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ON LOCAL TORUS ACTIONS MODELED ON THE STANDARD
REPRESENTATION

TAKAHIKO YOSHIDA

1. INTRODUCTION

Let S* be the unit circle and T™ := (S*)" the n-dimensional compact torus.
T™ acts on the n-dimensional complex vector space C™ by coordinate-wise complex
multiplication. This action is called the standard representation of T™. T™ acts on a
complex n-dimensional toric variety X as a subgroup of (C™)*. If X is nonsingular,
then for each point z € X, there exists a coordinate neighborhood (U, p, ¢) of z,
where where U is a T™-invariant open set of X, p is an automorphism of 7™, and
@ is a p-equivariant diffeomorphism from U to some T™-invariant open subset in
C™. In general, a T™-action on a 2n-dimensional manifold which is covered by
such coordinate neighborhoods is said to be locally standard. See [4, 2] for more
details. This property is one of the starting point of their pioneer work [4] of
Davis-Januszkiewicz and now, it plays a central role in toric topology.

A similar structure can be seen in Lagrangian fibrations. Let (X,w) be a 2n-
dimensional smooth symplectic manifold and B an n-dimensional smooth manifold
with corners. We call a map pu: (X,w) — B a locally toric Lagrangian fibration
if p is locally identified with the moment map of the standard representation of
T™. It is known that there exists an atlas {(Uy, ¢q)} of X and there also exists an
automorphism p of T" on each nonempty overlap U, N Ug such that each ¢, sends
U, diffeomorphically to some T"-invariant open subset of C™ and the overlap map
9xX o (px)~! is p-equivariant (see also Example 2.9).

In [13], as a generalization of a locally standard torus action and also as an un-
derlying structure of a locally toric Lagrangian fibration, we introduced the notion
of a local T™-action modeled on the standard representation, and defined two topo-
logical invariants called the characteristic pair and the Euler class of the orbit map
for a local T™-action, then proved that local T™-actions are topologically classified
by these two invariants. ‘We also investigate the symplectic case. The content of
[13] is a refinement of the work [12].

This is an announcement of [13]. In the next section, we recall the definition and
basic facts of a local T™-action. In Section 3, we explain that a local T™-action is
accompanied by the principal Aut(7T™)-bundle and the characteristic bundle. After
that, we recall the construction of the canonical model of a local T"-action. In
Section 4, we define the Euler class of the orbit map. Section 5 is devoted to the
topological classification of local T™-actions. Theorem 5.1 is the main theorem
of the first part of this paper. We also describe the idea of the proof, where the
canonical model plays an important role. As a corollary, we can obtain that locally
standard T™-actions are classified by the characteristic bundle and the Euler class
of the orbit map up to equivariant homeomorphisms (Corollary 5.2). One of the
important examples of manifolds equipped with local T™-actions is a locally toric
Lagrangian fibration with n-dimensional fibers. Finally, in Section 6, we give the
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necessary and sufficient condition that a manifold with a local T™-action becomes a
locally toric Lagrangian fibration and also describe the classification of locally toric
Lagrangian fibrations.

Throughout this paper we employ the vector notation in order to represent ele-
ments of C”, namely, z = (21,...,2,) € C*. The similar notation is also used for
T" = (SH)™, R”, etc.

2. DEFINITIONS AND BASIC FACTS
Let X be a paracompact, Hausdorff space.

Deﬁmtlon 2.1. A weakly standard C" (0 < r < oo) atlas of X is an atlas
{(UZ, v¥)}aes which satisfies the following properties

(1) for each a, X is a homeomorphism from UZX to an open set of C* invariant
under the standard representatzon of T™ and

(2) for each nonempty overlap UX. ap = U4 XnUx 4 , there exists an automorphlsm
pap of T™ as a Lie group such that the overlap map X 5 = wX o ((px )t
is pag-equivariant C” dlﬁ’eomorphlc w1th respect to the restrictions of the
standard representation of T™ to X (U2 ) and ¢z X(UX ) (The latter means

that ©Xs(u - 2) = pag(u) - gaaﬁ(z) for u € T" and z € o (UL;).)
Two weakly standard C atlases {(U, vX)}aca and {(V5*,9¥%)}ses of X2 are
equivalent if on each nonempty overlap Ug XNV, there exists an automorphism p of
T™ such that X o(% )~ is p-equivariant C" diffeomorphic. We call an equivalence
class of weakly standard C™ atlases a C" local T"-action on X2 modeled on the
standard representation and denote it by 7.

In the rest of this paper, a C” local T"-action on X?" modeled on the standard
representation is often called a C™ local T"-action on X 2", or more simply, a local
T™-action on X if there are no confusions.

