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Abstract. Our purpose in this article is to discuss new nonlinear operators in a Banach
space which are related to nonexpansive mappings and to obtain convergence theorems for
the operators. We first deal with a nonlinear operator called a relatively nonexpansive map-
ping which generalizes a nonexpansive mapping in a Hilbert space. Using this operator, we
prove a strong convergence theorem which generalizes Nakajo and Takahashi [29]. We also
obtain another theorem for relatively nonexpansive mappings which is $co$nnected with Reich’s
theorem [33]. Next, we define another nonlinear operator in a Banach space called a gener-
alized nonexpansive mapping. This mapping also generalizes a nonexpansive mapping in a
Hilbert space. Using this mapping, we also get a strong convergence theorem which is related
to Nakajo and Takahashi [29] and is different from the theorem above. Further, we obtain a
weak convergence theorem of Reich’s type. Finally, we prove a strong convergence theorem for
nonexpansive mappings in a Banach space which is closedly related to Nakajo and Takahashi
[29].

1 lntroduction
Let $H$ be a real Hilbert space with inner product( $\cdot,$

$\cdot\rangle$ and norm $\Vert\cdot\Vert$ and let $C$ be a nonempty
closed convex subset of $H$ . Then, a mapping $T$ of $C$ into itself is called nonexpansive if
$||Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . We denote by $F(T)$ the set of fixed points of $T$ .

Mann [22] introduced the following iterative sequence to approximate a fixed point of a
nonexpansive mapping: $x_{1}=x$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}$ , $n=1,2,$ $\ldots$ ,

where $\{\alpha_{n}\}$ is a sequence in $[0,1]$ . Reich [33] proved the following weak convergence theorem
for such a sequence. For the proof, see Takahashi [46].

Theorem 1.1 (Reich [33]). Let $C$ be a closed convex subset of a Hilbert space $H$ and let $T$

be a nonexpansive mapping of $C$ into itself such that $F(T)$ is nonempty. Let $P$ be the metric
prvjection of $H$ onto $F(T)$ . Let $x\in C$ and let $\{x_{n}\}$ be a sequence defined by $x_{1}=x$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}$ , $n=1,2,$ $\ldots$ ,
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where $\{\alpha_{n}\}\subset[0,1]$ satisfies

$0\leq\alpha_{n}<1$ and $\sum_{n=1}^{\infty}\alpha_{n}(1-\alpha_{n})=\infty$ .

Then, $\{x_{n}\}$ converges weakly to $z\in F(T)$ , where $z= \lim_{narrow\infty}Px_{n}$ .
Reich [33] proved really such a theorem in a uniformly convex Banach space whose norm

is a Fr\’echet differentiable. On the other hand, we know many problems in nonlinear analysis
and optimization which are formulated as follows: Find

$u\in H$ such that $O\in Au$ , (1.1)

where $A$ is a maximal monotone operator from $H$ to $H$ . Such $u\in H$ is called a zero point
(or a zero) of $A$ . A well-known method for solving (1.1) in a Hilbert space $H$ is the proximal
point algorithm: $x_{1}\in H$ and

$x_{n+1}=J_{r}.x_{n}$ , $n=1,2,$ $\ldots$ , (1.2)

where $\{r_{n}\}\subset(0,\infty)$ and $J_{r}=(I+rA)^{-1}$ for all $r>0$ . This algorithm was first introduced
by Martinet [23]. In [39], Rockafellar proved that if $\lim\inf_{narrow\infty}r_{n}>0$ and $A^{-1}0\neq\emptyset$ , then
the sequence $\{x_{n}\}$ defined by (1.2) converges weakly to a solution of (1.1). Motivated by
Rockafellar’s result, Kamimura and Takahashi [16] proved the following convergence theorem.

Theorem 1.2 (Kamimura and Ihlahashi [16]). Let $H$ be a Hilbert space and let $A\subset$

$HxH$ be a maximal monotone operator. Let $J_{r}=(I+rA)^{-1}$ for all $r>0$ and let $\{x_{n}\}$ be a
sequence defined as follows: $x_{1}=x\in H$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})J_{r_{n}}x_{n}$ , $n=1,2,$ $\ldots$ ,

where $\{\alpha_{n}\}\subset[0,1]$ and $\{r_{n}\}\subset(0, \infty)$ satisfy

$\lim_{narrow}\sup_{\infty}\alpha_{n}<1$ and $\lim_{narrow}\inf_{\infty}r_{n}>0$ .

