goooboooogn
0 15690 2007 0O 81-93

On 8-manifolds with SU(3)-actions

KERT U RFEFAN  BAR SUKER (Shintars Kuroki)
Osaka City university Advanced Mathematical Institute

ABSTRACT. In this article, we study about compact manifolds which have
SU(3)-actions with codimension one orbits. We get more precise classification
than the paper of Gambioli [G].

1. Why do we consider 8 dimensional manifolds?

The purpose of this paper gives the outline to classify compact manifolds which
have SU(3)-actions with codimension one orbits in some case. Obviously codimen-
sion one orbits are principal orbits in this case, where principal orbits mean orbits
which have the largest dimension. We also remark dim SU(3) = 8. So the dimen-
sion of the manifold M which have SU(3)-actions with codimension one orbits must
be less than or equal to 9, that is, dim M < 9. In this section we mention why 8
dimensional manifolds. ' ‘

Through all of this paper, we will use the classical Lie theory, the transforma-
tion group theory and the Lie group representation theory. The referenaces of the
classical Lie theory (in particular the classification result of compact Lie groups)
are [MT91], of the transformation group theory is [B72] and [Ka91] and of the
Lie group representation theory is [Y'73]. Sometimes we will use the classification
result about transitive actions on sphere in [HH65).

1.1. The cases whose dimension is less than or equal to 4. First we
consider the cases dim M < 4. From the following proposition, there is no non-
trivial SU(3)-action on such M.

PROPOSITION 1.1. If a compact manifold M such that 0 < dim M < 4, then
there is no SU(3)-actions on M with codimension one principal orbits.

ProOOF. If dimM = 0, the SU(3)-action is trivial action. Hence the case
dim M = 0 does not occur.

If dimM = 1, M is a 1-dimensional circle S* because M is compact. Since
SU(3) can not act on S* non-trivially (by [HH65)), the SU(3)-action is also trivial.
Hence the case dim M = 1 does not occur.
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If dim M = 2, a principal orbit is 1-dimensional compact manifold. So a prin-
cipal orbit must be S*. However SU(3) does not act on S* (by [HH65]). Hence
the case dim M = 2 does not occur.

If dim M = 3 then a principal orbit is 2-dimensional compact manifold G/K,
where G = SU(3) and K is its compact subgroup. Since dim G/K = dim G—dim K,
dim G = dim SU(3) = 8, and the dimension of the maximal torus of SU(3) is 2
(rank SU(8) = 2),

dimK =6, rank K < 2.

Therefore the universal covering of K° is SU(2) x SU(2) (by the classification result
in [MT91]). Hence rank G = rank K°. Since H°%(G/K°) = 0 (iff rank G =
rank K°, see [U77] or [Ku]) and G/K? is orientable and compact 2-dimensional
manifold, G/K? is the 2-dimensional sphere S2. This gives a contradiction, because
SU(3) can not act on S? non-trivially (by [HH65]). Hence the case dim M = 3
does not occur.

If dim M = 4, a principal orbit is 3-dimensional compact manifold G/K. Then
the dimension of K is 5. However there are not 5-dimensional Lie group K which
satisfies rank K < 2 (see [MT91]). Hence the case dim M = 4 does not occur.

Therefore we conclude the statement of this proposition. O

From the proof of Proposition 1.1, we also have the following corollary.

- COROLLARY 1.2. If 0 < dim M < 3, there is no non-trivial SU(3)-action on
M.
1.2. The case whose dimension is 5. Next we consider the case dim M = 5.

Sometimes we denote such manifold by M.
First we prove the following lemma.

LEMMA 1.3. Orbits of an SU(3)-action on M® with codimension one principal
orbits SU(3)/H are not singular orbits, that is, all dimension of orbits are 4.

