this paper, we shall work in the category of paracompact Hausdorff
spaces and continuous mappings. We give some definitions and notation. Let
$w_{K}^{U}\in H_{n}(U, U-K)$ be the cycle such that $(i_{x})_{*}(w_{K}^{U})=w_{x}\in H_{n}(R^{n},R^{n}-x)$

where $i_{x}$ : $(U, U-K)arrow(R^{n},R^{n}-x)$ . Define $\gamma_{0}\in H^{n}(R^{n}, R^{n}-0)$ the dual
cocycle of $w_{0}$ .
Deflnition 1. Define a class $\gamma_{K}^{U}\in H^{n}((U, U-K)\cross K)$ by $\gamma_{K}^{U}=d^{*}(\gamma_{0})$ where
$d:(U, U-K)\cross Karrow$ ($R^{n},$ $R^{n}$ –O)&fined by $d(x, y)=x-y$.
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Definition 2. A mapping $f$ : $Xarrow Y$ is called a ’etoris mapping, if it satisfies
the following conditions:

1. $f$ is proper and onto continuous mapping.

2. $f^{-1}(y)$ is an acyclic space for any $y\in Y$, that is, $\tilde{H}^{*}(f^{-1}(y) : G)=0$.
When $f$ is closed and onto continuous mapping and satisfies the condition (2),
we call it weak Vietoris mapping (abbrev. w-Vietoris mapping).

Note that a proper mapping is closed mapping. We need Alexander-Spanier
cohomology for the proof of the Vietoris theorem (cf Theorem 6.9.15 in [14]).

Theorem 2.1 (Vietoris). Let $f$ : $Xarrow Y$ be a w-Vetoris mapping between
paracompact Hausdorffspaces $X$ and Y. Then,

$f^{*}:$ $H^{m}(Y : G)arrow H^{m}(X : G)$

is an isomorphism for all $m\geqq 0$ .
A mapping $f$ : $Xarrow Y$ is called a compact mapping, if $f(X)$ is contained in

a compact set of $Y$ , or equivalently its closure $\overline{f(Y)}$ is compact.

Definition 3. Let $U$ an open set ofthe n-dimensional Euclidean space $R^{n}$ and
$Y$ be a paracompact Hausdorff space. For a w-Vetoris mapping $p$ : $Yarrow U$

and a compact mapping $q$ : $Yarrow U$, the coincidence index $I(p, q)$ of $p$ and $q$ is
defined by

$I(p, q)w_{0}=\overline{q}_{*}(\overline{p})_{*}^{-1}(w_{K}^{U})$

where $K$ is a compact set satisbing $q(Y)\subset K\subset U$, and $\overline{p}$ : $(Y, Y-p^{-1}(K))arrow$

$(U, U-K)$ and $\overline{q}$ : $(Y, Y-p^{-1}(K))arrow(R^{n}, R^{n}-0)$ are defined by $\overline{p}(y)=p(y)$

and $\overline{q}(y)=p(y)-q(y)$ respectievly.

Lemma 2.2. It holds a formula:
$d_{*}(1\cross q_{*}(p_{*})^{-1})\Delta_{*}(w_{K}^{U})=I(p, q)w_{0}$

where $\Delta(x)=(x,x),$ $d(x, y)=x-y$.
In this section, we give a proofofthe coincidence theorem which is different

from L.G\’orniewicz $[5, 6]$ and depends on the line of M. Nakaoka [81 The
following theorem is easily verified.

Theorem 2.3. Let $U$ be an open set of the n-dimensional Euclidean space $R^{n}$

and $Y$ a paracompact Hausdorff space. For $p$ : $Yarrow U$ a w-Vetoris mapping
and $q:Yarrow U$ a compact mapping, if the index $I(p, q)$ is not zero, there exists a
coincidence point $z\in Y$, that is, $p(z)=q(z)$ .

Let V be a vector space and $f$ : $Varrow V$ a linear mapping. Let $f^{k}$ be the
$k$ time iterated composition of $f$ . Set $N(f)= \bigcup_{k\geqq 0}$ ker $f^{k}$ a subspace of V and
$\tilde{V}=V/N(f)$ . Then $f$ induces the linear mapping $\tilde{f}$ : $\tilde{V}arrow\tilde{V}$ which is a
monomorphism. When dimV $<\infty$ , we define $R(f)$ by $R(\tilde{f})$ . In the case of
dim $V<\infty$ , it coincides with the classical one $h(f)$ .
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Definition 4. Let $\{V_{k}\}_{k}$ be a graded vector space and $f=\{f_{k} : V_{k}arrow V_{k}\}_{k}$

graded linear mapping. Define the generalized Lefschetz number for the case
of $\sum_{k\geqq 0}$ dim V$k<\infty$:

$L(f)= \sum_{k\geqq 0}(-1)^{k}?Y(f_{k})$

In this case, $f=\{f_{k}\}_{k}$ is called a Leray endomorphism.