Let (X, T) be a 2n-dimensional manifold X equipped with a C” local T™-action T
and {(UZ, ©X)}aca a maximal weakly standard atlas of X which belongs to 7". For
(X, T) we can generalize the orbit space and the orbit map in the following way. We
endow each quotlent space X (UX)/T™ with the quotlent topology induced from
the topology of ¢X(UX) by the natural pro_]ectlon m: X (UX) = X (UX)/T".
By the property (2) for each overlap Uaﬁ, cpaﬂ induces a homeomorphism from

ox (U, B)/T" to X (UX;)/T™. We define two elements b, € X (UX)/T™ and
bﬁ € ¢X (UF)/T™ are equivalent if by € 0% (UX)/T™, bs € ¢f (UX)/T™ and the
map induced by <pa sends bg to by. It is an equivalence relation on the disjoint
union [, (X (UZX) /T"). We call the quotient space of [, (¢X (UX)/T™) by the
equivalence relation together with a quotient topology the orbit space of the local
Tm™-action T on X and denote it by Bx. It is easy to see that Bx is a Hausdorff
space and {pX (UX) /T”}ae A is an open covering of Bx. By the construction of
Bx, the map [[,mo oX: 11, UX — 11, (¢X(UZX)/T™) induces the map from X
to Bx. We call it the orbit map of the local T"-action 7 on X and denote it by
ux: X — Bx. Notice that by the construction, it is a continuous open map.

Let R%} be the standard n-dimensional positive cone

RY = {¢=(1,....6n) ER™: & 20i=1,...,n).

It has the natural stratification with respect to the number of coordinates &; which
are equal to zero.

Definition 2.2. Let B be a Hausdorff space. A structure of an n-dimensional
topological manifold with corners on B is a system of coordinate neighborhoods
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onto open subsets of R} so that overlap maps are homeomorphisms which preserve
the natural stratifications induced from the one of R?. See [3, Section 6] for a
topological manifold with corners.

Proposition 2.3. Bx is endowed with a structure of an n-dimensional topological
manifold with corners.

Proof. We define the map pcn: C* — R™ by
(2.1) pen(2) = (|2, lznl?)

for z = (21,...,2,) € C*. Notice that the image of yc~ is the n-dimensional
standard positive cone R%. It is invariant under the standard representation of T
and induces the homeomorphism from C"/T™ to R%. The orbit space C*/T™ is
endowed with the natural stratification whose k-dimensional stratum consists of k-
dimensional orbits and the homeomorphism induced by uc~ preserves stratifications
of C*/T™ and R. We put U2 := X (UX)/T™. The restriction of uc~ to X (UX)
induces the homeomorphism from UZ to the open subset uc~(pX(UX)) of R%,
which is denoted by @5 . By the construction, on each overlap UZ; := UZNUZ, the
overlap map ¢ i= 92 o (¢B)~: ucn (0 (UX)) = en (o (UZ,)) preserves the
natural stratifications of uc~ (¢ (Us)) and uce (0% (UX)). Thus, {(UZ, 08)}aca
is the desired atlas.

Remark 2.4. The atlas {(UZ, p2)}ae4 of Bx constructed in the proof of Proposi-
tion 2.3 has following properties
(1) for each a, UX = ux"(UB), oX(UX) = pci(9B(UB)) and the following
diagram commutes .

X
- Yo —_
X o puF(UB) — uca (WB(UB))c cr

lux lux l#cn lucn
B
By > UB—"=s+,BUB) c RY,

(2) the restriction of {(UZ,pB)}4e4 to the interior Bx \ 8Bx of Bx is a CT
atlas of Bx \ 6Bx.

Let (X1,71) and (X3, 72) be 2n-dimensional manifolds X; and X, equipped with
C™ local T™-actions 7; and T5. Let {(UX, vX1)}oeca and {(ng, Lpgz)}ﬂes be the
maximal weakly standard atlases of X; and X3 which belong to 77 and 7s.

Definition 2.5. (X;,71) and (X2, 72) are C” isomorphic if there exists a C” dif-
feomorphism fx: X1 — X3 from X; to X, and on each nonempty overlap UX* N
(fx)‘l(U[‘,X’) # ( there exists an automorphism p of T™ such that wg"ofxo(cpfl )—t
is p-equivariant. We also call such a C" diffeomorphism fx a C" isomorphism and
denote it by fx: (X1,71) — (X2, T2).

Notice that a C” isomorphism fx: (X;,71) — (X2, 72) induces the stratification
preserving homeomorphism fg: Bx, — Bx, between their orbit spaces such that
fx and fp satisfy px, o fx = fBoux,-

We give examples of local torus actions.

Example 2.6 (Locally standard torus actions). Let T™ act smoothly on a 2n-
dimensional smooth manifold X. A standard coordinate neighborhood of X consists
of a triple (U, p, ¢), where U is a T™-invariant open set of X, p is an automorphism
of T", and ¢ is a p-equivariant diffeomorphism from U to some T™-invariant open
subset in C™. The action of T™ on X is said to be locally standard if every point
in X lies in some standard coordinate neighborhood. See [4, 2] for more details.
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(A typical example of locally standard torus actions is a nonsingular toric variety.)
The atlas which consists of standard coordinate neighborhoods is weakly standard.
Therefore, a locally standard T™-action induces the local T™-action on X.

Notice that not all local torus actions are induced by locally standard torus
actions. For any C” local T™-action 7 on a 2n-dimensional manifold X, we take
a weakly standard atlas {(UZ, ¢X)}ac4 belonging to 7". It is easy to see that the
automorphisms p,g of T™ in the property (2) of Definition 2.1 form a Cech one-
cocycle {pas} on {UB}uea with values in Aut(Z™). Then, the cohomology class
of {pga} in the first Cech cohomology set H!(Bx;Aut(T™)) is the obstruction for
the local T™-action to be induced by a locally standard T™-action.

Proposition 2.7. A C” local T™-action on X is induced by some C" locally stan-
dard T™-action if and only if {pap} and the trivial Cech one-cocycle are of the same
equivalence class in H'(Bx; Aut(T™)), where the trivial Cech one-cocycle is the one
whose values on all open set are equal to the identity map of T™.

