
Some characteristic properties of families of
matrix monotone functions and of matrix

convex functions

Jun Tomiyama, Emeritus Prof. Tokyo Metropolitan University

1 Introduction
Let $I$ be an interval in the real line $R$ (often open, or half open) and $M_{n}$ be
the $n$ by $n$ matrix algebra. A real valued continuous function $f$ defined in
$I$ is said to be $n-(matrix)$ monotone if function calculus $f(a)$ and $f(b)$ for
selfadjoint elements $a,b$ of $M_{n}$ with their spectrums in $I$ preserves the order
in $M_{n}$ , that is,

$a\leq b$ implies $f(a)\leq f(b)$ .
The function is said to be $n-(matrix)$ convex if $f$ keeps the convexity in $M_{n}$

for any pair $a$ and $b$ in the same condition. Then usual classes of operator
monotone functions and operator convex functions on $I$ are expressed as the
intersections of them for all $n$ or they are the classes defined similarly on the
algebra of all bounded linear operators on an infinite dimensional Hilbert
space. We denote by $P_{n}(I)$ and $K_{n}(I)$ the sets of all n-monotone func-
tions and n-convex functions (by $P_{\infty}(I)$ and $K_{\infty}(I)$ for operator monotone
functions and operator convex functions, respectively). They form naturally
convex cones (not linear spaces) and closed in any appropriate topologies.

These notions were introduced and discussed by K.Loewner and his two
students O.Dobsch,F.Kraus more than 70 years ago but the piling structure
of $P_{n}(I)$ and $K_{n}(I)$ down to $P_{\infty}(I)$ and $K_{\infty}(I)$ are investigated only recently
in spite of the great necessity of these notions for many fields such as operator
theory, electric networks, quantum mechanics etc... One may easily see its
importance if he puts a simple question for positive matrices or operators $a$

and $b$ whether the relation,$a\leq b$ , implies the same relation for their square
roots.

This is a half expostory article in which we show how those n-monotone
functions (resp. n-convex functions) are different from usual numerical mono-
tone (resp. convex) functions and how they look like. A matn point of our
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discussion is to explain that certain basic properties which have been con-
sidered for a long time as characteristic ones for operator monotone (resp.
convex) functions are in fact derived as the properties of just 2-monotone
(resp. 2-convex) functions. Results are based on an inequality for divided
differences (cf.[3]).

2 Preliminary discussions
By definition, $P_{1}(I)$ and $K_{1}(I)$ are usual numerical $monotone/convex$ func-
tions, and so are those functions in $P_{n}(I)$ and $K_{n}(I)$ in the numerical sense.
There appear however big difference for those functions in case where $n\geq 2$ .
For instance, the exponential functiont $e^{t}$ is a good monotone increasing
function but it is not even 2-monotone, whereas its inverse function logt is
an operator monotone function in the interval $(0, \infty)$ . The functions tlogt
and $1/t$ are known to be operator convex on the positive half line. For the
basic function $t^{p}$ the most well known fact is the following

Theorem (Loewner-Heinz). For $0\leq p\leq 1$ , the function $t^{p}$ is operator
monotone in $[0, \infty$).

With this theorem, it has been known that if $p>1,or$ if $n\geq 2$ for integers
$t^{p}$ does not become even 2-monotone. For convexity, we can see that (cf [3])
$t^{p}$ is 2-convex in $[0, \infty$) if and only if $1\leq p\leq 2$ . In any case, an important
point is that 2-monotonicity and 2-convexity are the turning points for this
function between operator monotonicity and convexity. There is no other
eventual points in the index. Moreover, we also see this kind of phenomenon
in the arguments of matrix $monotone/convex$ functions, and this is the fact
that we mainly intend to enphasize in this paper.