Lemma 2.4. In the following commutative diagram ofgraded vector spaces:

$f_{k\downarrow}V_{k}\nearrow^{\psi_{k}}\downarrow g_{k}arrow W_{k}\phi_{k}$

$V_{k}arrow^{\phi_{k}}W_{k}$

Ifone of $f=\{f_{k}\}_{k}$ and $g=\{g_{k}\}_{k}$ is a Leray endomorphism, the other is also a
Leray endomorphism, and $L(f)=L(g)$ holds.

The following theorem is a new proof of a coincidence theorem which is
based on M.Nakaoka [81

Theorem 2.5. Let $U$ be an open set in the n-dimensional Euclidean space $R^{n}$

and $Y$ a paracompact Hausdorffspace. Let $p:Yarrow U$ be a w-Vietoris mapping
and $q$ : $Yarrow U$ be a compact mapping. Then $(p^{*})^{-1}q^{*}$ : $H^{*}(U)arrow H^{*}(U)$ is a
Leray endomorphism and we have the following formula:

$L((p^{*})^{-1}q^{*})=I(p, q)$

Especially, if the Lefschetz number $L((p^{*})^{-1}q^{*})$ is not zero, there exists a coinci $\cdot$

dence point $z\in Y$ such that $p(z)=q(z)$ .
Proof At first we remark that there exists a finite complex $K$ in $U$ such

that $q(Y)\subset K\subset U$ . Here we subdivide $U$ into small boxes whose faces are
parallel to axes and construct the complex $K$ by collecting small boxes which
intersect with $f(Y)$ . Consider the $fQlloWing$ diagram:

$H^{*}(U)arrow^{i^{t}}H^{*}(K)$

$H^{*}(Y)q\downarrow\nearrow_{j^{*}}^{q^{\prime\prime*}}\underline{|}q’arrow H^{*}(p^{1}(K))$

$(p)^{-1}H^{*}(U)\downarrow\underline{i\cdot}H\}$

$(p’)^{-1}$

$(K)$

where $p’,$ $q’$ are restriction mappings of $p,$ $q$ to the subspace $p^{-1}(K)$ respec-
tively and $q”$ : $Yarrow K$ is defined by $q’=q”j$ and $q=iq”$. Since $(p^{\prime*})^{-1}q^{\prime*}$ :

72



$H^{*}(K)arrow H^{*}(K)$ is a Leray endomorphism, $(p^{*})^{-1}q^{*}$ : $H^{*}(U)arrow H^{*}(U)$ is also a
Leray endomorphism by Lemma 2.4. Then, we have

$L((p^{\prime*})^{-1}q^{\prime*})=L((p^{*})^{-1}q^{*})$ .

Consider the following diagram:

$H^{*}(K)\downarrow(p)^{-1}q’’arrow^{=}$ $H^{*}(K)\downarrow(p’)^{-1}q’’$

$H^{*}(U)$
$arrow^{i^{*}}$

$H^{*}(K)$

$H_{*}(U, U-K)\downarrow(-)\cap w_{K}^{U}arrow^{=}H_{*}(U, U-K)\uparrow(-1)^{q}\gamma_{K}^{U}/(-)$

Clearly the upper square is commutative. The commutativity of lower square
is proved by Lemma 3 in [8] for the singular (co)homology theory, that is,
$i^{*}(x)=(-1)^{q}\gamma_{K}^{U}/(x\cap w_{K}^{U})$ for $x\in H^{q}(U)$ . Here since $K$ is a finite complex,
$i^{*}$ : $H^{*}(U)arrow H^{*}(K)$ of Alexander-Spanier cohomology coincides with the one
of the singular cohomology. We use $\iota*$ of the singular cohomology to calculate
$i$ “ ofAlexander-Spanier cohomology. Note that Alexander-Spanier cohomology
groups $H^{*}(U),$ $H^{*}(U, U-K),$ $H^{*}((U, U-K)\cross K),$ $H^{*}(K)$ are coincide with ones
of the singular cohomology.

