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Borsuk-Ulam Theorems for Set-valued Mappings
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1 Introduction

S.Eilenberg and D. Mongomery [2] gave the fixed point formula of acyclic
mappings which is a generalization of Lefschetz’s fixed point theorem. L.
Gérniewicz [6] has studied set-valued mappings and fixed point theorems for
acyclic mappings. In this paper, the author shall give a proof of a coincidence
theorem for a Vietoris mapping and a compact mapping and prove Borsuk-
Ulam type theorems for a class of set-valued mappings.

When a closed subset ¢(z) in Y is assigned for a point z in X, we say that
the correspondence is a set-valued mapping and write ¢ : X — Y by the Greek
alphabet. For single-valued mapping, we write f : X — Y etc. by the Roman
alphabet. A set-valued mapping is studied particularly in Chapter 2 in [6].
We assume that any set-valued mapping is upper semi-continuous.

The following theorem is our main theorem (cf. Theorem 2.7). From the
theorem we obtain the fixed point theorem for admissible mapping.

Main Theorem 1. Let X be an ANR space and Y a paracompact Hausdorff
space. Let p : Y — X be a Vietoris mapping and q : Y — X be a compact
mapping. Then (p*)~'g* is a Leray endomorphism. If the Lefschetz number
L((p*)~*q*) is not zero, there exists a coincidence point z € Y, that is, p(z) = q(2).

Borsuk-Ulam type theorems are proved in the following theorems which
are the generalizations of Theorem 43.10 in L.Gérniewicz [6]. (cf. Theorem
3.5, Theorem 3.9). The author shall give the related results and the detail
proofs in [13].

Main Theorem 2. Let N be a paracompact Hausdorff space with a free in-
volution T and M an m-dimensional closed topological manifold. If a set-
valued mapping ¢ : N — M is x-admissible and satisfies ©* = 0 for posi-
tive dimension and c(N,T)™ # 0, then there exists a point to € N such that
e(zo) N @(T(z0)) # 0. Moreover if N is an n-dimensional closed topological
manifold, it holds dim A(p) 2 n—m where A(p) = {z € N | p(z)Np(T(z)) # 0}.

Main Theorem 8. Let N be a closed topological manifold with a free involu-
tion T which has the homology group of the n-dimensional sphere and M be
a closed topological manifold. If a set-valued mapping ¢ : N — M is admis-
sible and o(N) # M and n = m, then there exists a point o € N such that
o(zo) N(T'(x0)) # 0. Moreover it holds dim A(yp) 2 n—m and IndA(p) 2 n—m.
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2 Coincidence Theorem

We give some remarks about several cohomology theories. Alexander-
Spanier cohomology theory H*(—) is isomorphic to the singular cohomology
theory H*(—) (cf. Theorem 6.9.1 in [14]), that is,

B*(X) & H*(X)

if the singular cohomology theory satisfies the continuity: limm H*(U) =
H*(x) where {U} is a system of neighborhood of z.

For a paracompact Hausdorff space X, it holds also the isomorphism be-
tween Cech cohomology theory H*(—) with a constant sheaf and Alexander
cohomology theory A*(—) (cf. Theorem 6.8.8 in [14])

H*(X) = H*(X).

For a locally compact subset A of Euclidean neighborhood retract X (cf. Chap-
ter 4 in [1]), it holds also the isomorphism between Cech cohomology theory
H*(-) and the singular cohomology theory H*(-)

H*(A) = im H*(U)
w3

where U is a neighborhood of A in X. For Euclidean neighborhood retract X,
it holds also the isomorphism H*(X) = H*(X). Hereafter we use Alexander-
Spanier (co)homology theory with a field as the coefficient and use the nota-
tion H*(X) instead of A*(X). When we have to distinguish them, we use the
corresponding notation.

For a covering U of X, the simplicial complex K (/) called the nerve of I{ is
defined in §1.6 of Chapter 3 in [14] and the simplicial complex X (i) called the
Vietoris simplicial complex of U/ is defined in §5 of Chapter 6 in [14]. They are
chain equivalent each other (cf. Exercises D of Chapter 6 in [14]). Clearly by
the definition of Alexander cohomology theory, we have the isomorphism:

lim H*(C*(X (U)) = H(X).
{u}

We have the cross products i : H*(X, A) ® H*(Y, B) — H*((X, A) x (Y, B))
and u : H*(X,A) ® H*(Y,B) — H*((X,A) x (Y, B)) and the natural transfor-
mation 7 : H(-) — H*(—) which satisfy the commutativity u(r ® 7) = 7.