If $A^{-1}0\neq\emptyset$ , then the sequence $\{x_{n}\}$ converges weakly to an element $v$ of $A^{-1}0$, where $v=$
$\lim_{narrow\infty}Px_{\mathfrak{n}}$ and $P$ is the metric projection of $H$ onto $A^{-1}0$ .

Solodov and Svaiter [41] also proved the following strong convergence $th\infty rem$ by the hybrid
method in mathematical programming.

Theorem 1.3 (Solodov and Svaiter [41]). Let $H$ be a Hilbert space and let $A\subset HxH$

be a maximal monotone operator. Let $x\in H$ and let $\{x_{n}\}$ be a sequence defined by

$\{\begin{array}{l}x_{1}=x\in H0=v_{n}+\frac{1}{r_{n}}(y_{n}-x_{n}),v_{n}\in Ay_{n}H_{n}=\{z\in H : \langle z-y_{n},v_{n}\rangle\leq 0\}W_{\mathfrak{n}}=\{z\in H:\langle z-x_{n},x_{1}-x_{n}\rangle\leq 0\}x_{n+1}=P_{H_{\hslash}\cap W_{n}}x_{1},n=1,2,\ldots\end{array}$

where $\{r_{n}\}$ is a sequence of positive numbers. If $A^{-1}0\neq\phi$ and $\lim\inf_{narrow\infty}r_{n}>0,$ $then\{x_{n}\}-$

converges strongly to $P_{A^{-1}0}x_{1}$ .
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Motivated by Solodov and Svaiter [41], Nakajo and Takahashi [29] proved the following
strong convergence teorem by using the hybrid method for nonexpansive mappings in a Hilbert
space.

Theorem 1.4 (Nakajo and Takahashi [29]). Let $C$ be a dosed convex subset of a Hilbert
space $H$ and let $T$ be a $none\varphi ansive$ mapping of $C$ into itself such that $F(T)$ is nonempty.
Let $P$ be the metric projection of $H$ onto $F(T)$ . Let $x_{1}=x\in C$ and

$\{\begin{array}{ll}y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n}) x_{n},C_{n}=\{z\in C : \Vert y_{n}-z \leq\Vert x_{n}-z\Vert\},Q_{n}=\{z\in C:\langle x_{n}-z x_{1}-x_{n}\rangle\geq 0\},x_{n+1}=P_{C_{n}\cap Q_{n}}(x_{1}), n=1,2, \ldots,\end{array}$

where $\{\alpha_{n}\}\subset[0,1]$ satisfies $\lim\sup_{narrow\infty}\alpha_{n}<1$ and $P_{C_{n}\cap Q_{n}}$ is the metric projection of $H$

onto $C_{n}\cap Q_{n}$ . Then, $\{x_{n}\}$ converges strongly to $Px_{1}\in F(T)$ .
After Nakajo and Takahashi [29], many reseachers have studied such theorems by hybrid

methods in a Hilbert space; see, for instance, [14, 24, 42, 55]. However, we can not find a
theorem for nonexpansive mappings in a Banach space which generalizes Nakajo and Takahashi
[29].

Our purpose in this article is to consider new nonlinear operators in a Banach space for
extending Nakajo and Takahashi’s result [29] in a Hilbert space to that in a Banach space.

In Section 3, we deal with a nonlinear operator in a Banach space called a relatively non-
expansive mapping which generalizes a nonexpansive mapping in a Hilbert space. We know
that a relatively nonexpansive mapping in a Banach space is completely different from a non-
expansive mapping in a Banach space. In this section, we state a strong convergence theorem
for relatively nonexpansive mappings which generalizes Nakajo and Takahashi [29]. We also
obtain another $th\infty rem$ for relatively nonexpansive mappings which is connected with Reich’s
theorem [33].

In Section 4, we define another nonlinear operator in a Banach space which generalizes a
nonexpansive mapping in a Hilbert space. We call such a nonlinear operator a generalized
nonexpansive mapping. In this section, we obtain a strong convergence $th\infty rem$ which is
related to Nakajo and Takahashi [29] and is different from the result in Section 3. Further, we
obtain a weak convergence theorem of Reich’s type. Finally, in Section 5, we prove a strong
convergence theorem for nonexpansive mappings in a Banach space which is closedly related
to Nakajo and Takahashi [29].