Let $\{\alpha_{\lambda}\},$ $\{\beta_{\mu}\},$ $\{\gamma_{\nu}\}$ be basis of $H^{*}(U),$ $H^{*}(U, U-K),$ $H^{*}(K)$ respectively
We represent $\gamma_{K}^{U}\in H^{*}((U, U-K)\cross K)$ as follows:

$\gamma_{K}^{U}=\sum_{\mu,\nu}c_{\mu\nu}\beta_{\mu}\cross\gamma_{\nu}$

Since $p^{*}$ is isomorphic, we set

$(p^{*})^{-1}q^{\prime\prime*}( \gamma_{\xi})=\sum_{\lambda}m_{\lambda\xi}\alpha_{\lambda}$

We calculate the Lefschetz number $L((p^{\prime*})^{-1}q^{\prime*})$ :

$(-1)^{q}(p^{r*})^{-1}q^{\prime*}(\gamma_{\xi})=(-1)^{q}i^{*}(p^{*})^{-1}q^{\prime\prime*}(\gamma_{\xi})$

$=\gamma_{K}^{U}/((p^{*})^{-1}q^{\prime\prime*}(\gamma_{\xi})\cap w_{K}^{U})$

$= \sum_{\mu,\nu}c_{\mu\nu}(\beta_{\mu}\cross\gamma_{\nu})/((p^{*})^{-1}q^{\prime\prime n}(\gamma_{\xi})\cap w_{K}^{U})$

$= \sum_{\mu,\nu}c_{\mu\nu}<\beta_{\mu},$

$(p^{*})^{-1}q^{\prime\prime*}(\gamma_{\xi})\cap w_{K}^{U}>\gamma_{\nu}$

$\sum_{\mu,\nu}c_{\mu\nu}<\beta_{\mu},$ $( \sum_{\lambda}m_{\lambda\xi}\alpha_{\lambda})\cap w_{K}^{U}>\gamma_{\nu}$

$= \sum_{\lambda,\mu,\nu}c_{\mu\nu}m_{\lambda\xi}<\beta_{\mu}\cup\alpha_{\lambda},w_{K}^{U}>\gamma_{\nu}$

73



Hence we obtain a result:

$L((p^{\prime*})^{-1}q^{\prime*})= \sum_{\lambda,\mu,\xi}c_{\mu\xi}m_{\lambda\xi}<\beta_{\mu}\cup\alpha_{\lambda},$

$w_{K}^{U}>$

Next we calculate the incidence index $I(p, q)$ :

$I(p, q)$ $=$ $<\Delta^{*}(1\cross(p^{*})^{-1}q^{\prime\prime*})(\gamma_{K}^{U}),$ $w_{K}^{U}>$

$= \sum_{\mu,\nu}c_{\mu\nu}<\Delta^{*}(\beta_{\mu}\cross(p^{*})^{-1}q^{\prime\prime*})(\gamma_{\nu}),$

$w_{K}^{U}>$

$= \sum_{\mu,\nu}c_{\mu\nu}<\Delta^{*}(\beta_{\mu}\cross(\sum_{\lambda}m_{\lambda\nu}\alpha_{\lambda}),$

$w_{K}^{U}>$

$\sum_{\lambda,\mu,\nu}c_{\mu\nu}m_{\lambda\nu}<\beta_{\mu}\cup\alpha_{\lambda},$

$w_{K}^{U}>$

From these results, we have $L((p^{\prime*})^{-1}q^{\prime*})=I(p, q)$ . Since $L((p^{\prime*})^{-1}q^{\prime*})$ is equal
to $L((p^{*})^{-1}q^{*})$ , we obtain the result $L((p^{*})^{-1}q^{*})=I(p, q)$ .

We obtain the second statement by the above result and Theorem 2.3.
Q.E.D.

We can generalize the result above to the case ofANR spaces through the
line of L. G\’orniewicz $[5, 6]$ by using the approximation theorem of Schauder.

Theorem 2.6. Let $U$ be an open set in a norm space $E$ and $Y$ a paracompact
Hausdorff space. Let $p$ : $Yarrow U$ a $w\cdot Vietoris$ mapping and $q$ : $Yarrow U$ be a
compact mapping. Then $(p^{*})^{-1}q^{*}is$ a Leray endomorphism. We assume that
the graph of $qp^{-1}$ is closed. Ifthe Lefschetz number $L((p^{*})^{-1}q^{*})$ is not zero, there
exists a coinci&nce point $z\in Y$, that is, $p(z)=q(z)$ .
Theorem 2.7. Let $X$ be an ANR space and $Y$ a paracompact Hausdorffspace.
Let $p$ : $Yarrow X$ be a Vietoris mapping and $q$ : $Yarrow X$ be a compact mapping.
Then $(p^{*})^{-1}q^{*}is$ a Leray endomorphism. If the Lefschetz number $L((p^{*})^{-1}q^{*})$ is
not zero, there exists a coincidence point $z\in Y$, that is, $p(z)=q(z)$ .