In this paper, we shall work in the category of paracompact Hausdorff
spaces and continuous mappings. We give some definitions and notation. Let
wY¥ € H,(U,U — K) be the cycle such that (i,).(w%) = w, € Ha(R*,R" — z)
where i, : (U,U — K) — (R",R™ — ). Define 7 € H*(R",R" — 0) the dual
cocycle of wp.

Definition 1. Define a class 7% € H"((U,U — K) x K) by v% = d*(v) where
d: (U U-K)x K— (R*,R" — 0) defined by d(z,y) =z —y.
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Definition 2. A mapping f : X — Y is called a Vietoris mapping, if it satisfies
the following conditions:

1. fis proper and onto continuous mapping.
2. f~Y(y) is an acyclic space for any y € Y, that is, H*(f~(y) : G) = 0.

When f is closed and onto continuous mapping and satisfies the condition (2),
we call it weak Vietoris mapping (abbrev. w-Vietoris mapping).

Note that a proper mapping is closed mapping. We need Alexander-Spanier
cohomology for the proof of the Vietoris theorem (cf. Theorem 6.9.15 in [14]).

Theorem 2.1 (Vietoris). Let f : X — Y be a w-Vietoris mapping between
paracompact Hausdorff spaces X and Y. Then,

ff+H (Y :G) » H(X : G)
is an isomorphism for all m 2 0.

A mapping f: X — Y is called a compact mapping, if f(X) is contained in
a compact set of Y, or equivalently its closure f(Y') is compact.

Definition 8. Let U an open set of the n-dimensional Euclidean space R™ and
Y be a paracompact Hausdorff space. For a w-Vietoris mappingp:Y — U
and a compact mapping q : Y — U, the coincidence index 1(p,q) of p and q is
defined by

I(p, q)wo = G.(B); " (wk)
where K is a compact set satisfying q(Y) C K C U,and 5: (Y)Y — p~}(K)) —
(ULU—-K)and §: (Y,Y —p Y(K)) — (R*,R" — 0) are defined by p(y) = p(y)
and §(y) = p(y) — q(y) respectievly.
Lemma 2.2. It holds a formula:

du(1 X gs(ps) ) As(wi) = I(p, 9)wo
where A(z) = (z,z), d(z,y) =z —y.

In this section, we give a proof of the coincidence theorem which is different
from L.Gérniewicz [5, 6] and depends on the line of M. Nakaoka [8]. The
following theorem is easily verified.

Theorem 2.3. Let U be an open set of the n-dimensional Euclidean space R"
and Y a paracompact Hausdorff space. For p : Y — U a w-Vietoris mapping
and q: Y — U a compact mapping, if the index I(p, q) is not zero, there exists a
coincidence point z € Y, that is, p(z) = q(2).

Let V be a vector space and f : V — V a linear mapping. Let f* be the
k time iterated composition of f. Set N(f) = Uy, ker f* a subspace of V and
V = V/N(f). Then f induces the linear mapping F:v — V which is a
monomorphism. When dimV < oo, we define Tr(f) by Tr(f). In the case of
dim V < oo, it coincides with the classical one Tr(f).
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Definition 4. Let {V}, be a graded vector space and f = {fr : Vi — Vi}i
graded linear mapping. Define the generalized Lefschetz number for the case
of 3 k2o dim Vi < oo:

L(f) = ) _(-1)*Tx(fi)

k20

In this case, f = {fx}« is called a Leray endomorphism.

Lemma 2.4. In the following commutative diagram of graded vector spaces:

Ve —2%- W,

i b

Vk ka

Ifone of f = {fx}r and g = {gr}« is a Leray endorﬁorphism, the other is also a
Leray endomorphism, and L(f) = L(g) holds.

The following theorem is a new proof of a coincidence theorem which is
based on M.Nakaoka [8].

Theorem 2.5. Let U be an open set in the n-dimensional Euclidean space R™
and Y a paracompact Hausdorff space. Letp: Y — U be a w-Vietoris mapping
and q : Y — U be a compact mapping. Then (p*)~'¢* : H*(U) — H*(U) isa
Leray endomorphism and we have the following formula:

L((p*)*¢") = I(p,q)

Especially, if the Lefschetz number L((p*)1q*) is not zero, there exists a coinci-
dence point z € Y such that p(z) = ¢(2).

