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SOME REPRESENTATION RESULTS FOR FUNCTION SPACES

FERNANDO COBOS*

ABSTRACT. We recall the representation theorem of Zygmund spaces in term of Lebesgue spaces
and we take this as model for introducing logarithmic interpolation spaces between quasi-Banach
spaces. Application are given not only to function spaces but also to operator spaces. Part of
the results are taken from the joint paper with Fernindez-Cabrera, Manzano and Martinez (Z.
Anal. Anwendungen 26 (2007), 65-86). '

0. INTRODUCTION

Let ( be a domain in R™ with finite Lebesgue measure |Q|. For any p with 0 < p < 0o we let
Lp(£2) be the usual quasi-Banach space formed by all Lebesgue-measurable functions f :  — C
which have a finite quasi-norm '

I fllz,@) = (/Q |f ()P dz)V/P

(with the obvious modification if p = 00). As usual, we identify functions equal almost every-
where. These spaces are Banach spaces for 1 < p < oo and quasi-Banach if 0 < p < 1.
Working with the non-increasing rearrangement f* of the function f defined by

ff)=inf{s>0: [{zeQ: |f(z) >3} <t}

the quasi-norm of L,(2) can be written as

12|
Nz, = (/(; (f*(t))P dt) />,

These scale of spaces is enough for dealing with many problems in Analysis but sometimes
one need a more refined scale of spaces as the Zygmund spaces L,(log L)3(2) where 0 < p < 00
and b € R, or p = 00 and b < 0. A function f belongs to Ly(log L)»(2) if and only if it has a
finite quasi-norm

1 - 1/p
If L, qog Lys(e) = ( /0 [(1 + |logt|)® f*(t)] dt)

(with the usual modification if p = c0).
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Clearly, L,(2) = Lp(log L)o(?). Zygmund spaces complement the scale of Lebesgue spaces
in the sense that if p < oo and b > 0 then

Ly(log L)s() € Ly(Q) C Ly(log L)4(%2)

and for —co < by < by < @

Lpte(2) C Lyp(log L)p, () C Lp(log L)y, () C Lp—e(9).

For p =00 and —00 < a1 < ag < 0 we have

Loo(2) C Loo(log L)g, () C Loo(log L)g, ().

Zygmund spaces are studied in detail in the books by Bennett and Sharpley [2] and Edmunds
and Triebel [10]. An important result of their theory allows to reduce Zygmund spaces to the
usual Lebesgue spaces (see [10]). We recall this result and some of its applications in Section
1. Taken the representation theorem as model, we define abstract logarithmic interpolation
spaces in Section 2. There we also characterize them by using the interpolation method with a
function parameter and we apply the results to function spaces. Finally, in Section 3, we show
applications to operator spaces defined in terms of approximation numbers.

1. ZYGMUND SPACES

The following result, taken from [10] and [17], characterizes Zygmund spaces in terms of the
usual Lebesgue spaces. ,

Theorem 1.1. Let 0 < p < o0 and let jo = jo(p) € N such that, for all j € N with j > jo,

1 1 1 1 1 1
—=-==>0. Put —=-+—.
g p % ry p ¥
(i) Let b < 0. Then Ly(log L)(S) consists of all Lebesgue-measurable functions f on  such

that

S jbp || £1|P 1/p
( Z . “f“L,.j(Q)) < 00. (1.1)
J=jo
Moreover, (1.1) defines an equivalent quasi-norm on Ly(log L)y(€2).
(i) Let b > 0. Then Ly(log L)y(Q) is the set of all Lebesgue-measurable functions f on
which can be represented as

F=fi» fieLyx(®) | (12)
Jj=jo
such that
X 1/
(Z 2i%P | fJ’"%,,j (ﬂ)) P < 00. (1.3)

J=J0
Moreover, the infimum over all expressions (1.8) satifying (1.2) is an egquivalent guasi-norm on
Ly(log L)s(£2).
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There is also a corresponding result when p = oco.

The advantage of such reduction of the more complicated Zygmund spaces to the simpler
Lebesgue spaces is quite clear. For example, in connection with the study of linear continuous
(and compact) operators acting in Zygmund spaces (see [10]).