As of now, many results are known for operator $monotone/convex$ func-
tions, notably their representations by integrals with respect to some unique
measures. In particular, operator monotone function defined in an open in-
terval is characterized as a Pick function. This means that it has an analytic
continuation into the upper half plain which maps the half plain into itself.
As consequenses, it has been known that

“ Operator monotone functions on the real line $R$ are only affine functons
and operaotr convex functions on $R$ are only quadratic”.

This is the basic reason that we are used to assume the interval $I$ being
nontrivial when we discuss those functions. We shall show later that these
things are already true for at the level of 2-monotone/2-convex functions far
from the levels of operator $monotone/convex$ functions.

For matirix $monotone/convex$ functions not so many facts were known
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until this century, except general criteria for n-monotone functions. Even for
exact gaps,

$P_{n+1}(I)\subsetneqq P_{n}(I)$ , $K_{n+1}(I)\subsetneqq K_{n}(I)$ ,

for every $n$ they are believed and asserted for along time in most of literatures
with ‘no’ examples for $n\geq 3(cf.[2])$ .

For fUrther discussions, we need to introduce the notion of divided dif-
ference of order $k,$ $[t_{0}.t_{1}\ldots. , t_{k}]$ for $k+1$-tuple of points in $I$ . Let $f$ be a
sufficiently smooth function defined in $I$ .

$[t_{0},t_{1}]=\{\begin{array}{ll}\frac{f(l_{1})-f(t_{0})}{t_{1}-t_{0}} for t_{0}\neq t_{1}f’(t_{0}) for t_{0}=t_{1}\end{array}$

In general,

$[t_{0)}t_{1}, \ldots,t_{k}]=\{\begin{array}{ll}\frac{[t_{0},t_{1},\ldots,t_{k-2},t_{k}]-[t_{0},t_{1},\ldots,t_{k-1}]}{t_{k}-t_{k-1}} for t_{k-1}\neq t_{k}\lim_{t_{k}’arrow t_{k-1}}[t_{0},t_{1}, \ldots,t_{k-1},t_{k}’] or t_{k-1}=t_{k}\end{array}$

Therefore, we have that

$[t_{0},t_{0},t_{0}]= \frac{f’(t_{0})}{2}$ , $[t_{0},t_{0},t_{0}, t_{0}]= \frac{f^{(3)}(t_{0})}{3!}$ .

We notice that this divided difference is permutation free, so that we can use
another successive definition of divided difference.

Now we state criteria for n-monotone/n- convex functions on an open
interval $I$ , first global criterion. Let $f$ be a function defined in $I$ and take an
n-tuple, $\{t_{1},t_{2}, \ldots,t_{n}\}$ in $I$ .

I (a) Monotonicity (Loewner 1934).

$f\in P_{n}(I)\Leftrightarrow([t_{i},t_{j}])\geq 0$ for $\bm{r}y\{t_{1},t_{2}, \ldots,t_{n}\}$

. This matrix is usually called as the Loewner matrix.
I(b) Convexity (Kraus 1936)

$f\in K_{n}(I)\Leftrightarrow([t_{1}.t_{i}, t_{j}])\geq 0$ for any $\{t_{1}.t_{2}\ldots.,t_{n}\}$ .

Here $t_{1}$ can be replaced by any (fixed) $t_{k}$ .
These results are established ones, but the problem is the following local

criterion.
Criterion II (a). Monotonicity (Loewner 1934, Dobsch 1937-Donoghue

1974). For $f\in C^{2n-1}(I)$

$f \in P_{n}(I)\Leftrightarrow M_{n}(f;t)=(\frac{f^{(i+j-1)}(t)}{(i+j-1)!})\geq 0.\forall t\in I$
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The above matrix is a Hankel matrix. This criterion is considered as the
established one but the procedure to its final conclusion has a strange story.
In fact, although the proof heavily depends on the so called ‘local property
theorem ‘ stated below, whose proof is extremely hard, Loewner himself said
in his paper, about this theorem, “easy and leave its proof to the readers”.
His student Dobsch then cited the result as “already proved one “. Forty
years later Donoghue gave an almost comprehensive long proof in [1] with a
little lack of rigorousity at the final stage of his proof. We have however now
recognized that the proof is completed, though we are looking for a simple
minded short proof.