Proof. At first we remark that there exists a finite complex K in U such
that ¢(Y) ¢ K c U. Here we subdivide U into small boxes whose faces are
parallel to axes and construct the complex K by collecting small boxes which
intersect with f(Y). Consider the following diagram:

H(U) — s H*(K)
="

H(Y) —& H*(p Y(K))

(p‘)'ll l(p")"‘

H*(U) ——~ H*(K)

where p/, ¢’ are restriction mappings of p, ¢ to the subspace p~!(K) respec-
tively and ¢” : Y — K is defined by ¢ = ¢”j and ¢ = iq”. Since (p"*)~'¢"* :
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H*(K) — H*(K) is a Leray endomorphism, (p*)~!q¢* : H*(U) — H*(U) is also a
Leray endomorphism by Lemma 2.4. Then, we have

L((p™)7'¢") = L") "'q").
Consider the following diagram:

H*(K) — H*(K)

l@‘)—lqllt l(plm)—lqln
HU) -  HY(K)
l( —)Nwi T(-l)"'n‘é/(—)

H,(U,U - K) —=— H.(U,U - K)

Clearly the upper square is commutative. The commutativity of lower square
is proved by Lemma 3 in [8] for the singular (co)homology theory, that is,
*(z) = (-1)E/(z nwf) for z € HYU). Here since K is a finite complex,
i* : H*(U) —» H*(K) of Alexander-Spanier cohomology coincides with the one
of the singular cohomology. We use i* of the singular cohomology to calculate
i* of Alexander-Spanier cohomology. Note that Alexander-Spanier cohomology
groups H*(U), H*(U,U-K), H*((U,U-K) x K), H*(K) are coincide with ones
of the singular cohomology.

Let {ax}, {B.}, {7} be basis of H*(U), H*(U,U — K), H*(K) respectively.
We represent v% € H*((U,U — K) x K) as follows:

T = Zcﬁwﬁu X Yo
Hov

Since p* is isomorphic, we set
(p*)~ - 7" (%) = Zm,\ea,\
A

We calculate the Lefschetz number L((p*)~1¢"*):

( 1)0(p/*) 1 l#(,YE) — ( 1)qz (p) -1 ”*('YE)
i/ (") g™ (ve) Nwi)
= ch(ﬁp x 1)/ (@) "™ (ve) N w)

= ZC"" < ﬂm (p ) -1 ”*(75) N wK >V
= ZCI-W < ;B;u Zmz\fa)\) N wK > Y

= Z CupMiyg < ﬁp U CVA"wK > Y
PTRY
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Hence we obtain a result :

L((P")7'¢") = Y cugmag < Bu U an, wi >
At

Next we calculate the incidence index I(p, q):

Ipg) = <A(1x @)™ AY),wl >
= Y cw < A" (B x (0) ¢ (w), vl >

124 A

§ U
Ay

From these results, we have L((p™)~'¢*) = I(p,q). Since L((p™*)~1¢"*) is equal
to L((p*)~'q*), we obtain the result L((p*)~1¢*) = I(p, q).

We obtain the second statement by the above result and Theorem 2.3.
Q.E.D.

We can generalize the result above to the case of ANR spaces through the
line of L. Gérniewicz [5, 6] by using the approximation theorem of Schauder.

Theorem 2.6. Let U be an open set in a norm space E and Y a paracompact
Hausdorff space. Let p : Y — U a w-Vietoris mapping and q : Y — U be a
compact mapping Then (p*)~'q* is a Leray endomorphism. We assume that
the graph of qp~! is closed. If the Lefschetz number L((p*)~q*) is not zero, there
exists a coincidence point z € Y, that is, p(z) = q(z2). ‘

Theorem 2.7. Let X be an ANR space and Y a paracompact Hausdorff space.
Let p: Y — X be a Vietoris mapping and q : Y — X be a compact mapping.
Then (p*)~'q* is a Leray endomorphism. If the Lefschetz number L((p*)q*) is
not zero, there exists a coincidence point z € Y, that is, p(z) = q(2). '