Constructions of type (1.1) to (1.3) have been considered in the framework of extrapolation
theory, especially in connection with limiting situations such as p = 1 and p = oo. See the
monographs by Jawerth and Milman [15], Milman [19] and the article by Karadzhov and Milman
[17]. The last paper deals also with methods for 0 < p < co. In particular, they prove (ii) for
0 < p < 1 complementing the result of [10] based on duality from (i) and so established for
1<{p<o.

As an application of Theorem 1.1 one can recover a classical result of Hardy and Littlewood on
boundedness of the maximal function from L(log L)(€2) into L1 (2) (see [10]). The representation
theorem is also useful in other contexts. For example, Triebel used it in [22] to study the degree
of compactness of the embedding from the fractional Sobolev space H1/?(Q) into Loo(log L)5(2),
where (? is a bounded domain in R™ with smooth boundary, 1 < p < 00 and b < 1/p — 1. The
“Lp-counterpart” of this case was studied by Edmunds and Triebel [9], who determined the
behaviour of entropy numbers of the embedding from H, /(n +sp)(Q) < Lp(log L)5(S2), where
1<p<o00,8>0andb<0. Again Theorem 1.1 was a basic tool in [9].

As it is well-known, L,, spaces can be obtained by complex interpolation. Namely,

(Loo(Q), L1(@))jg) = Lp(@) i 1/p=6.

So, taking the representation theorem as a starting point, Edmunds and Triebel studied in
[11] the corresponding abstract theory based on complex interpolation. There they introduced
interpolation spaces which complement the complex interpolation scale. In particular, they
investigated the spaces that come out by replacing in Theorem 1.1 the scale of L,(£2)-spaces by
the scale of Sobolev spaces H;(f2). They called “logarithmic Sobolev spaces” to the resulting
spaces.

But L,(2)-spaces can be also obtained by real interpolation. Indeed,

(Loo(R), L1(2))op = Lp(Q) i 1/p=8.

So, it is also natural to investigate the corresponding abstract theory based on the real interpo-
lation method. For the Banach case, this was done by Cobos, Ferndndez-Cabrera and Triebel
[7]. The quasi-Banach case was studied by Karadzhov and Milman [17} and Cobos, Fernéndez-
Cabrera, Manzano and Martfnez [6]. Subsequently, we will describe some results taken from

[6]-

2. LOGARITHMIC INTERPOLATION SPACES

Let Ap, A; be quasi-Banach spaces with Ag — A;, where — means continuous inclusion.
The Peetre’s K-functional is defined by

K (t,a) = inf{||ao|| 4, + tlla1lla, :a=ap+ a1, a; € Aj}, t>0, a€A;.



98

For 0 < 8 <1 and 0 < g < oo, the real interpolation space Ag 4 = (Ao, A1)s,4 consists of all
those a € A; having a finite quasi-norm

lallae,, = (_/ooo (t_gK(t,a))th/t)l/q

(with the usual modification if ¢ = co). Full details on these spaces can be found in the books
by Bergh and Léfstrom [3] or by Triebel [21].
For the couple Ay = Lo(Q) — A1 = L(), r >0, the K-functional turns out to be

- 1/r
K(t,f)~t(/0 (f*(s))'dS) :

This yields the interpolation formula
(Loo(S2), Lr()ep = Lp(?) if 1/p=6/r.

If the value of the parameter g is different from p, then we get Lorentz function spaces

il at\ "
(Loo(@), Lr (D)o = Lpa(®) = f=|lfNLp,q(n)=( Ji (t””f“@)"?) et

Returning to the abstract case, we have for 0 < p,¢ < o0 and 0 < 8 < p < 1, that

(Ao, A1)ep — (Ao, A1)ug Let Agy = n Aug. Note that the space Ay, is independent
. f<u<l

of q.
The next definition is modeled on the representation theorem for Zygmund spaces.

Deﬁnition 2.1; Let Ag, A; be quasi-Banach spaces with 4g — A;. Let 0 < 6 < 1 and let
jo = jo(6) € N such that, for all j € N with j > jo,

0;j=0+279<1 and X\j=6-277>0.