PROOF. If there is an singular orbit (whose dmension is less than 4), then the
sngular orbit must be one point because there is no K such that 1 < dim SU(3)/K <
3 by the proof of Proposition 1.1. Therefore its isotorpy subgroup SU(3) has rep-
resentation to O(5) and SU(3) acts transitively on S4 through this action because
of the differentiable slice theorem (see e.g. [B72] or [Ka91]). However there is no
such action by [HH65]. Therefore there is no singular orbits. O

Since H satisfies dim H = 4 and rank H < 2, it is isomorphic to U(2) (see
[MT91]). Hence S(U(1) xU(2)) ~ H C SU(3). Because H is a maximal subgroup,
that is, H C H then H = H or SU(3), we see that there is no exceptional orbits.
Therefore M®/SU(3) ~ S. Moreover there is no fixed points in this case because
there is no transitive SU(8)-action on S4 C R® by [HH65]. Hence we have the
follwing proposition.

PROPOSITION 1.4. A compact SU(3)-manifold M5 with codimension one orbits
is equivariant diffeomorphic to

M} = SU(3) xswayxv@) S*
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where S(U(1) x U(2)) acts on S* through the following representation p : S(U(1) x

U(2)) — U(1):
I

where t € U(1) and A € U(2) such that t =det A~! and [ € Z.

REMARK 1.5. M} is the restricted circle bundle of the complex line bundle
over CP(2) such that its first chern class is .

Finally in this subsection, we remark the following corollaries.
Because of the proofs of Proposition 1.1 and Lemma 1.3, the following corol-
laries can be shown.

COROLLARY 1.6. If M* has a non-trivial SU(3)-action, then this action is
transitively and M* = CP(2) ~ SU(3)/S(U(1) x U(2)).

COROLLARY 1.7. There is no SU(3)-action on M® with codimension less than
or equal to two orbits.

1.3. The case whose dimension is 6. Next we consider the case MS, that
is, dimM = 6. Let K C SU(3) be a subgroup such that dimK = 3. Then
K° = SU(2) or SO(3) by [MT91]. So we have the following lemma.

LEMMA 1.8. Let K C SU(3) and dim SU(3)/K = 5. Then K° ~ SU(2) or
SO(3).

First we consider the case K° = SO(3). Let SU(3)/S0O(3) = L (the notation
of Gambioli in [G]). Now N(SO(3)) ~ Zs x SO(3), where N(SO(3)) is a normal
subgroup of SU(3) and Z3 C U(1) is a center of SU(3). Hence in this case there is
no singular orbits because if H is a singular isotropy subgroup then K C H C SU(3)
and H/K ~ 8™ (1 < m < 6). Therefore we have the following proposition.

PROPOSITION 1.9. If an SU(3)-manifold M® has codimension one orbits with
SO(3) as their connected components, then all orbits are principal orbits and M®
is equivariant diffeomorphic to one of the following manifolds:

Lx S, SU(3)/N(SO@®)) xS, SU(3) xno@) S
where in the last case N(SO(3)) acts on S! by the following representation:
N(SO3)) ~Z3 x SO(3) - Z3 — U(1)
by the natural inclusion Z3z C U(1).

Next we consider the case K° = SU(2). Then N(SU(2)) ~ S(U(1) x U(2)).
Therefore all subgroups K C SU(3) such that dim K = 5 are isomorphic to

K5 "U@”'“'{( 0 fi) e S(U() x U®) |t eZi cUQ) t‘=1},

where [ € N (if [ = 1 then Z; = {1}, that is, S(Z; x U(2)) = SU(2)). If there is no
singular orbits and exceptional orbits, by the similar argument of Proposition 1.4
. we have the following proposition.
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PROPOSITION 1.10. If an SU(3)-manifold M® has codimension one orbits with
SU(2) as their connected component and all orbits are principal orbits, then M® is
equivariant diffeomorphic to one of the following manifolds:

MZG = SU(3) Xs(zle(g)) Si, SU(3)/S(Z( X U(Z)) X Sl o~ 85/21 X Sl,

where | € N (Z; = {1}) and in the left case S(Z; x U(2)) acts S* through the
following representation:

S(Z, xU(2)—=2Z; - UQ1)
by the natural projection S(Z; x U(2)) — Z; and the natural inclusion Z; — U(1).
Remark that MP = $5 x S

Next we assume there is a singular orbit G/K;. Since S(Z; x U(2)) C K; and
dim S(Z; x U(2)) < dim K, we see that K; ~ S(U(1) x U(2)) or SU(3). Moreover
because of Theorem 8.2 in [B72] and the differentiable slice theorem, we see that
there are two singular orbits G/K;, G/K, =~ SU(3)/S(U(1) x U(2)) or {*} and
there are two type slice representations p; : K; =~ S(U(1) x U(2)) = U(1) ~ SO(2)

such that
t O
‘”( 0 A ) =t

where t = det A™1, 1 > 1 for i = 1, 2, or the natural inclusion ¢; : K; ~ SU(3) —
SU(3) € SO(6). Therefore we see that the tubular neighborhood X; of G/K; is
unique and there are three cases:

(1) X1 =X,= D8 cC8, .

(2) X1 =X, =58U(@3) xswayxv() D?

. (8) Xy = D8 ¢ C® and Xy = SU(3) XS(UQ)xU(2)) D?

where the slice representation p; of X; in the second case and the last case (i = 2)
is defined by I = 1. By the Uchida’s criterion (see [G]) and the connectedness of
N(S(Z; x U(2))) = S(U(1) x U(2)), we have that the attaching map 8X; — 80X,
is also unique. Therefore we have the following proposition.

PROPOSITION 1.11. If M® has an SU(3)-action with codimension one orbits
and singular orbits, then M® is equivariant diffeomorphic to one of the following
manifolds:

S®cC®*eR, SUQ3) xswuxu() S*(C:®R), CP(3)
where S%(C; ®R) is a 2-dimensional sphere and has S(U (1) x U(2))-action through

0.

REMARK 1.12. SU(3) xswyxv(2) S2(C: @ R) is the projectification of the
complex line bundle over CP(2) such that its first chern'class is l.

‘We omit the case which has exceptional orbits (we can easily see that such case
satisfies M®/SU(3) ~ S* and there exists infinitely many cases).

Finally in this subsection, we remark the following corollaries.
Because of Lemma 1.8 and the above arguments, we have the following corol-
lary.
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COROLLARY 1.13. If M® has a transitive SU(3)-action, then M? is equivariant
diffeomorphic to one of the followings:

SU(3)/S0O(3), SU(3)/N(50(3)), SU(3)/S(Z; x U(2)).

Because of the proofs of Proposition 1.1 and Lemma 1.3, the following corol-
laries can be shown .

COROLLARY 1.14. If M® has an SU(3)-action with codimension two princi-
pal orbits, then all orbits are principal orbits CP(2) and and there is a fibration

CP(2) — M® 5 %2 where 7 is a projection to the orbit space and the orbit space
T2 is a 2-dimensional manifols.

COROLLARY 1.15. There is no SU(3)-action on M® with codimension less than
or equal to three orbits.

1.4. The case whose dimension is 7. Next we consider the case M7, that
is, dimM = 7. If H C SU(3) such that dim H = 2 then H® ~ T? (maximal torus
in SU(3)) by [MT91]. So we have the following lemma.

LEMMA 1.16. Let K C SU(3) and dim SU(3)/K = 6. Then K° ~ T?.
Therefore we have the following proposition.

PROPOSITION 1.17. Let M be a transitive SU(3)-manifold. Then M? is equi-
variant diffeomorphic to one of the following manifolds:
SU(3)/T?, SU(3)/(Zz xT?), SU(3)/(Z3xT?), SU(3)/N(T?),

where N(T?) is a normal subgroup of T2 in SU(3) and Z; x T2 and Z3 x T? are
subgroups of N(T'?) with the same connected component T2,

Therefore candidates of principal orbits are the above 4 manifolds.