3 Borsuk-Ulam Type Theorem

When M has an involution 7, the equivariant diagonal A : M — M x M
is given by A(z) = (z,T(z)). If T is trivail, A is the ordinary diagonal. The
involution T on M? is given by T(z,z') = (¢/,z). Hence A is an equivariant
mapping. Hereafter, we use the same notation for involutions, if there is not
confusion. M.Nakaoka defined the equivariant Thom class in Lemma 2.2 of
[12] (cf. §1 in [10D):

Un € H™(S® x, (M?, M? — AM))
where the involution T on §® x, M? is given by T(z,v,v') = (Tz,v, ).
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For a paracompact Hausdorff space N with a free involution T, there exists
an equivariant mapping h: N — S*. We also define the element:

Unp € HMN xn (M?, M? — AM)

by Unas = (b xr idas2)*(Ons) for h xpidpz : N xq (M2, M2 — AM) — S® X,
(M?, M? - AM). Set

AN =j*(ﬁN,M) € Hm(N X Mz)

where j : N x, M?> — N x, (M? M? — A(M)). In the case of N = S and
the trivial involution T on M, M.Nakaoka determined 6., by Proposition 3.4
in [11]. '

A mapping f, : N, = N x, M? is defined by f.(z) = (z, f(z), f(Tx)). Since
we use Alexander-Spanier cohomology theory in this paper, we must treat
carefully the results of M.Nakaoka. The following theorem is given in Theo-
rem 3.5 in [11].

Theorem 3.1 (Nakaoka). Let N be a paracompact Hausdorff space with a
free involution T, and M be an m-dimensional closed topological manifold.
Let {a1,...,0,} be a basis for H*(M), and set

du([M)) = mjxa; x ax  (njk € Z/2)
Jik :

where a; = o; N [M]. Then, for any continuous mapping f: N — M, it holds

Fr68) =" ™ Q(f*v) + D (nsk + migmee) 8™ (F* (i) UT* f*(ew)) (D)

i20 <k

where ¢ = ¢(N,T) and v; = v;(M) Wu class of M and ¢* : H*(N) — H*(N,) is
the transfer homomorphism.

The next theorem is proved in Proposition 1.3 in [10].

Theorem 3.2. Let N be a paracompact Hausdorff space with a free involution
T and M a closed topological manifold. If a continuous mapping f : N - M
satisfies f*(0n) # 0, the set A(f) = {y € N | f(y) = f(Ty)} is not empty set.

Definition 5. A set-valued mapping ¢ : X — Y is called admissible, if there
exists a paracompact Hausdorff space T satisfying the following conditions:

1. there exist a Vietoris mapping p : ' — X and a continuous mapping
qg:I'->Y.

2. o(x) D g(p~i(z)) foreach z € X.
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¢ : X — Y is called w-admissible, if it satisfies the condition (2) and p is a
w-Vietoris mapping.

A pair (p,q) of mappings p, q is called a selected pair of . If p : X - Y
satisfies the first condition and ¢(z) = q(p~!(z)) for each = € X, it is called s-
admissible mapping.

Definition 6. A set-valued mapping ¢ : X — Y is called x-admissible map-
ping, if it is admissible and satisfies p, : 'y, — X induces an isomorphism
Py HY(X) = H'(T,)

Theorem 3.3. Let X be an ANR space and ¢ : X — X compact admissible

mapping. If L(*) contains non-zero element, there exists a fixed point z, € X,
that is, g € SO(IEQ)

Proof. We can choose a selected pair (p,q) where a Vietoris mapping p :
I' -+ X and a compact mapping ¢ : ' — X. We may assume L((p*)'¢g*) # 0.
By Theorem 2.7, there exists a coincidence point z € I" such that p(z) = ¢(z).
we obtain the result. Q.E.D.

Let N be a paracompact Hausdorff space with a free involution 7 and M
a closed topological manifold without involution. For a set-valued mapping
¢:N — M, N is defined by

N={(z,y,y) e Nx M? |z € N, y € p(z), ¥ € p(T(z)) }

A free involution T on N is given by T(z,v,v') = (Tz,v,y). : N — N is the
projection. The following Lemma is a key result.