For the proof, see [13].

Example 2.8. We can construct an example of local torus actions which does not
come from any locally standard torus fibrations in the following way. For a small
positive number 0 < £ <« 1, let X be the quotient space of the space

{(z,w) eC?xC:0< lzllz <1l+e, lwlz +|z]2 =1}
by the S'-action defined by
u- (z,w) == ((z1,u" 22), v w) .

T? acts on X by
u-{z,w] = [u- 2z,w].

The map ux: X — R? defined by ux([z, w]) := (|21]?, |22|?) is invariant under the
T2-action and induces the identification of the orbit space of the T2-action with
(0,1+¢) x [0,1].

We define that two elements F; and %, in X are equivalent, or Ty ~x T if for
a representative (z,w) of i, (('z—l/ |z1]v/|2z1|? + 1,5),@) is a representative of Ts.
It does not depend on the choice of representatives of Z; and it is well-defined.
We denote the quotient space X/ ~x of the equivalence relation by X. By the
construction, we can show that X is endowed with a local T™-action. The orbit
space By is the cylinder defined by

Bx = (0,1+¢) x [0,1]/ ~B,

where £ ~g 7 if and only if n; = £; + 1 and 7p = &3, and u3 induces the orbit map
ux: X — Bx.

Example 2.9 (Locally toric Lagrangian fibrations [7]). Let wcn = 51%_-{ Y k=1
dzi AdZx be the standard symplectic structure on C". The standard representation
of T™ preserves we~ and the map pcn: C* — R™ defined by (2.1) is a moment
map of the standard representation of 7. Notice that the image of uc~ is the n-
dimensional standard positive cone R%. Let (X,w) be a 2n-dimensional symplectic
manifold and B an n-dimensional manifold with corners. A map u: (X,w) — B
is called a locally toric Lagrangian fibration if there exists a system {(Uqa, 9B)} of
coordinate neighborhoods of B into R%, and for each a there exists a symplecto-
morphism ¢X : (41 (Ua),w) = (ugt (9B (Ua)), wen) such that pcn 0 0 = @g o p.
We show in [13] that for a locally toric Lagrangian fibration u: (X,w) — Bonann-
dimensional base B and an above atlas {(Ua, 92, »X)}, on each nonempty overlap
U, N Up there exists an automorphism pas € Aut(T™) such that the overlap map
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oX o (pF )~ is p-equivariant. (Precisely, pos is & map from Us NUs — Aut(T™).
Since Aut(7™) is discrete, pog is locally constant.) In particular, X is endowed
with a smooth local T™-action. In Section 6, we will describe the necessary and
sufficient condition that a manifold with a local torus action becomes a locally toric
Lagrangian fibration.

3. CHARACTERISTIC PAIRS AND CANONICAL MODELS

In this section, we introduce the characteristic pair for a local torus action,
and construct the canonical model from the characteristic pair. Both of them

play important roles of the topological classification of local torus actions. In this -

section, all manifolds, maps, and local T™-actions are assumed to be of class co
unless otherwise stated.

3.1. Characteristic pairs. Let B be an n-dimensional topological manifold with
corners. We assume that 8B # (). By the definition of a manifold with corners, B
is equipped with a natural stratification. We denote by & (*) B the k-dimensional
stratum of B, namely, S®*) B consists of those points which have exactly k¥ nonzero
components in a local coordinate. In particular, the top-dimensional stratum & ™B
is equal to the interior B \ 0B of B.

Let A := {t € t: expt ='1} be the lattice of integral elements in the Lie algebra
t of T". Since the differential of any automorphism of T™ at the unit element pre-
serves A, by associating any automorphism of T™ with its differential at the unit
element, there is the natural homomorphism from Aut(T™) to GL(A). It is an iso-
morphism. In fact, it follows from the surjectivity of the exponential map of 7™ and
the equation ¢ o exp = exp ody for any automorphism ¢ € Aut(T™). In the rest of
this paper, we identify Aut(7T™) with GL(A) by this isomorphism. Let mp: P — B
be a principal Aut(7™)-bundle on B and ms: Ap — B the associated A-bundle of
P by the above isomorphism Aut(7T™) = GL(A). Suppose that 7z: £ — stn-1p
is a rank one sub-bundle of the restriction Ta|sm-1ng: Aplstn-ng — S™~YB of
7a: Ap — B to S~ B. For each k and any point. b € S B, let U be an open
neighborhood of b in B on which there exists a local trivialization ¢ : m (U) —
U x A of Ap. By shrinking U if necessary, we can assume that the intersection
UnS™-1B of U with S™1 B has exactly n — k connected components, say,
(UNS™-1RBy,, ... (UNS™-1 B),_x. Since A is discrete, for each (UnS-1B),
there exists a rank one sub-lattice Ly C A such that ¢Z sends the preimage
7zt (UNS®=DB),) of (UNS™1B), by 7. fiber-wisely to (UNS?-VB), x L,.

Definition 3.1. 7z: £ — S~V B is said to be unimodular if for each k and any
point b € S B, the sub-lattice Ly +- - -+ L,k generated by Ly, ..., Ln_x is a rank
n—k direct summand of A. (In [4] such a sub-lattice is called an (n—k)-dimensional
unimodular subspace of A.)