We omit the cases which satisfy all orbits are principal orbits and there exist
an exceptional orbit.

Assume there is a singular orbit,

Because rank SO(3) = 1 = rank SU(2) and the connected component of the
principal isotorpy subgroup need to include T2, the singular isotropy subgroups
are isomorphic to S(U(1) x U(2)) by Corollaries 1.6 and 1.13. Hence the following
lemma holds because Z3 x T2 ¢ S(U(1) x U(2)) (also see Section IV Theorem 8.2
in [B72]). ,

LEMMA 1.18. Assume M7 has an SU(3)-action with codimension one orbits
and singular orbits. Then there is just two singular orbits

{x} or CP(2)~SU(3)/S(U(1) xU(2)),
there is no exceptional orbits and the principal orbit is
SU(3)/T? or SU(3)/(Z2 x T?).

Let us consider the slice representation of singular orbits. Assume K; =
S(U(1) x U(2)). Because K; acts on the normal sphere S? transitively through
the slice representation, so the slice representation p; : K; — SO(3) need to be
surjective. Now we can consider

S(UQ) x U(2)) = {( t: t?4 > | teU(l), A€ sd(z)}.
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Then the slice representation p; : K; =~ S(U(1) x U(2)) = SO(3) is unique up to
equivalence by [Y 73], as follows:

o ( t: M ) = 7(A) € SO(3),

where 7 : SU(2) — SO(3) is the double covering. Assume K; = SU(3). In this
case K; acts on the normal sphere S® transitively through the slice representation.
However SU(3) does not act on S® transitively. Therefore all principal orbits are
SU(3)/T? and two tubular neighborhoods X; =~ X, ~ SU(3) xsw)xu(2)) D? of
G/K, ~G/K,~ SU(3)/S(U(1) x U(2)) are unique. Hence we only need to study
about attaching maps.

Consider the attaching maps. Because we can take an attaching map f : 0.X; ~
G/K — G/K ~ 80X, form N(K)/K and K = T?%, N(T?)/T? ~ Ss, so we see that
there are at most 6 attaching maps. Since we can consider T2 C SU(3) is a diagonal
subgroup, N(T?)/T? is as follows:

100 0 0 -1 0 1 0
I={o0o10},z=(1 0 0 J,z='=( 0 0 -1},
0 0 1 0 -1 0 -1 0 0
1 0 -1 0 0 0 1
B=| -1 0 0 |,y=(0 -1 0 :
0 0 -1 1 0 0

Let M( f) X1 Uy X, where f € N(T?)/T?%. By the Uchida’s criterion (see [G])
and zz~! = I, we see that M(z) ~ M(z™!). Fix K; = S(U(1) x U(2)) Cc SU(3).
Because o € S(U(1) x U(2)) = K3, we can easily have M(a) ~ M(I) (see [UT7]
or [Ku]). Since Bz = o = yz~!, we also have M(8) ~ M(z) ~ M(z~1) ~ M(v).
Therefore there are two cases M(J) and M(f).

PROPOSITION 1.19. If M7 has an SU(3)-action with codimension one orbits
and singular orbits, then M7 is equivariant diffeomorphic to the following manifolds:

S7, SUM) xswmxv@e) SSR>®R),

where in the left case SU(3) acts on S7 C su(3) ~ R® (Lie algebra of SU(3)) by
the adjoint SU(3)-action on su(3) and in the right case S(U(1) x U(2)) acts on
S3(R3 @ R) ~ S3 by the representation o; : S(U(1) x U(2)) — SO(3).

REMARK 1.20. SU(3) xswwxv(2)) S°(R* ®R) corresponds to the second case
Lemma 2.2 (2) in [PV99], that is, K; = K3 and it does not carry any positively
curved SU(3)-invariant metric.

Finally in this subsection, we remark the following corollaries.

Because of the proofs of Proposition 1.1 and Lemma 1.3, the following corol-

laries can be shown.