3 $Borsuk\cdot Ulam$ Type Theorem
When $M$ has an involution $T$ , the equivariant diagonal $\triangle$ : $Marrow M\cross M$

is given by $\Delta(x)=(x, T(x))$ . If $T$ is trivail, $\Delta$ is the ordinary diagonal. The
involution $T$ on $M^{2}$ is given by $T(x,x’)=(x’,x)$ . Hence $\triangle$ is an equivariant
mapping. Hereafter, we use the same notation for involutions, if there is not
confusion. M.Nakaoka defined the equivariant Thom class in Lemma 2.2 of
[12] (cf \S 1 in [10]):

$\hat{U}_{M}\in H^{m}(S^{\infty}\cross\pi(M^{2}, \Lambda f^{2}-\Delta M))$

where the involution $\tilde{T}$ on $S^{\infty}\cross_{\pi}M^{2}$ is given by $\tilde{T}(x, y, y’)=(Tx, y’, y)$ .
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For a paracompact Hausdorff space $N$ with a free involution $T$ , there exists
an equivariant mapping $h:Narrow S^{\infty}$ . We also define the element:

$\hat{U}_{N,M}\in H^{m}(N\cross\pi(M^{2}, M^{2}-\Delta M)$

by $\hat{U}_{N,M}=(h\cross_{\pi}id_{M^{2}})^{*}(\hat{U}_{M})$ for $h\cross_{\pi}id_{M^{2}}$ : $N\cross_{\pi}(M^{2}, M^{2}-\triangle M)arrow S^{\infty}\cross_{\pi}$

$(M^{2}, M^{2}-\triangle M)$ . Set

$\triangle_{N}=j^{*}(\hat{U}_{N,M})\in H^{m}(Nx_{\pi}M^{2})$

where $j$ : $N\cross_{\pi}M^{2}arrow N\cross_{\pi}(M^{2}, M^{2}-\Delta(M))$ . In the case of $N=S^{\infty}$ and
the trivial involution $T$ on $M$ , M.Nakaoka determined $\theta_{\infty}$ by Proposition 3.4
in [11].

A mapping $\hat{f}_{\pi}$ : $N_{\pi}arrow N\cross_{\pi}M^{2}$ is defined by $\hat{f}_{\pi}(x)=(x, f(x),$ $f(Tx))$ . Since
we use Alexander-Spanier cohomology theory in this paper, we must treat
carefully the results of M.Nakaoka. The following theorem is given in Theo-
rem 3.5 in [11].

Theorem 3.1 (Nakaoka). Let $N$ be a paracompact Hausdorff space with a
free involution $T$, and $M$ be an m-dimensional closed topological manifold.
Let $\{\alpha_{1}, \ldots, \alpha_{s}\}$ be a basis for $H^{*}(M)$, and set

$d_{*}([M])= \sum_{j,k}\eta_{jk}a_{j}\cross a_{k}$
$(\eta_{jk}\in Z/2)$

where $a_{i}=\alpha_{i}\cap[M]$ . Then, for any continuous mapping $f$ : $Narrow M$, it holds

$\hat{f}_{\pi}^{*}(\theta_{N})=\sum_{i\geqq 0}c^{m-2i}Q(f^{*}v_{i})+\sum_{i<k}(\eta_{jk}+\eta_{jj}\eta_{kk})\phi^{*}(f^{*}(\alpha_{j})\cup T^{*}f^{*}(\alpha_{k}))$

(1)

where $c=c(N, T)$ and $v_{i}=v_{i}(M)Wu$ class of $M$ and $\phi^{*}$ : $H^{*}(N)arrow H^{*}(N_{\pi})$ is
the transfer homomorphism.

The next theorem is proved in Proposition 1.3 in [10].

Theorem 3.2. Let $N$ be a paracompact Hausdorffspace with a $\beta ee$ involution
$T$ and $M$ a closed topological manifold. If a continuous mapping $f$ : $Narrow M$

satisfies $\hat{f}_{\pi}^{*}(\theta_{N})\neq 0$, the set $A(f)=\{y\in N|f(y)=f(Ty)\}$ is not empty set.

Definition 5. A set-valued mapping $\varphi$ : $Xarrow Y$ is called admissible, if there
exists a paracompact Hausdorffspace $\Gamma$ satisfying the following conditions:

1. there exist a Vetoris mapping $p$ : $\Gammaarrow X$ and a continuous mapping
$q:\Gammaarrow Y$.