Let 0 < g < 0.
(i) Assume b < 0. We let Ag4(log A)p denote the space of all a € Ag; which have a finite
quasi-norm
S~ %4 |1 414 Y
lallao qog a0 = (3 2% llaly,, ) -
j=jo
(ii) Let b > 0. The space Agq(log A)y consists of all a € A; which can be represented as
a =332, a; with a;j € Ay, and

x
. /
(Z oibq llczla'lquhj,.‘,)1 ! < 0.

J=jo
We put
; S~ aiba fgie )
"a”Aa,q(logA)b = inf ( Z 2 “a'j"AAj.q) *
' J=jo

(iif) If b = 0, then Agg(log A)y = Agq.
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Standard arguments show that Ag4(log A)p is a quasi-Banach space in all cases of b € R. It
does not depend on jo (with equivalence of norms). If Ag and A; are Banach spaces, 1 < ¢ < o©
and we replace the real method by the complex interpolation method then we obtain the spaces
studied in [11]. They are different from the complex interpolation scale and complement it.

In our case, spaces Ag 4(log A)p are also different from the real interpolation scale, but if we
modify the definition of Ay, by adding to the function t? a logarithmic term

10~ ggp(t) = t°(1 + | logt]) %,

that is, if we consider the spaces

© K(t,a)\q dt\1/a
(Ao, A1) gg piq = {a, € Ai : |lalla,, o = (/0 (_Q_o(;(tT))q _t_> < oo}

then we get the same spaces. Before stating the result, let we mention that spaces (Ao, A1) gy ;¢
are a special case of the so called real method with a function parameter (see [13] and [14]).

Theorem 2.2. Let 0 < g < 00, 0< 0 <1andbeR. Putgop(t) =t (1+|logt|)~b ¢t > 0.
Then we have, with equivalent gquasi-norms,

Ao.q(log Ay = Aea,a;a-

See [6] for the proof. A similar result holds for 6 =0,q =00 and b < 0.

Combining the theorem with known results from interpolation theory, we can now derive other
representation theorems. For example, let Q2 be a domain in R™ with finite Lebesgue measure, let
0 <p<oo,0<q< oo and choose 0 < r < p. Then interpolating with 6 = r/p and ggp, b € R
we obtain the Lorentz-Zygmund function spaces Ly, 4(log L)s(2) = (Loo(2), Lr(£2)) 0 ¢

o He
= {f N Fllz, 400z L)s(@) = (/0 [tl/p(l + |logt|)® f*(t)]q %) < oo} X

These spaces were introduced by Bennett and Rudnick [1]. For other references and generaliza-
tion of these spaces see [8].

As a direct application of Theorem 2.2, we obtain the following characterization for Lorentz-
Zygmund spaces.

Corollary 2.3. Let 0 < p < 00, 0 < ¢ < 0o and let jo = jo(p) € N such that, for all j € N with

ijO;
1
11 1o pu 121t
G p i P

(i) Let b < 0. Then Ly q(log L)s(S2) is the set of all measurable functions f on (2 such that

[o o]
. /
(S 2™I1E, ) <o

j=jo
(i) Let b > 0. Then L, 4(log L)»() consists of all measurable functions f on 2 which can be
represented as f =Y 52, f; with f; € Ly, o(9) and
(o <]

. /
(2950, @) <o

Jj=jo0
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Since Ly(log L)y = Lpp(log L), we have now two representations for Zygmund spaces: The
former one in terms of Lorentz spaces Lg,,q, Lr; o and the one given by Theorem 1.1 by using
the more simple Lebesgue spaces Lg;, Lr;. In fact it is possible to recover Theorem 1.1 from
Theorem 2.2 with the help of the following lemma.

Lemma 2.4. Let Ag, A1 be quasi-Banach spaces with Ay — A;. Let 0 < 0 < 1 and let
jo = jo(#) € N such that, for all j € N, j = jo,

o;j=04+279<landj=6-277>0.

Let 0 < g < oo and assume also that for j > jo
1 1
"—=l—'—7>0. Put -]-.-=
uj q 2 8;
(i) If b < 0, the norm of Agq(log A)y is equivalent to

(S 2mary,, )"

J=jo
(i) If b > 0, the norm of Agq(log A)p is equivalent to

: S o e ) 3 S oapg e )Y
inf (22’ HajIIA’\j'uj) :G=Zaj,(z2'7 ||aj||A,\j,,,j) <o

J=jo J=jo J=jo

1
Ty

0y | e

Full details can be found in [6].