2 Preliminaries
Let $E$ be a real Banach space with norm $||\cdot\Vert$ and let $E$“ denote the dual of $E$ . We denote

the value of $y^{*}\in E^{*}$ at $x\in E$ by $\langle x, y^{*}\rangle$ . When $\{x_{n}\}$ is a sequence in $E$ , we denote the strong
convergence of $\{x_{n}\}$ to $x\in E$ by $x_{n}arrow x$ and the weak convergence by $x_{n}arrow x$ . The modulus
$\delta$ of convexity of $E$ is defined by

$\delta(\epsilon)=\inf\{1-\frac{||x+y\Vert}{2}$ : $||x\Vert\leq 1,$ $\Vert y\Vert\leq 1,$ $||x-y\Vert\geq\epsilon\}$
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for every $\epsilon$ with $0\leq\epsilon\leq 2$ . A Banach space $E$ is said to be uniformly convex if $\delta(\epsilon)>0$ for
every $\epsilon>0$ . If $E$ is uniformly convex, then $\delta$ satisfies that $\delta(\epsilon/r)>0$ and

$\Vert\frac{x+y}{2}\Vert\leq r(1-\delta(\frac{\epsilon}{r}))$

for every $x,$ $y\in E$ with $\Vert x\Vert\leq r,$ $\Vert y\Vert\leq r$ and $\Vert x-y\Vert\geq\epsilon$ . Let $C$ be a nonempty closed convex
subset of a uniformly convex Banach space $E$ . Then we know that for any $x\in E$ , there exists
a unique element $z\in C$ such that $\Vert x-z\Vert\leq\Vert x-y\Vert$ for all $y\in C$ . Putting $z=P_{C}(x)$ , we call
$P_{C}$ the metric projection of $E$ onto $C$ . The duality mapping $J$ from $E$ into $2^{E^{*}}$ is defined by

$Jx=\{x‘ \in E" : \langle x, x^{*}\rangle=\Vert x\Vert^{2}=||x^{*}\Vert^{2}\}$

for every $x\in E$ . Let $U=\{x\in E : \Vert x\Vert=1\}$ . The norm of $E$ is said to be G\^ateaux
differentiable if for each $x,$ $y\in U$ , the limit

$\lim_{tarrow 0}\frac{||x+ty\Vert-\Vert x\Vert}{t}$ (2.1)

exists. In the case, $E$ is called smooth. The norm of $E$ is said to be uniformly G\^ateaux
differentiable if for each $y\in U$ , the limit (2.1) is attained uniformly for $x\in U$ . It is also
said to be Fr\’echet differentiable if for each $x\in U$ , the limit (2.1) is attained uniformly for
$y\in U$ . A Banach space $E$ is called uniformly smooth if the limit (2.1) is attained uniformly
for $x,$ $y\in U$ . It is known that if the norm of $E$ is uniformly G\^ateaux differentiable, then the
duality mapping $J$ is single valued and uniformly norm to weak’ continuous on each bounded
subset of $E$ . We know the following result: Let $E$ be a smooth Banach space. Let $C$ be a
nonempty closed convex subset of $E$ and $x_{1}\in E$ . Then, $x_{0}=P_{C}(x_{1})$ if and only if.

$\langle x_{0}-y, J(x_{1}-x_{0})\rangle\geq 0$

$foral1y\in C,$ whereJ is the duality maPping of E.
A Banach space $E$ is said to satisfy Opial’s condition [31] if for any sequence $\{x_{n}\}\subset E$ ,

$x_{n}arrow y$ implies
$\lim_{narrow}\inf_{\infty}\Vert x_{n}-y\Vert<\lim_{narrow}\inf_{\infty}\Vert x_{n}-z\Vert$

for all $z\in E$ with $z\neq y$ . A Hilbert space satisfies Opial’s condition.
Let $C$ be a closed convex subset of $E$ . A mapping $T:Carrow E$ is said to be nonexpansive if

11Tx-Ty $\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . We denote the set of all fixed points of $T$ by $F(T)$ . Let
$D$ be a subset of $C$ and let $P$ be a mapping of $C$ into $D$ . Then $P$ is said to be sunny if

$P(Px+t(x-Px))=Px$

whenever $Px+t(x-Px)\in C$ for $x\in C$ and $t\geq 0.$ $A$ mapping $P$ of $C$ into $C$ is said to be a
retraction if $P^{2}=P$ . We denote the closure of the convex hull of $D$ by $\overline{c}7D$ .