2. $\varphi(x)\supset q(p^{-1}(x))$ for each $x\in X$ .
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$\varphi$ : $Xarrow Y$ is called $w\cdot admissible$, if it satisfies the condition (2) and $p$ is a
w-Vetoris mapping.

A pair $(p, q)$ of mappings $p,$ $q$ is called a selected pair of $\varphi$. If $\varphi$ : $Xarrow Y$

satisfies the first condition and $\varphi(x)=q(p^{-1}(x))$ for each $x\in X$, it is called s-
admissible mapping.
Definition 6. A set-valued mapping $\varphi$ : $Xarrow Y$ is $called*$-admissible map-
ping, if it is admissible and satisfies $p_{\varphi}$ : $\Gamma_{\varphi}arrow X$ induces an isomorphism

$p_{\varphi}^{*}$ : $H^{*}(X)arrow H^{*}(\Gamma_{\varphi})$ .
Theorem 3.3. Let $X$ be an ANR space and $\varphi$ : $Xarrow X$ compact admissible
mapping. If $L(\varphi^{*})$ contains non-zero element, there exists a fixedpoint $x_{0}\in X$,
that is, $x_{0}\in\varphi(x_{0})$ .

Proof We can choose a selected pair $(p, q)$ where a Vietoris mapping $p$ :
$\Gammaarrow X$ and a compact mapping $q$ : $\Gammaarrow X$ . We may assume $L((p^{*})^{-1}q^{*})\neq 0$.
By Theorem 2.7, there exists a coincidence point $z\in\Gamma$ such that $p(z)=q(z)$ .
we obtain the result. Q.E.D.

Let $N$ be a paracompact Hausdorff space with a free involution $T$ and $M$

a closed topological manifold without involution. For a set-valued mapping
$\varphi:Narrow M,\tilde{N}$ is defined by

$\tilde{N}=\{(x, y, y’)\in N\cross M^{2}|x\in N, y\in\varphi(x), y’\in\varphi(T(x))\}$

A free involution $\tilde{T}$ on $\tilde{N}$ is given by $\tilde{T}(x, y, y’)=(Tx, y’, y).\tilde{p}$ : $\tilde{N}arrow N$ is the
projection. The following Lemma is a key result.
Lemma 3.4. Let $\varphi:Narrow M$ be an admissible mapping with a selected pair $p$ :
$\Gammaarrow N$ and $q:\Gammaarrow M$ . Then $H^{*}(\tilde{N})$ and $H^{*}(\tilde{N}_{\pi})$ have direct summands $H^{*}(N)$

and $H^{*}(N_{\pi})$ respectively. Moreover if $N$ is a metric space and $A$ is a $\pi$-invariant
closed or open subspace of $N$, then $H^{*}(\tilde{N}-\tilde{p}^{-1}(A))$ and $H^{*}(\tilde{N}_{\pi}-\tilde{p}_{\pi}^{-1}(A_{\pi}))$ have
direct summands $H$“ $(N-A)$ and $H^{*}(N_{\pi}-A_{\pi})$ respectively.
Theorem 3.5. Let $N$ be a paracompact Hausdorffspace with a $\beta ee$ involution
$T$ and $M$ an m-dimensional closed topological manifold. Ifa set-valued map-
ping $\varphi$ : $Narrow Mis*\cdot admissible$ and satisfies $\varphi^{*}=0$ for positive dimension
and $c(N, T)^{m}\neq 0$, then there exists a point $x_{0}\in N$ such that $\varphi(x_{0})\cap\varphi(T(x_{0}))\neq$

$\emptyset$ . Moreover if $N$ is an n-dimensional closed topological manifold, it holds
dim $A(\varphi)\geqq n-m$ where $A(\varphi)=\{x\in N|\varphi(x)\cap\varphi(T(x))\neq\emptyset\}$ .

Proof We can define a free involution $\tilde{T}$ on $\tilde{N}$ by $\tilde{T}(x, y, y’)=(T(x), y’, y)$

and a mapping $\tilde{\varphi}$ : $\tilde{N}arrow M$ by $\tilde{\varphi}(x,y, y’)=y$ . We note:
$A(\tilde{\varphi})=\{(x, y,y)\in\tilde{N}|y\in\tilde{\varphi}(x), y\in\tilde{\varphi}(\tilde{T}(x))\}$

Now consider the following diagram:

$\tilde{p}\downarrow\aleph^{\sim}|q_{\varphi}\tilde{N}^{arrow M}\tilde{\varphi}$

$N\overline{p_{\varphi}}\Gamma_{\varphi}$
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where $\tilde{p}(x, y, y’)=x,\tilde{p}’(x, y, y’)=(x, y)$ and $p_{\varphi}(x,y)=x,$ $q_{\varphi}(x, y)=y$ .
We see $\tilde{\varphi}^{*}=0$ from $\varphi^{*}=0$ . The mapping $\tilde{p}$ : $\tilde{N}arrow N$ is $\pi$-equivarint, that

is $\tilde{p}(\tilde{T}(x, y, y’))=T(\tilde{p}(x, y, y’))$ . Since $\tilde{p}_{\pi}^{*}$ is injective by Lemma 3.4. We have
$\tilde{c}^{m}=c(\tilde{N},\tilde{T})^{m}=\tilde{p}_{\pi}^{*}(c^{m})\neq 0$ because of $\pi$-equivariant mapping $\tilde{p}$ : $\tilde{N}arrow N$ .

Now we calculate $\tilde{\varphi}^{*}(\theta_{\tilde{N}})\wedge$ . Since we have $\phi^{*}(\tilde{\varphi}^{*}(\alpha_{j})\cup T^{*}\tilde{\varphi}^{*}(\alpha_{k}))=0$ and
$\tilde{c}^{m-2i}Q(\tilde{\varphi}^{*}(v_{i}))=0$ for $i>0$ from our condition and $\tilde{c}^{m}Q(\tilde{\varphi}^{*}(v_{0}))=\tilde{c}^{m}\neq 0$ , we
obtained $\tilde{\varphi}^{*}(\theta_{\tilde{N}})\wedge=\tilde{c}^{m}\neq 0$ from the formula (1) in Theorem 3.1. We conclude
$A(\tilde{\varphi})\neq\emptyset$ from Theorem 3.2. Hence we obtain the former result.

Since $\tilde{N}-A(\tilde{\varphi}),\tilde{N}-\tilde{p}^{-1}A(\varphi),$ $N-A(\varphi)$ have natural involutions induced
by $\tilde{T},$ $T$ , we obtained $\tilde{N}_{\pi}-A(\tilde{\varphi})_{\pi},$ $N_{\pi}-\tilde{p}^{-1}A(\varphi)_{\pi},$ $N_{\pi}-A(\varphi)_{\pi}$ . For the latter
proof, we consider the following diagram:

$H^{*}(\tilde{N}_{\pi},\tilde{N}_{\pi}-A(\tilde{\varphi})_{\pi})\downarrow k_{1}^{*}$

$\downarrow id$.
�

$\downarrow k_{\dot{2}}$

$rightarrow^{j_{1}^{*}}H^{*}(\tilde{N}_{\pi})$ � $H^{*}(\tilde{N}_{\pi}-A(\tilde{\varphi})_{\pi})$

$H^{*}(\tilde{N}_{\pi}, N_{\pi}\uparrow\tilde{p}_{1\pi}-\tilde{p}^{-1}A(\varphi)_{\pi})rightarrow^{j_{2}^{\dot}}H^{*}(\tilde{N}_{\pi})\uparrow\tilde{p}_{\pi}^{*}arrow^{i_{2}^{\dot}}H^{*}(\tilde{N}_{\pi_{\dagger}^{-\tilde{p}_{\tilde{p}_{2\pi}^{l}}^{-1}A(\tilde{\varphi})_{\pi})}}$

$H^{*}(N_{\pi}, N_{\pi}-A(\varphi)_{\pi})$ $arrow^{j_{3}^{\dot}}H^{*}(N_{\pi})arrow^{i_{3}^{\dot}}$ $H^{*}(N_{\pi}-A(\varphi)_{\pi})$

where $k_{1},$ $k_{2}$ are induced by natural inclusions and $\tilde{p}_{1},\tilde{p}_{2}$ are induced by $\tilde{p}$ .
Here we note $\overline{H}^{*}(-)\cong H^{*}(-)$ for manifolds. Since $A(\varphi)$ is a $\pi$-invariant closed
subset of $N$ , we have an into-isomorphism $(\tilde{p}_{2})_{\pi}^{*}$ : $H^{*}(N_{\pi}-A(\varphi)_{\pi})arrow H^{*}(\tilde{N}_{\pi}-$

$\tilde{p}_{\pi}^{-1}(A(\tilde{\varphi})_{\pi}))$ by Lemma 3.4. We note that $\hat{\tilde{\varphi}}_{\pi}^{*}(\theta_{\tilde{N}})=\tilde{c}^{m}\neq 0$ is an image of
$c^{m}\in H^{*}(N_{\pi})$ , that is, $(\tilde{p}_{\pi})^{*}(c^{m})=\tilde{c}^{m}$ . Since $\tilde{c}^{m}$ is an image of $\hat{\tilde{\varphi}}_{\pi}^{*}(U_{\overline{N},M})$ under