Notice that rank one sub-lattices L1, ..., Ln—x depend on the choice of a neigh-
borhood U and a local trivialization ¢F. But Definition 3.1 does not depend on the
choice of them because the condition for a sub-lattice to be unimodular is invariant
by an automorphism of A.

Definition 3.2. Let mz: £L — S~ B be a unimodular rank one sub-bundle of
TAlsm-vp: Ap|sm-np — S~V B. Then the pair (P, £) of the principal Aut(T™)-
bundle 7p: P — B and mz: L — S-1B ig called a characteristic pair and
ne: L — S"=1 B ig called a characteristic bundle.

Let (X,7) be a 2n-dimensional manifold equipped with a local T™-action. We
show that there is a characteristic pair associated with (X, 7). Let {(UZ, ¢X)}aca €
T be the maximal weakly standard atlas. It induces the atlas {(UZ,08)}qca of
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Bx which satisfies the properties in Remark 2.4 and also determines a Cech one-
cocycle {pag} on {UZ}qca with coefficients in Aut(7T™). It definés the principal
Aut(T™)-bundle np, : Px — Bx on By by setting

(3.1) Py = (]'_[UcﬁB X Aut(T")) / ~p,

where (ba,ha) € UZ x Aut(T™) ~p, (bg,hg) € Uf x Aut(T™) if and only if
ba = bg € UB ap @nd ho = pap o hg. The bundle projection mp, is defined by
the obvious way. For each «, every point in 7 Pl (UB) has a unique representative
which lies in UZ x Aut(T™). By associating a point in ‘n'P1 (UB) with the unique
representative, we define the local trivialization of Px on UB which is denoted
by ©F : ﬂ‘PX(UB) — UB x Aut(T™). Let mp, : Ax — Bx be the A-bundle as-
sociated with Px by the natural identification Aut(T™) = GL(A). The property
(2) in Definition 2.1 determines a unique unimodular sub-bundle of the restriction
Taxlsm-1By : Ax|sm-np, — S("‘I)BX of ma, : Ax — Bx to the codimension
one stratum S~V By in the following way. For each coordinate neighborhood
(UB, B) of Bx with UBNS™~D By # 0, the preimage uc (¢B(UZ N 8(*~1) By))
is equipped with the T™-action which is the restriction of the standard represen-
tation of T™. For simplicity, we assume that the intersection Uf N Sr-DBy
is connected. (Otherwise, we may consider component-wise.) Then, all points of

pca (¢B(UE n 8?1 Bx)) has the common one-dimensional stabilizer with respect
to the T™-action. We denote it by S. and also denote the rank one sub-lattlce of A
spanned by the integral element which generates SL by L,. Suppose that (UZ, 0B
and (Uf ,<pg ) are coordinate neighborhoods satisfying the above conditions and
the intersection UZ; N S?"~YBx is nonempty. Since the overlap map pXs is a
pap-equivariant homeomorphism, we can show that pog sends .5’}3 isomorphically to
SL. Under the identification of pas with the automorphism of A induced by pag,
Pap also sends Lg isomorphically to £,. By the construction of ms, : Ax — By,
oL induces a local trivialization ¢4: m5.(UB) — UZ x A of mp,: Ax — Bx
on each UB such that on an overlap U B the transition function with respect to
@A and (pﬂ is pag. We take a subsystem { B, 08 ) biez of {(UZ,08)}aca which
covers S("1 By and define the rank one sub~bundle eyt £x — S(—1D By of
TAx|lstn-1By : Ax|stn-1By — — S(»=1) By by setting

(3.2) Lx = (H Ufe NSM—Y By x z:ai) / ~L,

where (bi,l;) € UE NS~V Bx x Lo, ~L (bj,l;) € UZ N SM=UBx x Lq; if
and only if b; = b; and §; = pa,a;(l;). By the construction, it is easy to see
that 7z, : Lx — S(=1) By is unimodular. As a summary, we have the following
proposition.

Proposition 3.3. Associated with a local T™-action T on X, there exists a charac-
teristic pair (Px, Lx), where Px and Lx are defined by (3.1) and (3.2), respectively.

Notice that the characteristic bundle is a generalization of the characteristic
function of a quasi-toric manifold, or a torus manifold.

Example 8.4. For a 2n-dimensional manifold X equipped with a locally stan-
dard T™-action, mpy: Px — Bx is the trivial principal Aut(T™)-bundle Px =
Bx x Aut(T™). Let (S™®VBx), (a = 1,...,k) be the connected component
of S*~DBy. On the preimage ux ((S™~ 1)Bx)a) of each connected component
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(S(”‘I)Bx)a by px, T™-action on it has the unique one-dimensional stabilizer
which we denote by Si. Let £, be the rank one sub-lattice in A corresponding to
S%. Then, Lx is the disjoint union [[ (S®~YBx), x L,.

Example 3.5. In the case of Example 2.8, the characteristic pair is constructed as
follows. We identify A with Z2? and also identify Aut(T?) with GLy(Z). Then Px
can be written by

Px = ((0, 1 +5) X [Oa 1] X GL2(Z))/ ~P,
where (£, A) ~p (n, B) if and only if » ~p £ and B = —A. The bundle projection
is defined by the obvious way. Ax is written by the similar way, namely,
= ((0,1+¢) x[0,1] x Z%) / ~a,

where (£, m) ~p (n,n) if and only if n ~p £ and n = —m. With this notation, Lx
is written by

Lx=((0,1+¢)x{0,1} x {0} ®Z)/ ~ .

