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Preduals of Morrey-Campanato spaces
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1. INTRODUCTION

This is an announcement of my recent works.

Let X = (X,d, u) be a space of homogeneous type, i.e. X is a topological space
endowed with a quasi-distance d and a nonnegative measure u such that

d(z,y) >0 and d(z,y) =0if and only if z =y,

| d(z,y) = d(y,2),
(1.1) d(z,y) < K1 (d(z,2) +d(2,9)),

the balls (d-balls) B(z,r) = B%(z,r) = {y € X : d(z,y) < r}, r > 0, form a basis
of neighborhoods of the point z, u is defined on a o-algebra of subsets of X which
contains the balls, and '

(1.2) »0 < u(B(z,2r)) £ K2 u(B(z,1)) < o0,

where K; > 1 (i = 1,2) are constants independent of z,y,z € X and r > 0.

We note that every open subset of X is expressible as a countable union of balls
(see [4], p.70), and so measurable.

If there are constants 8 (0 < # < 1) and K3 > 1 such that

(1.3)  ld(z,2) — d(y, 2)| < Ks (d(=,2) +d(y, 2))'d(z,9)°, =v,2€X,

then the balls are open sets. Note that (1.1) for some K; > 1 follows from (1.3) |
(Lemarié [12]). Conversely, from (1.1) it follows that there exist # > 0, K3 > 1 and
a quasi-distance which is equivalent to the original d such that (1.3) holds (Macias
and Segovia [14]). |

Using atoms, Coifman and Weiss [5] defined the Hardy space H?(X) as a subspace
of the dual of Lip,(X) and they proved that Lip,(X) is the dual of H?(X). Their
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results are generalization of the case X = R". In [5] Lip,(X) was regarded the
space of functions modulo constants. Therefore, we denote the fact above by

(HP(X))" = Lipo(X)/C,

where C is the space of all constant functions. Let £, 4(X) be the Campanato space
which is a genaralization of Lip,(X). In this paper we define a generalized Hardy

space H[Ud’ ] (X) as a subspace of the dual of Ly 4(X)/C and prove that Ly 4(X)/C
is the dual of HI*%(X), i.e.

(B¥90) =cppiie,
where 1/g + 1/¢' = 1. The definition of HP(X) in [5] is a special case of ours.
We note that the predual of £, 4(X)/C is not unique. Zorko [31] defined another
predual of £, 4(X)/C in the case X = R". Our definition is a generalization of both
definitions. : .

We also define a space B*?(X) generated by blocks ("block” means an atom
without the cancellation property), and prove that the dual of Bg"’ (X) is a Morrey
space Ly, 4(X). This is .

(B5(X)) " = Lpe(X).
This result is a genaralization of Long [13] (1984). ,

It is known that £, 4(X)/C = L,4(X) under a certain condition (Nakai [24]
(2006)). We show that Hp?(X) = B3?(X) under the correspondent condition.

2. NOTATIONS AND DEFINITIONS

Let (X, d, p) be a space of homogeneous type satisfying (1.3).

Let 1 < p<ooand ¢ : X xRy - R,. For a ball B = B(z,r), we shall
~ write ¢(B) in place of ¢(z,r). For a function f € L} (X) and for a ball B, let
fe = w(B)™! [; f(z)du(z). Then the Campanato spaces L,4(X), the Morrey
spaces Ly 4(X) and the Holder spaces A4(X) are defined to be the sets of all f such
that || fllz,, < 00, |Ifllz, s < oo and ||f|la, < oo, respectively, where

1 1 , ok
111y = sup (B)( 5 1@ = fab du@)

1y = sp s (=5 [ 15¢ x)lpdu(z))l/p,

B 2|f(z) = f(v)l
I flla, = syex wty 0,42, 9) + O, Ay, 7))
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Then L,4(X)/C, Lp4(X) and Ay(X)/C are Banach spaces with the norm |||, ,,
I fllz,, and || f]la,, respectively. |

If g(z,7) = r* (@ > 0), Apa(X) = Lip,(X). If p = 1, then £, 4(X) = BMO4(X).
If = 1, then £;4(X) = BMO(X) and As(X) = L®(X). If ¢(B) = u(B)~'/»,
then L, 4(X) = LP(X).