Lemma 3.4. Let ¢ : N — M be an admissible mapping with a selected pair p :
I' > Nand q: T — M. Then H*(N) and H*(N,) have direct summands H*(N)
and H*(N,) respectively. Moreover if N is a metric space and Ais a T-invariant
closed or open subspace of N, then H*(N — p~'(A)) and H*(N, — p-'(A,)) have
direct summands H*(N — A) and H*(N, — A,) respectively.
Theorem 3.5. Let N be a paracompact Hausdorff space with a free involution
T and M an m-dimensional closed topological manifold. If a set-valued map-
ping ¢ : N — M is x-admissible and satisfies ¢* = 0 for positive dimension
and c¢(N,T)™ # 0, then there exists a point zo € N such that ¢(xo) N (T (zo)) #
0. Moreover if N is an n-dimensional closed topological manifold, it holds
dim A(p) 2 n — m where A(p) = {z € N | ¢(z) N p(T(z)) # 0}-

Proof. We can define a free involution T on N by T(z,y,7) = (T(z),v,v)
and a mapping ¢: N — M by ¢(z,y,y’) = y. We note:

A@) ={(z,y,v) € N |y € $(2), y € 3(T(x))}
Now consider the following diagram:

M
ﬁl& 2
N <5 Te
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where 5(z,y,y') = z, §/(z,y,¢) = (z,y) and p,(2,y) = 2, go(z,y) = ¥.

We see 3* = 0 from ¢* = 0. The mapping 5 : N — N is m-equivarint, that
1s p(T(m Y,y )) T(p(a: y,y')). Since p. is injective by Lemma 3.4. We have

= ¢(N,T)™ p%(c™) # 0 because of T-equivariant mapping 5: N — N.

Now we calculate @*(05). Since we have ¢*(¢*(a;) U T*@*(ax)) = 0 and
(@ (w)) = 0 for i > 0 from our condition and ¢™Q(g*(vg)) = &™ # 0, we
obtained ¢*(65) = &™ # 0 from the formula (1) in Theorem 3.1. We conclude
A(p) # 0 from Theorem 3.2. Hence we obtain the former result.

Since N — A(@), N — 5~ 1A(p), N - A( ) have natural involutions induced
by T, T, we obtained Ny — A(3)x, Nx — 52 A(@)r, Ny — A(@)r. For the latter
proof, we consider the following dxagram'

H* (N, Ny = A@)r) Lo B (W) = H*(N, - A@)n)

I J« I

H*(Ny, Ny — 572 A()r) 2 HY(N,) —2 H*(N, — 571 A(@)r)

Tﬁ;r Tﬁ; Iﬁ;n
H*(Nme _A(‘P)w) __.7_3_} H*(Nw) __%3_) H*(Nw—A(‘P)ﬂ')
where k;, k; are induced by natural inclusions and p,, p, are induced by 5.
Here we note H*(—) = H*(—) for manifolds. Since A(y) is a m-invariant closed
subset of N, we have an into-isomorphism (B2)r + H *(N A((p) ) — H*(N, -
p7'(A(¢)x)) by Lemma 3.4. We note that cp,r(ﬂN) = ¢™ # 0 is an image of
c™ € H*(N,), that is, (p.)*(c™) = ¢™. Since &™ is an 1mage of <p,,(UN ») under
Ji, it holds i3(¢™) = 0. From th1s we see (fq)ri3(c™) = i3p5(c™) = (ig)*(@) = 0
in the above dlagram and hence (i3)*(c™) = 0 because of the injectivity of (5)%.
If H™(Ng, Nx — A(p)x) = 0, we easily see ¢™ = 0 which contradicts ¢™ # 0.
Hence we obtain H™(N,, N, — A(p).) # 0.
Since N and N—A(y) are manifolds, the singular homology group H,,(Ny, Np—

A(®)x) # 0 by the universal coefficient theorem. We obtain that the Cech coho-
mology group H" ™(A(y),) # 0 by Poincaré duality. In this case A" ™(A(¢),)

is equal to Alexander-Spanier cohomology group H"™™(A(p)x). We see dim A(¢)r 2
n —m and hence dim A(y) 2 n — m. Q.E.D.

Cororally 3.6. Let N be a paracompact Hausdorff space with a free involu-
tion T which has a homology group of n-dimensional sphere and M be an m-
dimensional closed topological manifold. If a set-valued mapping ¢ : N - M
is x-admissible and satisfies p* = 0 and n 2 m, then there exists a point zo € N
such that o(z¢) N (T(xo)) # 0. Moreover if N is an n-dimensional closed topo-
logical manifold, it holds dim A(yp) 2 n — m.