$j_{1}^{*}$ , it holds $i_{2}^{*}(\tilde{c}^{m})=0$ . From this, we see $(\tilde{p}_{2})_{\pi}^{*}i_{3}^{*}(c^{m})=i_{2}^{*}\tilde{p}_{\pi}^{*}(c^{m})=(i_{2})^{*}(\tilde{c}^{m})=0$

in the above diagram and hence $(i_{3})^{*}(c^{m})=0$ because of the injectivity of $(\tilde{p}_{2})_{\pi}^{*}$ .
If $H^{m}(N_{\pi}, N_{\pi}-A(\varphi)_{\pi})=0$ , we easily see $c^{m}=0$ which contradicts $c^{m}\neq 0$.
Hence we obtain $H^{m}(N_{\pi}, N_{\pi}-A(\varphi)_{\pi})\neq 0$ .

Since $N$ and $N-A(\varphi)$ are manifolds, the singular homology group $H_{m}(N_{\pi},$ $N_{\pi}-$

$A(\varphi)_{\pi})\neq 0$ by the universal coefficient theorem. We obtain that the \v{C}ech coho-
mology group $\check{H}^{n-m}(A(\varphi)_{\pi})\neq 0$ by Poincar\’e duality In this case $\check{H}^{n-m}(A(\varphi)_{\pi})$

is equal to Alexander-Spanier cohomology group $H^{n-m}(A(\varphi)_{\pi})$ . We see dim $A(\varphi)_{\pi}\geqq$

$n-m$ and hence dim $A(\varphi)\geqq n-m$ . Q.E.D.

Cororally 3.6. Let $N$ be a paracompact Hausdorff space with a free involu-
tion $T$ which has a homology group of n-dimensional sphere and $M$ be an m-
dimensional closed topological manifold. If a set.valued mapping $\varphi$ : $Narrow M$

$is*$-admisstble and satisfies $\varphi^{*}=0$ and $n\geqq m$, then there exists a point $x_{0}\in N$

such that $\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$. Moreover if $N$ is an n-dimensional closed topo-
logical manifold, it holds dim $A(\varphi)\geqq n-m$.

Let $X$ be a space with a free involution $T$ and $S^{k}$ the k-dimensional sphere
with the antipodal involution. Define

$\gamma(X)$ $=$ inf {$k|f$ : $Xarrow S^{k}$ equivariant mapping}
Ind(X) $=$ $sup\{k|c^{k}\neq 0\}$
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where $c\in H^{1}(X_{\pi})$ is the class $c=f_{\pi}^{*}(\omega)$ for an equivariant mapping $f$ : $Xarrow$

$S^{\infty}$ . If $X$ is a compact space with a free involution, it holds the following
formula (cf \S 3 in [3]):

$Ind(X)\leqq\gamma(X)\leqq\dim X$ .
K. Ggba and L. G\’orniewicz determined $IndA(\varphi)$ of an admissible mapping
$\varphi:S^{n+k}arrow R^{n}$ in [3]. We generalize their result.

Cororally 3.7. Let $N$ be a closed topological manifold with a free involu $\cdot$

tion $T$ which has a homology group of n-dimensional sphere and $M$ be an m-
dimensional closed topological manifold. Ifa $set\cdot valued$ mapping $\varphi$ : $Narrow M$

$is*$ -admissible and $\varphi^{*}=0$ and $n\geqq m$, it holds $IndA(\varphi)\geqq n-m$ .
Proof At first, we remark commutativity of the following diagram for n-

dimensional closed topological manifold $X$ and a closed subset $Y$ of $X$ :

$H_{k}(X)$ $arrow^{j,}H_{k}(X,X-Y)$

$\downarrow-\backslash U_{0}$ $\downarrow-\backslash U_{1}$

$H^{n-k}(X)arrow^{i^{*}}$ $H^{n-k}(Y)$

where $U_{0},$ $U_{1}$ are restrictions of $U\in H^{n}(X^{2},X^{2}-d(X))$ for $k$ : $(X^{2}, \emptyset)arrow$

$(X^{2}, X^{2}-d(X)),$ $l$ : (X, $X-Y$) $\cross Yarrow(X^{2},X^{2}-d(X))$ respectively. Here the
vertical arrows are Poincar\’e isomorphisms.