A multi-valued operator $A:Earrow E$“ with domain $D(A)=\{z\in E : Az\neq\emptyset\}$ and range
$R(A)=\cup\{Az:z\in D(A)\}$ is said to be monotone if $\langle x_{1}-x_{2}, y_{1}-y_{2}\rangle\geq 0foreachx_{1}\in D(A)$

and $y_{i}\in Ax_{i},$ $i=1,2$ . A monotone operator $A$ is said to be maximal if its graph $G(A)=$
$\{(x, y) : y\in Ax\}$ is not properly contained in the graph of any other monotone operator. The
following theorems are well known; for instance, see [46].

Theorem 2.1. Let $E$ be a reflexive, strictly convex and smooth Banach space and let $A:Earrow$

$2^{E}$ be a monotone operator. Then $A$ is maximal if and only if $R(J+rA)=E^{*}for$ all $r>0$ .
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Theorem 2.2. Let $E$ be a stntctly convex and smooth Banach space and let $x,$ $y\in E.$ If
$\langle x-y, Jx-Jy\rangle=0$ , then $x=y$ .

A duality mapping $J$ of a smooth Banach space is said to be weakly sequentially continuous
if $x_{n}arrow x$ implies that $Jx_{n}arrow*Jx,$ $wherearrow*means$ the weak’ convergence.

3 Relatively nonexpansive mappings
In this section, we first deal with a strong convergence theorem in a Banach space which

generalizes Nakajo and Takahashi’s thmrem $(Th\infty rem1.4)$ in a Hilbert space.
Let $E$ be a reflexive, strictly convex and smooth Banach space. The function $\phi:ExEarrow$

$(-\infty, \infty)$ is defined by
$\phi(x, y)=\Vert x\Vert^{2}-2(x,$ $Jy\rangle$ $+\Vert y\Vert^{2}$

for $x,$ $y\in E$ , where $J$ is the duality mapping of $E$ ; see [1] and [18]. Let $C$ be a nonempty
closed convex subset of $E$ and let $x\in E$ . Then there exists a unique element $x_{0}\in C$ such that

$\phi(x_{0}, x)=\inf\{\phi(z, x) : z\in C\}$ . (3.1)

Now, we define the mapping $Q_{C}$ of $E$ onto $C$ by $Q_{C}x=x_{0}$ , where $x_{0}$ is defined by (3.1). Such
$Q_{C}$ is called the generalized projection of $E$ onto $C$ . It is easy to see that in a Hilbert space,
the mapping $Q_{C}$ is coincident with the metric projection.

Lemma 3.1. Let $E$ be a smooth Banach space, let $C$ be a nonempty closed convex subset of
$E$ , let $x\in E$ and let $x_{0}\in C$ . Then, the following (1) and (2) are equivalent:

(1) $\phi(x_{0},x)=\min_{y\in C}\phi(y,x)$ ;
(2) ($x_{0}-y$ , Jx–Jx$0\rangle$ $\geq 0$ for all $y\in C$ .
Let $E$ be a smooth Banach space. Let $C$ be a closed convex subset of $E$ , and let $T$ be a

mapping from $C$ into itself. We denote by $F(T)$ the set of fixed points of $T$ . A point $p$ in $C$ is
said to be an asymptotic fixed point of $T[36]$ if $C$ contains a sequence $\{x_{n}\}$ which converges
weakly to $p$ and the strong $\lim_{narrow\infty}(x_{n}-Tx_{n})=0$ . The set of asymptotic fixed points of $T$

will be denoted by $\hat{F}(T)$ . A mapping $T$ from $C$ into itself is called relatively nonexpansive if
$\hat{F}(T)=F(T)$ and $\phi(p, Tx)\leq\phi(p,x)$ for all $x\in C$ and $p\in F(T)$ .