Consider two overlapping open intervals $(\alpha, \beta)$ and $(\gamma, \delta)$ , Suppose the
function $f$ defined in the interval $(\alpha, \delta)$ is n-monotone on those intervaJs,
then it is n-monotone on the interval $(\alpha, \delta)$ .

The above formulation looks quite simple. We have been however unable
to prove the version of n-convex functions for $n\geq 3$ . Therefore, the following
(expected) criterion has not been established yet.

II (b) Convexity (Hansen-Tomiyama [2]). For $f\in C^{2n}(I)$ ,

$f \in K_{n}(I)\Leftrightarrow K_{n}(f;t)=(\frac{f^{(i+j)}(t)}{(i+j)!})\geq 0.\forall t\in I$ .

In this formulation the necessity is fully proved in [2] and [3] but because of
lack of the local property theorem we have shown only a partial sufficiency.
Namely what we can assert is the result: if there exists a point $t_{0}$ such that
$K_{n}(f;t_{0})$ is positive, then there exists a neighborhood of $t_{0}$ on which $f$ is
n-convex. In order to extend this conclusion to the whole interval we have
to paste these kind of results, and this is the meaning of the local property
theorem.

It should be noticed here that though we have the above criteria it is
not so easy to check positive semi-difiniteness of those relevant matrices in
general. Actually, for $2\cross 2$ matrices this checking is rather easy and we can
apply these criteria for such function $t^{p}$ . But even for a $3\cross 3$ matrix its entries
are all functions involving derivatives of high orders and we have to know the
behavior of its eigen-values at every point of $I$ . This might have been the
reason why in a so long time examples to show the exact gaps between those
classes $P_{n+1}(I)$ and $P_{n}(I)$ ($K_{n+1}(I)$ and $K_{n}(I)$ as well) are not specified for
the case $n\geq 3$ . As of now however we have found deep relationship between
the gap problem and the (truncated) power moment problem, and by making
use of this relation we can provide abundant examples (polynomials) of gaps
for every $n(cf.[2],[6])$ .
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For 2 by 2 matrices, the implication from I(a) to II(a) is rather easy. By
using determinants instead of matrices, just subtracting each column and
row we obtain the extended Loewner determinant. We then assume that
$t_{1}=t_{2}$ , which implies the non-negative property of the determinant, and it
is enough to obtain the conclusion. For the case $n\geq 3$ , things are not so
easy and this makes the implication,$I(b)arrow II(b)$ much complicated. In the
above formulations the differentiability condition is not so restrictive. For,
there is the way called ‘regularization’ which means that for any given $\epsilon$ we
can find the $C^{\infty}$ function $f_{\epsilon}$ defined on a little narrowed interval having the
same property (i.e. $monotonicity/convexity$) and converging to $f$ uniformly
on any subinterval. This is a standard way by the molifier function used
often in many fields such as in the theory of partial differential equations.

The results for the function $t^{p}$ mentioned before can be easily verified by
these criteria.

3 Main results
The following result is already known. Let $I$ be an open interval.

Theorem 3.1 ($[1_{f}$ p.73-74J) If $f\in C^{3}(I)$ and $f’(t)>0$ for every $t$ in $I$ ,
then the following assertions are equivalent.

(1) $f$ is 2-positive,
(2) The matrix $([t_{i},t_{j}])$ is positive semi-definite for $\forall\{t_{1},t_{2}\}$ in $I$ ,
(3) The matrix $M_{2}(f;t)$ is positive semi-definite in $I$ ,
(4) There enists a positive concave function $c(t)$ such that $f’(t)=1/c(t)^{2}$

for every $t$ in $I$ .

Here the condition for $f’(t)$ is not so restrictive. For, if there exists a point
$t_{0}$ where $f’(t_{0})=0$ it is known that $f$ must be constant.