For i = 1,2, let B; be an n-dimensional topological manifold with corners and
(P;, L;) a pair of a principal Aut(7")-bundle 7p, : P, — B; and a unimodular
rank one sub-bundle 7¢,: £; — S(m=1) B, of the restriction of the associated A-
bundle 75, : Ap, — B; of P; by the natural identification Aut(T™) = GL(A) to the
codimension one stratum S"—V B; of B;.

Definition 3.6. An isomorphism fp: (Py,L£1) — (P2, L2) from (Py, L) to (Py, L2)
is a bundle isomorphism fp: P; — P, which covers a stratification preserving home-
omorphism fg: By — Bs such that the lattice bundle isomorphism f5 : Ap, — Ap,
induced by fp sends £; isomorphically to £5. (P1,£;) and (Ps, L2) are isomorphic
if there exists an isomorphism between them.

The isomorphism class of the characteristic pair (Px,Lx) is an invariant of a
local T™-action on X.

Lemma 3.7. For i = 1,2, let (X;,T;) be a 2n-dimensional manifold X; with a
local T™-action T;. If there is a CP isomorphism fx: (X1,T1) — (X2,T3), then
fx induces the isomorphism fex: (Px,, Lx,) — (Px,,Lx,) between characteristic
pairs associated with X; and X,.

Proof. Let {(U, X‘,cpé‘:‘)}ges € T, and {(sz,cpffz)}aeA € T, be maximal weakly
standard atlases of X; and Xo, and {(U ﬁ ,(pﬁ‘)}geg and {(U2?,08*)}ac4 atlases
of Bx, and Bx, induced by {(bel,cpﬂ )}ses and {(UX=, 0X2)}oc 4, respectively.
Suppose that fx: (X1,71) — (X2,72) is a C° isomorphism and fg is the home-
omorphism from By, to Bx, which is induced by fx. By definition, on each
nonempty overlap UB1 N f51(UB2), there exists an automorphism pﬁﬁ of T™ such

that ¢X2 0 fx o (cpxl)‘ is péﬁ-equiva.riant. It is easy to see that the following
equality holds
‘ X1 _ X
(3.3) péo,ﬁo ° pﬁolﬁx - pat?at ° p£1ﬁ1
on a nonempty intersection Ug‘ Nfe LUk acay )» Where p and pfgal_ are au-

tomorphisms of T™ in (2) of Deﬁmtmn 2.1 with respect to X1 and X, respec-
tively. We define the bundle isomorphism (fp)as: Ufl N fE1(UB2) x Aut(T™) —
fa(UF)NUSs x Aut(T™) by

(fP)ap(d,h) := (fB(b), pL4 0 h).

By (3.3), we can patch them together to obtain the bundle isomorphism fp Px, —
Px, which covers fg. O
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3.2. Canonical models. In [4, Section 1.5], Davis-Januszkiewicz constructed the
canonical model of a quasi-toric manifold from the based polytope and the char-
acteristic function. A similar construction can be done by using the characteristic
pair in the following way. Let B be an n-dimensional C° manifold with corners and
(P, L) a characteristic pair on B. We denote by 7 : Tp — B the T™-bundle associ-
ated with P by the natural action of Aut(7T™) on T™. First we shall explain that for
any k-dimensional part S B, (P, £) determines a rank n — k sub-torus bundle of
the restriction of 7y : Tp — B to SK)B. Let {Us} be an open covering of B such
that on each U, there exists a local trivialization ¢f: 75 (Us) — U x Aut(T™).
On each nonempty overlap U,s we denote by p,s the transition function with
respect to ¢f and ¢F, namely,

0% 0 (05) 71, f) = (b, pap f)
for (b, f) € Ug x Aut(T™). Notice that pags is locally constant since Aut(7T™) is
discrete. (pg induces the local trivializations of the associated bundles Tp and Ap
which are denoted by ¢ : 73} (Us) — Us x T™ and @B : 773 (Us) — Ua x A,
respectively. For S*)B we take U, with U, N S®*)B s §. By replacing U, by &
sufficiently small one if necessary, we may assume that the intersection U,NS"~1 B
of U, with the codimension one part S(™~Y B of B has exactly n — k connected

components, say (U, NS~ B),, ..., (UyN 8"~ B), . For k = n, this means
that U, is contained in S™B. For k < n, there are n — k rank one sub-lattices
Ly, ..., Lp—g of A such that fora =1, ..., n -k gog sends the restriction of

me: £ — S B to (U, N SN B), isomorphically to the trivial rank one sub-
bundle (U, N S™=YB), x L, of (U, NS"~VB), x A. Since £ is unimodular, L,,

.+, Lp—k generate the (n — k)-dimensional sub-torus of T which is denoted by
Zy nsw p- For k = n, we define Zy;_ns(n g to be the trivial subgroup which consists
of the unit element. Notice that when (P, L), {U,}, and ¢~ are the ones induced
by some local T™-action 7 on X, Zysnsw B, is the common (n — k)-dimensional
stabilizer of T™-action on ug.(UZ N S®*) Bx).