If X =R", d(z,y) = |z — y|, u is Lebesgue measure and ¢(z,r) = r®, then the
following are known (Campanato, Mayers, Peetre, Spanne, Janson);

—n/p<a<0 = L,4(R")/C= L, y(R") (= LP(R") if @ = —n/p),
¢ =0 = L,4(R") = BMOR") D L, 4(R") = A4(R") = L*(R"),
0<a<l = L3(R") = Ay(R™) = Lip, (R").
The relations above were generalized to spaces of homogeneous type by Macias and
Segovia [14] (1979) and Nakai [24] (2006).
For functions 7, & : (0, +00) — (0,+00), we denote 7(r) ~ k(r) if there exists a
constant C > 0 such that
Clr(r) < k(r) < C7(r) for r>0.
A function 7 : (0,400) — (0,+00) is said to be almost increasing (almost de-
creasing) if there exists a constant C > 0 such that
T(r) < C7(s) (7(r) 2C7(s)) for r<s.
A function 7 : (0,+00) — (0, +00) is said to satisfy the doubling condition if

there exists a constant C > 0 such that

C'ISTLT—)<C for %5

7(s) ~

Let F be the set of all continuous, increasing and bijective functions @ : [0, +00) —
[0, +00). Then ®(0) = 0 and lim,, 1o ®(r) = 400 for & € F.

T<o.
S

Definition 2.1 ((®, ¢)-atom). Let ® € F and 1 < ¢ < oo. A function a on X is
called a (®, g)-atom if there exists a ball B such that

(i) suppa C B,
(i) flally £ p(B)9@7(1/u(B)),
(i) / o(z) du(z) = 0,
x
where ||a||, is the L9 norm of a, B is the closure of B. We denote by A(®,q) the
set of all (P, g)-atoms.
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Definition 2.2 ((®, g)-block). Let ® € F and 1 < ¢ < oo. A function a on X is
called a (®, g)-block if there exists a ball B such that (i) and (ii) hold. We denote
by B(®, g) the set of all (®, g)-blocks.

For ® € F and for B = B(z,r), let
1

If a is a (®, g)-atom, then, for a ball B satisfying (i)—(iii), we have

/. a@et@) duta)| = | [ alo)o(o) - 92) dutz)
<ol ( [ lot@) - 9a )

/¢
< u(B10/uB) (s [ 19(0) - 9aldu@)) < iy,

That is, the mapping g > [, agdy is a bounded linear functional on Ly 4(X)/C
with norm not exceeding 1.

(2.2)

Definition 2.3 (Hg?(X)). Let ®,U € F, U be concave, 1 < ¢ < 00, 1/g+1/¢' =1
and ¢ be as in (2.1). We define the space Hy?(X) C (Ly,4(X)/C)* as follows:

f € H3?(X) if and only if there exist sequences {a;} C A(®,q)
and positive numbers {);} such that

(2.3) ZA a;in (Ly4(X)/C)* and ZU(A

In general, the expression (2.3) is not unique. We deﬁne

£l ges = inf {U-l (z U(A,-)) } ,

where the infimum is taken over all expressions (2.3). We note that || f|| B4 is not
a norm in general. Let d(f,g) = U(||f — gHHg,q) for f,g € Hp?(X). Then d(f,9)
is a metric and Hj*?(X) is complete.

In the case &(r) = U(r) = 72, p < 1, then Hy*(X) = HP(X) defined by Coifman
and Weiss (5] (1977). Let I(r) = r. Then [|f||g#« is a norm and Hj #4 is a Banach
space, which was defined by Zorko [31] (1986) in the case X = R".

Definition 2.4 (BE"’(X)). Let ®,U € F, U be concave, 1 < ¢ < 00, 1/g+1/q' =1
and ¢ be as in (2.1). Assume that r®~!(1/r) is almost increasing. We define the
space By¥(X) C (Ly 4(X))* as follows:
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f € By“(X) if and only if there exist sequences {a;} C B(®,q)
and positive numbers {A;} such that

(2.4) f=> Xajin (Lgg(X))* and > U()) < 0.
- :

J

Ifllpge = inf {U_1 (Z_ U(A;)) } ,

where the infimum is taken over all expressions (2.4). _

Let d(f,9) = U(Ilf ~ glizes) for f,9 € B(X). Then d(f,g) is a metric and
Bp*(X) is complete. Let I(r) = r. Then ||f]| p®s 18 a norm and B?? is a Banach
space.