COROLLARY 1.21. If M7 has an SU(3)-action with codimension three principal
orbits, then all orbits are principal orbits CP(2) and there is a fibration CP(2) —
M7 5 ¥3 where 7 is a projection to the orbit space and the orbit space 3 is a
3-dimensional manifols.

COROLLARY 1.22. There is no SU(3)-action on M7 with codlmensxon less than
or equal to four orbits.
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We omit the cases which satisfy there is codimension 2 dimensional orbits and
the codimension 0 dimensional orbit (transitive case).

Therefore the next considering case is dim M = 8.

2. The case whose dimension is 8

As an easy case, we assume M? is simply connected and has an SU (3)(= G)-
action with codimension one orbits G/K. Then the following structure theorem
holds (see [U77] and Section IV Theorem 8.2 in [B72)).

THEOREM 2.1. Assume M is simply connected has a G-action with codimension
one orbits G/K. Then G/K is a principal orbit and there are just two singular
orbits G/K, and G/Ks. Moreover M is attaching two tubular neighborhoods X1,
X2 of G/K1, G/K, and their boundary 8X, = 80Xy = G/K, that is,

M =X, UX,, 0X; =G/K=6X2

Moreover we have the following lemma (see [U77] or [Ku]).

LEMMA 2.2. If dim M® — dimG/K; > 2, that is, dimG/K; < 6 and M8 is
simply connected, then G/K, is simply connected, hence Ko is connected.

Put as follows:
SU(3)/S(U(1) x U(2)) =P, SU(3)/SO(3) =L, SU(3)/N(SO(3)) =L/Z,,
SU(3)/SU(2) =S, SUB)/N(Z; xU(2))=S/Z;,
SU3)/T*=F, SU(3)/(Z2xT?) =F/Z;, SU(3)/(Zs x T?) =F/Zs,
SU(3)/N(T?) =F/S;,

where [ > 2, S=8% and P = CP(2). First we prepare the following corollary, by

Corollary 1.6, 1.13, Proposition 1.17 and Lemma. 2.2 and because we can easily see
that there is no fixed points.

COROLLARY 2.3. The pair (G/Ki1, G/K3) is one of the following (we gather
two cases (X,Y) and (Y, X)):
(P,P), (P,L), (P,S), (,F)
(L,L), (L,S), (L,F)
(S,8), (§,F)
(F,L/Zs), (F,S/Zy), (F,F), (F/F,F/F’),
where F and F' = Zy, Z3 or S3 = N(T?)/T?.
We will consider each case (we will omit the case ((F/F,F/F"))).

2.1. The case (S,S). In this case singular orbits are SU(2) and dim M8 —
dim S = 3. Moreover we have the following lemma.

LEMMA 24. If K; = SU(2), then the slice representation is the natural projec-
tion (double covering) p; : K; ~ SU(2) — SO(3) and the tubular neighborhoods are
unique. Fiz K; = SU(2) C SU(3) as the (1,1) corrdinate of matriz is equal to 1.
Then we can take the principal isotropy subgroup K as

te U(l)} ,

1 0 0
pTH(SO(2)) = { ( 0t O ) € SU(2) = K, c SU(3)
: 0 0 ¢!
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and N(K) = T? U 2T? where z € Zy so we can put N(K)/N(K)° as

1 00
I3, = 0 0 ¢ .
0 7 0

Because a € SU(2), the following diagram is well-defined and commute:

Gxx, Ki/JK — GJK
I1xryl | Ro
G Xk, K,/ K — G/K,

where the top and the bottom isomorphisms are defined by [g,kK] = gkK, 1 X
ra([9,kK]) = [g9,kaK] and Ry(gK) = gaK. Moreover 1 X rq : 0X; = G Xk,
Ki/K — 9X; can be equivariant extended to X; = G xg, D3 — X;. Hence
the attaching map R, : G/K — G/K can be equivariant extended to X; — X;.
Therefore we see thta two manifolds M (I3) and M(a) are equivariant diffeomorphic

by the Uchida’s criterion. Hence this case is unique and the following proposition
holds.