Suppose that another Up satisfies the above condition and Uys N S(*)B # 0.
By the definition of (P, L), pns sends ZUgns(k) Bx isomorphically to Zysnswm gy -
Hence, in the same way as before, they are patched together to form a rank n — k&
sub-torus bundle, which is denoted by 7z, : Zswp — S*)B, of the restriction
of mp: Tp — B to SK*)B.

Definition 3.8. For t, ¢’ € Tp, t and t’ are equivalent or t ~4n t' if and only if
nr(t) = mp(t’) and t't7! € ﬂgl(k)B(wT(t)) when 7p(t) lies in S®) B. Notice that a
fiber of np: Tp — B is equipéed with the structure of a group since its structure
group is Aut(T™).

We denote by X p,z) the quotient space of Tp by the equivalence relation. The
bundle projection 7r: Tp ~— B descends to the map ux ., : X(pc)y — B. On
any Uy, under the identification ¢l : T HU,) — Uy x T™, the equivalence rela-
tion in Definition 3.8 can be rewritten as follows. For (b,t), (b/,t") € Uy x T™,
(b,t) ~ecan (V/,t') if and only if b = b and 't~ € Zy_nsw p when b lies in S*)B.
Then, I induces the identification of “J—(ﬁp,c)(Ua) with (Uy X T™)/ ~can on U,.
Now we take {U,} to be an atlas {(U,,9Z)} of B as a manifold with corners.
Since £ is unimodular and B is a manifold with corners, by the same way as
in Davis-Januszkiewicz [4, Section 1.5], or Masuda-Panov [8, Section 3.2], we can
show that (Uy X T™)/ ~can is also homeomorphic to a T™-invariant open sub-
set ucn (9E(Uy)) of C™. Hence, by taking the composition of these identifications,

there is & homeomorphism (g % <% ; /.L}%Px,cx) (Us) = piga (92 (Ua)) which covers
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@B Uy — ©B(Us). Notice that on Uag the overlap map with these identifications
is induced by idy, ; Xpag: Uap XT™ — UagxT™. Hence, X(p,c) is a 2n-dimensional
topological manifold equipped with a C° local T™-action whose orbit space is B
and whose orbit map is uxp -

Definition 3.9. We call X p,z) the canonical model of (P, £). In particular, when
(P, L) is the characteristic pair (Px, Lx) of a local T™-action 7 on a 2n-dimensional
manifold X, we also call X(py cx) the canonical model of (X, 7).

The following propositions describe the properties of the canonical model. For
proofs see {13].

Proposition 3.10. For any characteristic pair (P, L), u Xp.oy ' X(p,c) — B admits
a continuous section s.

For any characteristic pair (P, L), recall that a fiber of Tp admits a structure of

a group. By the construction, a fiber of ux, ., : X(p,cy — B also admits a group
structure.

Proposition 3.11 ([13]). For a 2n-dimensional manifold (X,T) equipped with a
local T™-action, we denote the associated T™-bundle Tp, of Px by mry: Tx — Bx
for simplicity. Then Tx acts fiber-wise on X. Similarly X py cx) also acts fiber-

wise on X. For any b € Bx the action of /.L}_{%P o (b) on px(b) is simply transitive.

The following lemma follow directly from the construction of a canonical model.

Lemma 3.12. For i = 1, 2, let B; be an n-dimensional topological manifold
with corners and (P;,L;) a characteristic pair on B;. Then, any isomorphism

fp: (P1,L1) — (P2, L2) induces the C° isomorphism fx ., X(p,c,) = X(PoL2)

between canonical models of (P1,L;) and (Ps, L3).

Remark 3.13. If there is an isomorphism fep: (P1,L1) — (P;,L2) between char-
acteristic pairs, then the induced C° isomorphism Ixpoy: XPr,cy) = X(BacLa)
between canonical models is fiber-wise group isomorphism.

4. THE EULER CLASSES OF ORBIT MAPS

In this section, for a local torus action we define the Euler class of the orbit
map as an obstruction class for the orbit map to have a continuous section. In
this section we assume that manifolds, maps, and local T™-actions are of class C°
unless otherwise stated. Let (X, 7) be a 2n-dimensional manifold equipped with a
local T"-action. We investigate when ux : X — Bx has a section. We assume that
the index set A of the weakly standard atlas {(UZ, ©X)}ac4 is countable ordered.
By the construction of X(py,zx), there exists a C° isomorphism hq: ux'(UZ) —
u}: ) (UB) covering the identity on each UZ such that hq is equivariant with
respect to the fiber-wise action of Tx or X(px,cx)- (For example we can take

(pa®x£x))=1 6 X g h,.) On each nonempty overlap UZ; the equation
(4.1) ha © hzt(z) = 055(b)z
forbe US andz € N;‘%Px 2, (b) determines a unique local section 635 of BxX(p, £y

on UZ;. Let S px,cx) denote the sheaf of germs of continuous sections of PX(p, cx)-

Then local sections 8%, form a Cech one-chain {675} on {UB} with values in
HPx.Lx)- Moreover, by definition, we can show the following lemma.

Lemma 4.1. {625} is a cocycle.
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Let H'(Bx; % (px,cx)) denote the first Cech cohomology group of Bx with val-
ues in Fpy cx)- By the above lemma, {Gfﬁ} defines the cohomology class in

HY(Bx; S (px,cx))- We denote it by eorpie(X). It is easy to see that e,npi(X) does
not depend on the choice of hys and depends only on the local T™-action on X.