We define

If X =R d(z,y) = |z — y|, p is Lebesgue measure, ®(r) = r and U(r) =
r(1+log* (1/r)), then Bj?(X) is the space introduced by Taibleson and Weiss [29]
(1983) and Lu, Taibleson and Weiss [10] (1982).

From the definition it follows that

e Ifl1<q <go <00, then
Hp®(X) C Hy™(X), By™(X) c By™(X).

o If ¥(r) < ®(Cr) for all r > 0, then - '

Hp(X) C Hy¥(X), Bp(X)C By*(X).
o If V(r) < CU(r) for 0 < r <1, then

H3*(X) C Hy*(X), By*(X) C By*(X).
e For any concave function U € F,

Hy*(X) ¢ Hp*(X), By*'(X) € B*(X).

In the above, the inclusion mapping are continuous.

3. MAIN RESULTS

Let (Hg"’(X ))*‘ and (Bg’q(X ))* be the linear spaces of all continuous linear

functionals on Ha?(X) and on By?(X), respectively.

Lemma 3.1. Let ®,q,U be as in Definition 2.8. If

(3.1) | os<lil<)1 y% -0 (r—0),
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then

1€l (g ey = sup {1EC)] : Il gga < 11,

1€l (agy = sup { (£ I fllge < 1}
are finite for all £ € (Hg’q(X))* and for alll € (Bg’q(X))*, respectively. HZH(Hg,q)—
and “2“(33"1)' are norms.

Let L,,,(X) be the set of all L¢-functions with compact support, and let
L3, (X) = { fers, (X): /X fdu= 0} .

Then, for 1 < ¢ < 00, Lg,,,(X) and Lg2, (X) are dense in Bj?(X) and in H3(X),
respectively. |

If g€ Ly ¢(X) and f € LZL (X), then fg is integrable.
Theorem 3.2. Let ®,q,U, $ be as in Definition 2.8. If U satisfies (3.1), then

(B34(%))" = Lo s/
More precisely, if g € Ly 4(X), then the mapping £ : f — Jx flg+C)du (f €
L3 .,(X)) can be estended to a continuous linear functional on H3*(X). Con-
versely, if £ is a continuous linear functional on Hg"’(X), then there exists g €
Ly¢(X) such that £(f) = [y f(g+ C)du for f € LI, (X). The norm ||g]| is
equivalent to ||gllc,, -

Corollary 3.3. Let ®(r) =r. Then, for 1 < q < oo and for any concave function
U € F with (3.1),

(#5x)) " = BMO(X)/C.
Theorem 3.4. Let ®,q,U, ¢ be as in Definition 2.4. If U satisfies (3.1), then

(B34(0) " = Ly g(X).
More precisely, if g € Ly 4(X), then the mapping £: f — [, fodu (f € L5, (X))
can be extended to a continuous linear functional on Bg’q(X ). Conversely, if £ is
a continuous linear functional on By?(X), then there ezists g € Ly 4(X) such that
€f) = [x fgdu for f € L%, ,(X). The norm ||£|| is equivalent to lglic,. ,-

Theorem 3.5. Assume that u(X) = co and that there ezists k > 1 s.t.
(3.2) | w(B) £ %,u(kB) for all balls B.
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Let @,q,U, ¢ be as in Definition 2.4 and U(rs) < U(r)U(s) for0 < r,s<1. If
there ezists C > 0 such that

e 1t 1 |
3.3 B I @ —
33 / it = Creaayy 0T <

then H3(X) = B3(X). More precisely, for f € B3(X), there erists a decom-
position f = 3. Aja; with (®,q)-atoms such that

(frg—cy) = Z)\j /ajg forallge Lpu(X)/C,
J
where ¢y = liMr_y00 B (z0,r)-

Remark 3.1. It is known that (3.3) is a necessary and sufficient condition for
Ly 4(X)/C = Ly 4(X) (Nakai [24] (2006)) with (2.1).
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