PROPOSITION 2.5. If M® has SU(3)-action with codimension one orbits and
two singular orbits (S, S), then M? is equivariant diffeomorphic to

SU(3) xsy(z) S*(R° ©R)
where SU(2) acts on the R3-part in S3(R3 @& R) ~ $3 through the natural double
covering SU(2) — SO(3).

2.2. The case (L,L). In this case singular orbits are SO(3) and dim M® —
dim L = 3. Moreover we have the following lemma.

LeEMMA 2.6. If K; = SO(3), then the slice representation is the natural iso-
morphism v; : K; ~ SO(3) — SO(3) and the tubular neighborhoods are unique. Fiz
K, = SO(3) € SU(3) as the real part of SU(3). Then we can take the principal
isotropy subgroup K as

1 0 0
Ll'l(SO(2)) = 0 cosf —sinf | € SO8)=K; C SU(3)
0 sinfé cosé

0§9$27r},

and N(K) = T? U 2T? where z € Zy so we can put N(K)/N(K)° as

-1 0 0
Ig, o= 0 0 1 .
- 0 10

Because a € SO(3), the following diagram is well-defined and commute:

Gxk, K1/K — G/K
1xryel | Ra
G xx, KiJK — G/K,

where the top and the bottom isomorphisms are defined by [g, kK] — gkK, 1 x
ra(lg, kK]) = [9,kaK] and Ry(g9K) = gaK. Moreover 1 X ro : 8X; = G X,
Ki/K — 08X; can be equivariant extended to X1 = G xk, D® — X; because
To : OD3 = K1 /K — 0D is an induced from the orthogonal map D® — D3. Hence
the attaching map R, : G/K — G/K can be equivariant extended to X; — X;.
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Therefore we see that two manifolds M (I3) and M () are equivariant diffeomorphic

by the Uchida’s criterion. Hence this case is unique and the following proposition
holds.

PROPOSITION 2.7. If M® has SU(3)-action with codimension one orbits and
two singular orbits (IL,L), then M? is equivariant diffeomorphic to

SU(3) xs0@3) S*(R® ® R)
where SO(3) acts on the R3-part in S3(R% @ R) ~ S° naturally.

2.3. The case (L,S). In this case we see the following proposition because of
the same arguments in Section 2.1 and 2.2.

PROPOSITION 2.8. If M® has SU(3)-action with codimension one orbits and
two singular orbits (L, S), then M3 is equivariant diffeomorphic to

SU(3)
where SU(3) acts on SU(3) by ¢ : SU(3) x SU(3) — SU(3) such that ¢(4, X) =
AX AL
2.4. The case (P,S). Since G/K, = S, we see that the tubular neighborhood
X2 of § is unique and the principal isotropy group K is
1 0 O
0t O €ESU(RQ)=K,CSU@3) |teUQ1)
0 0 ¢!
by the same argument in Section 2.1.
Since G/K; =P, we see that K; ~ S(U(1) x U(2)) We put S(U(1) xU(2)) as
t-—2
{( - ) lteU(l), AeSU(2)}.
Since dim M® — dimP = 4, K acts on S® transitively and its isotropy group
is conjugate to K. Hence the slice representation is unique and induced from
T! x SU(2)(=~ T* x Sp(1)) action on S® c H ((t,h) - r = hrt~1).
Moreover we see that the attaching map is unique from the same argument in
Section 2.1. Therefore we have the following proposition.