Definition 4.2. We call ey::(X) the Fuler class of px.

Notice that if the local T™-action is induced by a locally standard T™-action and
0Bx = 0, then pux: X — Bx is a principal 7"-bundle. In this case, eympiz(X) is
nothing but the Euler class of the principal T"-bundle.

Theorem 4.3. px: X — Bx has a section if and only if eorbit(X) vanishes.

Example 4.4. For the T"-action on a complex n-dimensional, nonsingular toric
variety X, eorbit(X) vanishes.

Example 4.5. For Example 2.8, éo,b,-t (X) vanishes. In fact, we can defined the
section s of ux: X — Bx by

3([§1a€2]) = [(\/6_1’ \/6—2)a vV 1- €2]
for [51’52] € BX :

For i = 1,2, let B; be an n-dimensional topological manifold with corners
and (F;, £;) a characteristic pair on B;. Suppose that there exists an isomor-
phism fp: (P,L;) — (P;,L3). By Lemma 3.12, it induces the isomorphism
fb: HY(Ba; #py.2)) = HY(B1; (b, c,)) between cohomology groups. In partic-
ular, by Lemma 3.7 and Lemma 3.12, a C? isomorphism fx: (X1,71) — (X32,72)
induces the isomorphism f3_: H'(Bx,; #Px,.£x,)) = H*(Bx1; F(Px,,£x,))-

Lemma 4.6. Fori= 1,2, let (X;,T;) be a 2n-dimensional manifold equipped with a
local T™-action. If there is a C° isomorphism fx: X1 — Xa, then Ipy €orbit(X2) =
€orbit(X1)-

5. THE TOPOLOGICAL CLASSIFICATION

The following is the main theorem of [13].

Theorem 5.1 ([13]). Fori = 1,2, let (X;,7;) be a 2n-dimensional manifold X;
with a local T™-action T;. Xi and X, are C° isomorphic if and only if there
exists an isomorphism fp: (Px,,Lx,) — (Px,,Lx,) between characteristic pairs
associated with X1 and Xa such that fheorbit(X2) = €orbit(X1). Moreover, for any
characteristic pair (P, L) on an n-dimensional topological manifold B with corners
and for any element e € H'(B; %(p,c)), there exists a 2n-dimensional C° manifold
(X,T) equipped with a C° local T™-action whose characteristic pair and the Euler
class of the orbit map are equal to (P, L) and e, respectively.

The idea of the proof. The only if part follows from Lemma 3.7 and Lemma 4.6.
The proof of the if part is similar to the proof of the classification of principal
bundles and the idea is as follows. Recall that by definition, e,rpit(X) measures the
difference between X and X(p,,cx)- If there is an isomorphism fp: (Px,,Lx,) —
(Px,,Lx,) , then, by Lemma 3.12, fp induces the C° isomorphism from X(p, ,cx,)
to X(px,,Lx,)" Moreover, suppose that f}eorsit(X2) = €orsit(X1). This means that
the difference between X; and X(pxll Lx,) is same as the difference between X2
and X(py, c,) under the identification X(py x,) = X(Px,,Lx,)- Hence, X1 is C®
~ isomorphic to X,. For more details, see [13]. O
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We focus on the case of locally standard torus actions. We remark that if a
manifold X is equipped with a locally standard torus action, then, Px is the trivial
bundle Px = Bx x Aut(T™). In this case, we can obtain the following corollary. It
is a generalization of the topological classification theorem for effective T%-actions
on four-dimensional manifolds without finite stabilizers by Orlik-Raymond [10] and
for quasi-toric manifolds by Davis-Januszkiewicz [4].

Corollary 5.2 ([13]). Locally standard torus actions are classified by the character-
istic bundle and the Euler class of the orbit map up to equivariant homeomorphisms.

6. LoCALLY TORIC LAGRANGIAN FIBRATIONS

Let (X,T) be a 2n-dimensional smooth manifold equipped with a smooth local
T™-action 7. In this section, we investigate the condition in order that ux: X —
Bx becomes a locally toric Lagrangian fibration.

Lemma 6.1. Suppose that there erists a symplectic structure w on X and there
also exists a weakly standard atlas {(UZX,9X)}aca € T of X such that on each
UX, oX preserves symplectic forms, namely, w = ¢X wen. For each nonempty
overlap Ufﬁ # 0, let pap € Aut(T") be the automorphism in (2) of Definition 2.1
with respect to {(UX,0X)}aca. We identify pap with an element of GLn(Z) by
the natural identification Aut(T™) = GL,(Z). Let {(UZ,0B)}aca be the atlas of
By induced by {(UX, ¢X)}aca. Then, on each nonempty overlap UZ; # 0, the
overlap map 0Bs: 95 (UB;) — 0B(US) is of the form

(6.1) ©2a() = p3j (€) + Cap)

for some constant cop, where p;ﬂT is the transpose inverse of pag. In particular,
Bx becomes a smooth manifold sz'th COTNErs.