3. OPERATOR SPACES

In this last section we show applications of the previous results to spaces of operators defined
by means of the approximation numbers.

Let E, F be quasi-Banach spaces and let L(E, F) be the quasi-Banach space of all bounded
linear operators acting from E into F. For k € N, the k-th approximation number ax(T) of
T € L(E, F) is defined by

ax(T) = inf {|T - R|| : R€ L(E,F) with rankR < k}.

For 0 < p < 00, 0 < g < 0o and b € R, the space L, q(E, F') consists of all those T € L(E,F)
having a finite quasi-norm

Tl = ( 306771 +log k(@) k) ™
k=1

(with the usual modification if g = 00). These spaces were studied by Cobos in [4] and [5]. Note
that '

T € Lpgp(E, F) < {ax(T)} € £y,4(log £)b
where £ 4(log £)p is the Lorentz-Zygmund sequence space. When b = 0, we get the Lorentz
operator spaces (Lp q(E, F), || - Ilp,¢) which have been investigated in detail in the books by Kénig
[18] and by Pietsch [20]. The special case b = 0 and p = g gives the spaces (Lo(E, F), [ - llp),
which are the analogues of the Schatten p-classes for approximation numbers.
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Take 0 < r < o0 and let Ag = £,(E,F) — A; = L(E, F). Then

|| ift<1
~ [t 1/r
K@) (Zak(T)) ift> 1.

Here [-] is the greatest integer function. For0<r <p<oo, §=1—r/p, 0<g<ooandbeR
it follows that

(Lr(E,F),L(E, F))gg4:qa = Lp,gb(E, F).
Hence, applying Theorem 2.2 we obtain the following result.

Corollary 8.1. Let 0 < p < 00, 0 < g € oo and let jo = jo(p) € N such that, for all j € N with
j > jO:

G p ¥

(i) Let b < 0. Then L, q4(E, F) is the set of all T € L(E, F) such that

o0

( D ok ||T||qj’q) Y ¢ e

J=Jo

(u) Let b > 0. Then Ly 44(E,F) consists of allT € L(E, F) which can be represented as
T = Z T; with Tj € Lo, 4(E,F) such that (Z 2% || Ty 18, q) < 0.

Jj=jo J=jo

We finish the paper by describing the operator analogue of the classical result of Hardy and
Littlewood on the boundedness of the maximal function from L(log L) into L;. For this we need
to introduce the space that plays the role of L(log L) in the scale {£,}. This is

2,1;1 a;(T)
LMm(E,F)= {T € L(E,F): [[Tlm= i"zl)l{ 1+logm | ("

One can check that
Ly(E,F)C LMm(E,F)C Ly(E,F) forany 1<p<oo.

For E = F = H, a Hilbert space, the space Lq(H) is referred in the literature as one of the
Macaev ideals (see [12]).

Corollary 3.2. Let E and F be gquasi-Banach spaces and let § be a bounded linear operator
from L,(E,F) into L,(E,F) for1<p<2. If

18l 2, E.F), o F) < 5 as pll,

then
¥:Li(E,F) — LM(E,F)
is bounded.
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Sketch of the proof. Using the expression for the K-functional between operator spaces
one can show that

LM(E, F) = (L1(B, F), L(E, F))go,_1;00 With go,-1(£) =1+ | logt|.

By the version of Theorem 2.2 for § = 0,g = oo and b = —1, we obtain that
Il ~ 590 {2771, 0}

Here ¢; = (1 —27)"T and || - |7, 00 = | - lca (2. Py 22 F)),_, « S|+ llg;- Hence, if T € £L1(E, F),
we derive '

I8 aa ~ sup {27 I8T 5 a0} < sup {27187 s}
< esup {277(g; ~ )Ty} < ¢ sup {IT e, } = &IIT.
=1 Jj21

Q
The result is taken from [6] where full details can be found. In the Hilbert case, that is, when
E = F = K, the result is due to Jawerth and Milman [16]
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