Let X be a space with a free involution 7" and S* the k- d1mensmna1 sphere
with the antipodal involution. Define
v(X) = inf {k| f:X — S* equivariant mapping}
Ind(X) = sup {k|c*#0}
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where ¢ € H'(X,) is the class ¢ = f}(w) for an equivariant mapping f : X —
S, If X is a compact space with a free involution, it holds the following
formula (cf. §3 in [3]):

Ind(X) £ v(X) £ dim X.

K. Geba and L. Gérniewicz determined IndA(yp) of an admissible mapping
@ : S™tk & R™ in [3]. We generalize their result.

Cororally 3.7. Let N be a closed topological manifold with a free involu-
tion T which has a homology group of n-dimensional sphere and M be an m-
dimensional closed topological manifold. If a set-valued mapping ¢ : N - M
is x-admissible and ¢* = 0 and n 2 m, it holds IndA(p) 2 n — m.

Proof. At first, we remark commutativity of the following diagram for n-
dimensional closed topological manifold X and a closed subset Y of X:

Hi(X) I HJ(X, X -Y)

l—\Uo l—\Ux

HHX) —=—  H"kY)

where Uy, U, are restrictions of U € H"(X? X? — d(X)) for k : (X2,0) —
(X%, X2 -d(X)), I : (X, X -Y)xY — (X? X? — d(X)) respectively. Here the
vertical arrows are Poincaré isomorphisms.

We apply the above diagram for the case X = N,, Y = A(y). In the proof of
the Theorem 3.5, we find a class a € H™(N,, N, — A(p)) such that j*(a) = c™.
Let b € Hn,(Nr) be the dual element of ¢ € H™(N,) and a € Hy,(Ng, Ny —
A(p)x) be the dual class of a. Then we obtain j,(b) = a # 0. Since the Poincaré
dual of b is ¢*~™, we obtain *(¢)*™ = *(c®™) # 0 by the above diagram.
Hence we obtain the result. Q.E.D.

Theorem 3.8. Let N be a paracompact Hausdorff space with a free involution
T and M be an m-dimensional closed topological manifold which has a ho-
mology group of m-dimensional sphere. If a set-valued mapping ¢ : N — M is
admissible and satisfies ¢(N,T)™ # 0 and ¢(N) # M, then there exists a point
zq € N such that o(zo) Ne(T(zo)) # 0 Moreover if N is an n-dimensional closed
topological manifold, it holds dim A(p) 2 n —m.

Proof. We use the notation and method in the proof of Theorem 3.5. A
homology group of M’ = M — {a} is trivial for positive dimensions by a homol-
ogy group of M. From the fact and ¢(N) # M, we have ¢* = 0 for positive
dimensions. We see that ¢™ = ¢(/N,T)™ # 0 by our assumption. By the similar
method of Theorem 3.5, we see

¢ (05) =" #0

by ¢* = 0 for positive dimension and ¢(N,T)™ # 0. Hence there exists a point
2o € N such that ¢(z) = ¢(T'(20)). We obtain ¢(zo) N (T (o)) # 0 for zo € N.
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We can prove the last statement as in the proof of Theorem 3.5. We omit the
proof. ‘ Q.E.D.

Theorem 3.9. Let N be a closed topological manifold with a free involution T
which has the homology group of the n-dimensional sphere and M be a closed
topological manifold. If a set-valued mapping ¢ : N — M is admissible and
©(N) # M and n 2 m, then there exists a point zo, € N such that p(zo) N
©(T(xz0)) # 0. Moreover it holds dim A(¢) 2 n — m and IndA(p) 2 n — m.

Proof. We use the notation and method in the proof of Theorem 3.5. We
remark v;(M) = 0 for i > 2 by the definition of Wu class. Therefore we see
@(vi(M))) = 0 for ¢ > 0 because of H*(N) = H*(S™). We see also ¢*(¢*(a;) U
T*¢*(a;)) = 0 by H*(N) = H*(S") and dega; + dego;; = m and ¢*(ao) = 0 for
the class ag such that deg oy = m. Note é™ = ¢(N,T)™ # 0 by our assumption.
From this remark we see

@' (05) = & = (N, T)™ # 0.

Therefore there exists a point z, € N such that $(z) = &(T(z)). We obtain
©(zo) N (T (zo)) # O for zp € N. We can prove the last statement as in the
proof of Theorem 3.5 and Corollary 3.7. We omit the proof. Q.ED.
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