Proof. Let wrnxT~ be the symplectic form on R™ x T™ which is defined by

n
wrexrn = Y dbk A dék,

k=1
where (&1,...,&n) is the standard coordinates of R™ and (64, ...,0,) is the angle
coordinates of T™ with period 1, which means (e?"%:,...,e?"%) € T". First we

focus on the interior of Bx. We can show that for each «, there exists a sym-
plectomorphism ¢q: (ux (UE \ 0Bx),w) — (p5(UZ \ 8Bx) x T™,wr~xT~) such
that pr, o¢e = @B o ux and on an overlap UZ;, the overlap map dap = ¢o © 65"
is of the form ¢ag(h,u) = (925(b), Pap(U)uas(b)) for some map uag: UZy — T™,
where pr, : B(UB\ 8Bx) x T — ¢Z(UZ \ 8Bx) is the natural projection to the
first factor. For more details, see [13]. Then, by (11, Lemma 2.5, on each overlap
UZ;\8Bx the overlap map @25 is of the form (6.1). Since UE;\ 8Bx is open dense
in UZ;, ¢B; should be of the form (6.1) on the whole UZ;. - O

Definition 6.2. We call the atlas {(UZ, p2)}qeca of Bx in Lemma 6.1 an integral
affine structure compatible with {(UZ, ¢X)}aca.

Let {(UX,9X)}aca € T be a weakly standard atlas of X. Suppose that the
induced atlas {(UB, ©E)}aca of Bx is an integral affine structure compatible with

{(ng(’ (Pi{)}ae.A e”7.

Lemma 6.3. The characteristic bundle ngy : Lx — Sn=1) By admits a smooth
section which generates Lx fiber-wisely. In particular, 7c, : Lx — S By is
determined by the integral affine structure.
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Proof. Let (UB, pB) be a coordinate neighborhood of Bx with UZNS™~YBx # 0.
We may assume that the intersection UBn S(n=1)By is connected. (Otherwise,
we may consider component-wise.) As described in the construction of Lx, the
local trivialization 2 of Ax sends wz)l( (UB n 8=1 By) isomorphically to UZ N
S~ By x L., where L, is a rank one sublattice of A. Then there exists a unique
generator ug of L4 such that 2 (UF) and B (UBNS™~1 Bx) lie in the upper half
space {£ € R™: (£, u,) > 0} and the hyperplane {£ € R™: (£, uq) = 0} determined
by ua, respectively. Suppose that (UZ,F) is another coordinate neighborhoods
satisfying the above conditions and the intersection U, fﬁ N S(™=Y Bx is nonempty.
Let ug be the corresponding generator of Lg. Since the overlap map cpgﬁ is of
the form (6.1), ¢B; sends {¢ € R™: (§,ug) 2 0} and {{ € R™: ({,ug) = 0}
diffeomorphically to {¢ € R™: (£,uq) > 0} and {¢€ € R™: (£, uq) = 0}, respectively.
In particular, this implies that us = pag(ug). Thus us’s form the required section
of Lx. ' a

By (6.1) the structure group of the cotangent bundle T*Bx is GL,(Z) and the
principal Aut(7™")-bundle Px is nothing but the frame bundle of 7*Bx. Now we
have the following exact sequence of associated fiber bundles of Px

0 > Ax T*Byxy — Tx —> 0.

As is well-known, T Bx is equipped with the standard symplectic structure, and
it is easy to see that the standard symplectic structure on T*Bx descends to the
symplectic structure on Tx, which is denoted by wry, so that 71y : (Tx,wry) —
Bx is a nonsingular Lagrangian fibration. Moreover, we can show that following
lemma.

Lemma 6.4. The canonical model X p, ) becomes a smooth locally toric La-
grangian fibration on Bx.

Roughly speaking, the proof is as follows. For each Uf, the section of Lx
defines a Hamiltonian action of some sub-torus of 7™ on 77, (UZ). X(px,cx) ca0
be obtained by symplectic cutting technique with respect to these Hamiltonian
torus actions. For more details, see {13].

From Lemma 6.4, in particular, he: px'(UB) — u;(sz Cx)(Uf ) in Section 4

can be taken to be a C° isomorphism which covers the identity on each U2 and
Ofﬁ defined by (4.1) can be also taken to be a C*° local section of T'x on Ufa.
Then the necessary and sufficient condition in order that ux: X — Bx becomes a
locally toric Lagrangian fibration is given as follows.

Lemma 6.5. Let (X,7) be a 2n-dimensional smooth manifold equipped with a
smooth local T™-action T . There exists a symplectic structurew on X and there also
exists o weakly standard atlas {(UX, 0X)}aca € T of X such that on eachUX,w=
©X*wen if and only if the atlas {(UB, 0B)}aca of Bx induced by {(U, ¥%)}aca is
an integral affine structure compatible with {(UX, pX)}aca and on each nonempty
overlap UB;, 6%; is a Lagrangian section, namely, (625)*wry vanishes.

For nonsingular Lagrangian fibrations, this result is obtained by Duistermaat [5}.
See also [11], [9]. Recently, in (6] Gay-Symington showed the similar result for near-
symplectic four-manifolds.

Finally we state the classification theorem for locally toric Lagrangian fibrations.
For a locally toric Lagrangian fibration p: (X,w) — B, the local sections 9;‘3 define
a Cech cohomology class A\(X) € H(Bx; .5’7{‘;9 ) of Bx with values in the sheaf

.5’711’;9 of germs of Lagrangian sections of mry : (Tx,wrx) — Bx.
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Theorem 6.6 ([1], [13]). Localiy toric Lagrangian fibrations are classified by inte-
gral affine structures on the bases and A\(X) up to fiber-preserving symplectomor-
phisms.

1.

10.

11.

12.
13.
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