PROPOSITION 2.9. If M8 has SU(3)-action with codimension one orbits and
two singular orbits (P, S), then M?® is equivariant diffeomorphic to

HP(2) = $p(3)/Sp(1) x Sp(2)
where SU(3) acts on HP(2) through the natural inclusion SU(3) — Sp(3).
2.5. The case (P,L). Since G/K, = L, we see that the tubular neighborhood
X2 of L is unique and the principal isotropy group K is
0<6< 27r}
by the same argument in Section 2.2.
Moreover the slice representation (the tubulaar neighborhood) is unique for

G/K; and the attaching map is unique by the same argument in Section 2.4. There-
fore we have the following proposition.

1 0 0
0 cos@ -—sinf | € SO(S) K, C SU(3)
0 sinf cos@
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PROPOSITION 2.10. If M8 has SU(3)-action with codimension one orbits and
two singular orbits (P,L, ), then M8 is equivariant diffeomorphic to

G, /S0O(4)
where SU(3) acts on G2/S0(4) through the natural inclusion SU(3) — Gs.
2.6. The case (P,P). In this case K; ~ S(U(1) x U(2)). Fix K; = S(U(1) x

U(2)) as
{( t: W ) | te v, AeSU(z)}.

Then the slice representation of K is induced from T x SU(2)(x~ T* x Sp(1))
action on 83 C H ((t,h) - r = hrt™!, where [ € N). Therefore the principal isotropy

group is
A"%2 0 0
0 Atht1 0
0 0 i

where Z; = {1}. Hence we see that the slice representation of Ky ~ S(U(1) x U(2))
- is unique up to ! € N which is induced by Kj.

If I = 1, then there are two attaching map by |N(K)/N(K)°| = 2 and the
Uchida’s criterion. If [ # 1, then there is unique attaching map by N(K) = N (K)°
and the Uchida’s criterion.

teU(1), Aezz},

PROPOSITION 2.11. If M8 has SU (3)-action with codimension one orbits and
two singular orbits (PP, P), then M3 is equivariant diffeomorphic to one of the fol-
lowings:

Qa(= 50(6)/(50(2) x SO(4))),
SU3) xswaxv(@) S*(C @ R)
where in the first case SU(3) acts on Q4 through the natural inclusion SU(3) —
$0O(6) and in the second case S(U(1) x U(2)) acts on C#-part in S4(C? @ R) ~ 54
by the representation p; : S(U(1) x U(2)) — U(2) (I € N).
2.7. The case (F,S/Z;) (I > 1). Since G/K3 = S/Z; (where Z; = {1}), we
can fix Ky = S(Z; x U(2)). Since we can easily show that there is unique slice

representation of Ky, there is a unique tubular neighborhood X, of G/K;. Then
we see tha principal isotorpy group is as follows:

2“2 0 0
0 Xt o |
0 0 At

Moreover we see that the slice representation of K = T2 is unique up to l € N
which is induced by K7, and the attaching map is unique for each [ € N by the
same argument in Section 2.1. Therefore we have the following proposition.

A€ Z, tEU(l)}

PROPOSITION 2.12. If M8 has SU(3)-action with codimension one orbits and
two singular orbits (F,S/Z;) (I > 1), then M8 is equivariant diffeomorphic to

SUB) xswayxv() S*(C: ® R3)
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where S(U(1) xU(2)) acts on C;-part in S4(C;®R3) =~ S* by the representation 7; :
S(U(1)xU(2)) = U(1) (I € N) and on R3-part in §4(C; ®R3) by the representation
o:S(U1) xU(2) — SO(3).

2.8. The cases (L,F) and (F,L/Zs). Since G/K2 = L or L/Z3, we have
K3 = SO(3) or Z3 x SO(3) where Z3 is the center of SU(3). For each case there is
a unique slice representation of K, and the tubular neightborhood X, of G/K; is
unique. And we have the principal isotropy group is as follows:

1 0 0
0 cosf =—sinf | € SO(3)
0 sinf cosf

A 0 0
0 Acosfé =Msin@ | € Z3 x SO(3)

0_<_0$27r},

0<8<2n, \€Zs
0 Asin€® Acosé :

Therefore we also have the tubular neighborhood of G/K; is unique each case
and the attaching map is unique by the same argument in Section 2.2. Hence we
have the following propositions.