We apply the above diagram for the case $X=N_{\pi},$ $Y=A(\varphi)$ . In the proof of
the Theorem 3.5, we find a class $\alpha\in H^{m}(N_{\pi}, N_{\pi}-A(\varphi)_{\pi})$ such that $j^{*}(\alpha)=c^{m}$ .
Let $b\in H_{m}(N_{\pi})$ be the dual element of $c^{m}\in H^{m}(N_{\pi})$ and $a\in H_{m}(N_{\pi},$ $N_{\pi}-$

$A(\varphi)_{\pi})$ be the dual class of $\alpha$ . Then we obtain $j_{*}(b)=a\neq 0$ . Since the Poincar\’e
dual of $b$ is $c^{n-m}$ , we obtain $i$ “ $(c)^{n-m}=i^{*}(c^{n-m})\neq 0$ by the above diagram.
Hence we obtain the result. Q.E.D.

Theorem 3.8. Let $N$ be a paracompact Hausdorffspace with a free involution
$T$ and $M$ be an m-dimensional closed topological manifold which has a ho-
mology group ofm-dimensional sphere. Ifa set-valued mapping $\varphi:Narrow M$ is
admissible and satisfies $c(N,T)^{m}\neq 0$ and $\varphi(N)\neq M$, then there exists a point
$x_{0}\in N$ such that $\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$ Moreover if $N$ is an n-dimensional closed
topological manifold, it holds dim $A(\varphi)\geqq n-m$.

Proof We use the notation and method in the proof of Theorem 3.5. A
homology group of $M’=M-\{a\}$ is trivial for positive dimensions by a homol$\cdot$

ogy group of $M$ . From the fact and $\varphi(N)\neq M$ , we have $\tilde{\varphi}^{*}=0$ for positive
dimensions. We see that $\tilde{c}^{m}=c(\tilde{N},\tilde{T})^{m}\neq 0$ by our assumption. By the similar
method of Theorem 3.5, we see

$\hat{\overline{\varphi}}^{*}(\theta_{\overline{N}})=\tilde{c}^{m}\neq 0$

by $\tilde{\varphi}^{*}=0$ for positive dimension and $c(N, T)^{m}\neq 0$ . Hence there exists a point
$z_{0}\in\tilde{N}$ such that $\tilde{\varphi}(z_{0})=\tilde{\varphi}(\tilde{T}(z_{0}))$ . We obtain $\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$ for $x_{0}\in N$ .
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We can prove the last statement as in the proof of Theorem 3.5. We omit the
proof Q.E.D.

Theorem 3.9. Let $N$ be a closed topological manifold with a fiee involution $T$

which has the homology group of the n-dimensional sphere and $M$ be a closed
topological manifold. If a set-valued mapping $\varphi$ : $Narrow M$ is admissible and
$\varphi(N)\neq M$ and $n\geqq m$, then there exists a point $x_{0}\in N$ such that $\varphi(x_{0})\cap$

$\varphi(T(x_{0}))\neq\emptyset$ . Moreover it holds dim $A(\varphi)\geqq n-m$ and $IndA(\varphi)\geqq n-m$.
Proof We use the notation and method in the proof of Theorem 3.5. We

remark $v_{i}(M)=0$ for $i> \frac{m}{2}$ by the definition of Wu class. Therefore we see
$\tilde{\varphi}(v_{i}(M)))=0$ for $i>0$ because of $H^{*}(N)=H^{*}(S^{n})$ . We see also $\phi^{*}(\tilde{\varphi}^{*}(\alpha_{i})\cup$

$\tilde{T}^{*}\tilde{\varphi}^{*}(\alpha_{j}))=0$ by $H^{*}(N)=H^{*}(S^{n})$ and deg $\alpha_{i}+\deg\alpha_{j}=m$ and $\tilde{\varphi}^{*}(\alpha_{0})=0$ for
the class $\alpha_{0}$ such that deg $\alpha_{0}=m$ . Note $\tilde{c}^{m}=c(\tilde{N},\tilde{T})^{m}\neq 0$ by our assumption.
From this remark we see

$\tilde{\varphi}^{*}(\theta_{\tilde{N}})=\tilde{c}^{m}=c(\tilde{N},\tilde{T})^{m}\neq 0\wedge$.

Therefore there exists a point $z_{0}\in\tilde{N}$ such that $\tilde{\varphi}(z_{0})=\tilde{\varphi}(\tilde{T}(z_{0}))$ . We obtain
$\varphi(x_{0})\cap\varphi(T(x_{0}))\neq\emptyset$ for $x_{0}\in N$ . We can prove the last statement as in the
proof ofTheorem 3.5 and Corollary 3.7. We omit the proof Q.E.D.
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