However, the following simple corollary of the above result had not been
observed before and the result itself was derived,in usual literature, for an
operator monotone function as a consequence of its integral representation.

Corollary 3.2 If $I=R$, then $f’(t)$ becomes constant, hence $f$ is an affine
functiion.
Proof. Because a positive concave function defined in the whole real line $R$

has to be constant in its geometrical figure.
We can now show the following characterization of a 2-convex function.

In the theorem , although we impose the condition that $f\in C^{4}(I)$ the
result implies with the regularization process mentined before that the local
property theorem holds for an arbitrary 2-convex functions.
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Theorem 3.3 ([2]) If $f\in C^{4}(I)$ and $f’(t)>0$ for every $t$ in $I$ , then the
following assertions are equivalent.

(1) $f$ is 2-convex,
(2) The $mat\dot{m}([t_{1}, t_{i}, t_{j}])$ is positive semi-definite for $\forall\{t_{1}, t_{2}\}$ in $I$ ,
(3) $[t_{1}, t_{1}, t_{1}][t_{2}, t_{2}, t_{2}]\geq[t_{1}, t_{1}, t_{2}][t_{1}, t_{2}, t_{2}]_{f}$

(4) The matrix $K_{2}(f;t)$ is positive semi-definite for every $t$ in $I$ ,
(5) There enists a positive concave function $c(t)$ such that $f’(t)=1/c(t)^{3}$ .

Here the condition for $f’(t)$ is not too restrictive because it is known that if
there exists a point $t_{0}$ such that $f’(t_{0})=0f$ must be an affine function. We
leave a detailed proof of this theorem to the reference [2].

We mention a simple observation as a corollary. As in the same situation
as above, the result was known before as a consequence for an operator convex
function but it is in fact the result followed from 2-convexity.

Corollary 3.4 If$I=R$, then $f’(t)$ becomes constant, hence $f$ is a quadratic
function.

The reason is the same as the previous corollary since in this case $c(t)$ must
be constant.

No such commplete characterizations have ever been known even for $3\cross 3$

matrices. We have however a general inequality for divided differences which
are closely related with the above results.

Theorem 3.5 Suppose that $f\in C^{n}(I)$ and $f^{(n)}(t)>0$ for $eve\eta t$ in I. If
the function $c(t)=1/f^{(n)}(t)^{1/n+1}$ , that is, $f^{(n)}(t)=1/c(t)^{n+1}$ is concave,
then

$[t_{1}, t_{2}, \ldots, t_{n+1}]\leq\prod_{i=1}^{n+1}[t_{i}, t_{i}, \ldots, t_{i}]^{\frac{1}{\mathfrak{n}+1}}$,

where in the nght member of the above inequality $t_{i}$ repeats $n+1$ times.
When the function $c(t)$ is convex the inequality is reversed.

This is proved by making use of the expression of a divided difference by
iterated integrals invented by Hermite long before. We leave its detailed
proof to [2].

Consider the case $n=1,that$ is $f’(t)=1/c(t)^{2}$ . Then we have

This implies the assertion (2) in Theorem 3.1 because the inequality shows
the relevant determinant is non-negative.
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In the case $n=2,$ $f’(t)=1/c(t)^{3}$ , from which we can see by the above
inequality,

$0\leq[t_{1}, t_{1}, t_{2}]\leq[t_{1},t_{1},t_{1}]^{2/3}[t_{2}, t_{2}, t_{2}]^{1/3}$

and
$0\leq[t_{1},t_{2}, t_{2}]\leq[t_{1}, t_{1}, t_{1}]^{1/3}[t_{2},t_{2}, t_{2}]^{2/3}$ .

Hence multiplying both sides we obtain the implication from (5) to (3) in
Theorem 3.3. Thus, the inequality contributes proofs of both theorems. We
may expect the inequality for $n=3$ could bring some insight for a charac-
terization of 3-monotone functions, but we still do not know the meaning of
this inequality even for this case.
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