PROPOSITION 2.13. If M® has SU(3)-action with codimension one orbits and
two singular orbits (F,L/Z3), then M?® is equivariant diffeomorphic to
N = A\SO(6)/(S0(3) x SO(3))

where SU(3) acts on N through the natural inclusion SU(3) — U(3) — SO(6) and
A is the center of U(3).

PROPOSITION 2.14. If M® has SU(3)-action with codimension one orbits and
two singular orbits (L, F), then M?8 is equivariant diffeomorphic to

~

N

where N is the universal (three folds) covering of N.

2.9. The case (P,F). Now we have the principal isotropy group is as follows
from K1 = S(U(1) x U(2)) and Section 2.6:

| A"22 0
0 At 0
0 0 Attt

where Z; = {1}. Hence X; is unique for each [ € N.
If | = 1 then there are two attaching maps, and if [ # 1 then there is unique
attaching map. Therefore we have the following proposition.

tEU(l), AEZ[},

PROPOSITION 2.15. If M8 has SU(3)-action with codimension one orbits and
two singular orbits (P, F), then M? is equivariant diffeomorphic to one of the fol-
lowings:

CP(2) x CP(2),

SU(3) xswyxu(2)) P(C} & C)
where in the first case SU(3) acts on CP(2) x CP(2) diagonally and in the second
case S(U(1) x U(2)) acts on CZ-part in P(C? @ C) ~ CP(2) through the represen-
tation p; : S(U(1) x U(2)) = U(2) (I € N).
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2.10. The case (F,F). Since G/K; ~ F, we can put K1 = T2 = K. The
slice representation K; = T? — U(1) ~ SO(2) C O(2) is as follows:

tritzt 0 0
0 tl 0 - tftg.
0 0 t

We can put p € N and ¢ € Z up to equivalence of the representation and the
conjugation of K;. The principal isotropy group is

Alo-itE 0 0
0 M-E 0
0 0 wt :

where Zy1 = {1} = Zo. Therefore the slice repesentation of K is same as above
the slice representation of K;. Moreover we see that there are two attaching maps
for p = g and there is a unique attaching map for p # q. Hence we have the
following proposition.

A € Zy, wEZq}

PROPOSITION 2.16. If M® has SU(3)-action with codimension one orbits and
two singular orbits (F,F), then M3 is equivariant diffeomorphic to one of the fol-
lowings:

SU(3) xswyxv(2)) Hzk+1,
SU(3) x72 S*(Cpqy ®R)

where in the first case S(U(1) x U(2)) acts on the Hirzebruch surface Hyk1 induced
by the line bundle over CP(1) whose first chern class is odd (also see [Ku07]), and
in the second case T acts on C, )-part in S2(C(,, 4y ®R) through the representation
T 1 T2 = U(Q) (p,g €N).

REMARK 2.17. SU(3) Xgw(1)xv(2)) Hak+1 is one of the p = q cases. If p # ¢
then a manifold is SU(3) x72 S?(C(,q) ® R). If p = ¢ then we can consider
SU(3) xp2 S? (Cp.p) DR) 85 SU(3) X sw(1)xv(2)) Ha2x where the Hirzebruch surface
Hy(~ CP(1) x CP(1)) induced by the line bundle over CP(1) whose first chern
class is even.

We omit the case ((F/F,F/F")).

Finally we remark the following corollaries.
Because of the proofs of Proposition 1.1 and Lemma 1.3, the following corol-
laries can be shown.

COROLLARY 2.18. If M® has an SU(3)-action with codimension four principal
orbits, then all orbits are principal orbits CP(2) and there is a fibration CP(2) —
M8 5 4 where 7 is a projection to the orbit space and the orbit space ©* is a
4-dimensional manifols.

COROLLARY 2.19. There is no SU(3)-action on M?® with codimension less than
or equal to five orbits.
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