The following is a strong convergence theorem for relatively nonexpansive mappings in a
Banach space which generalizes Nakajo and Takahashi’s theorem [29] in a Hilbert space.
Theorem 3.2 (Matsushita and $Ih1_{B}hash\ddagger[26]$ ). Let $E$ be a unifomly convex and uni-
fornly smooth Banach space, let $C$ be a nonempty closed convex subset of $E$ , let $T$ be a
relatively $none\varphi ansive$ mapping ftom $C$ into itself with $F(T)\neq\phi$ and let $\{\alpha_{n}\}$ be a sequence
of real numbers such that $0\leq\alpha_{n}<1$ and $\lim\sup_{narrow\infty}\alpha_{n}<1$ . Suppose that $\{x_{n}\}$ is given by

$\{\begin{array}{l}x_{1}=x\in Cy_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JTx_{n})H_{n}=\{z\in C : \phi(z,y_{n})\leq\phi(z,x_{n})\}W_{n}=\{z\in C;\langle x_{n}-z, Jx-Jx_{n})\geq 0\}x_{n+1}=Q_{H_{n}\cap W_{n}^{X}}\end{array}$

for all $n=1,2,$ $\ldots$ , where $J$ is the duality mapping on E. Then $\{x_{n}\}$ converges strvngly to
$Q_{F(T)}x$ , where $Q_{F(T)}$ is the generalized projection ffom $C$ onto $F(T)$ .
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Using Theorem 3.2, we can prove Nakajo and Takahashi’s theorem (Theorem 1.4) as follows:
To show Nakajo and Takahashi’s theorem, it is sufficient to prove that if $T$ is nonexpansive,
then $T$ is relatively nonexpansive. It is obvious that $F(T)\subset\hat{F}(T)$ . If $u\in\hat{F}(T)$ , then there
exists $\{x_{n}\}\subset C$ such that $x_{n}-\Delta u$ and $x_{n}-Tx_{n}arrow 0$ . Since $T$ is nonexpansive, $T$ is
demiclosed. So, we have $u=Tu$. This implies $F(T)=\hat{F}(T)$ . Further, in a Hilbert space $H$ ,
we know that

$\phi(x, y)=\Vert x-y\Vert^{2}$

for every $x,y\in H$ . So, $\Vert Tx-Ty\Vert\leq\Vert x-y||$ is equivalent to $\phi(Tx, Ty)\leq\phi(x, y)$ . Therefore,
$T$ is relatively nonexpansive. Using $Th\infty rem3.2$ , we obtain the desired result.

Using Theorem 3.2, we can prove a strong convergence threorem for maximal monotone
operators in a Banach space. Before stating the theorem, we define the following resolvents
for maximal monotone operators in a Banach space. Let $E$ be a reflexive, strictly convex
and smooth Banach space, and let $A$ be a maximal monotone operator from $E$ to $E$“. Using
$Th\infty rem2.1$ and the strict convexity of $E$ , we obtain that for every $r>0$ and $x\in E$ , there
exists a unique $x_{r}\in D(A)$ such that

$Jx\in Jx_{r}+rAx_{r}$ . (3.2)

If $Q_{r}x=x_{r}$ , then we can define a single valued mapping $Q_{r}$ : $Earrow D(A)$ by $Q_{r}=(J+rA)^{-1}J$

and such $Q_{r}$ is called the relative resolvent of $A$ . We know that $A^{-1}0=F(Q_{r})$ for all $r>0$ ;
see $[45, 46]$ for more details.

Theorem 3.3. Let $E$ be a uniformly convex and uniformly smooth Banach space, let $A$ be a
maximal monotone operator Jbvm $E$ to $E$“, let $Q_{r}$ be the relative resolvent of $A$ , where $r>0$ .
If $A^{-1}0$ is nonempty, then $Q_{r}$ is a relatively $none\varphi ansive$ mapping on $E$ .

Using this result and Theorem 3.2, we prove a strong convergence $th\infty rem$ for relative
resolvents of maximal monotone operators in a Banach space.

Theorem 3.4. Let $E$ be a uniformly convex and uniformly smooth Banach space, let $A$ be a
maximal monotone operator from $E$ to $E^{*}$ , let $Q_{r}$ be the relative resolvent of $A$ , where $r>0$
and let $\{\alpha_{n}\}$ be a sequence of red numbers such that $0\leq\alpha_{n}<1$ and $\lim\sup_{narrow\infty}\alpha_{n}<1$ .
Suppose that $\{x_{n}\}$ is given by.

$\{\begin{array}{l}x_{1}=x\in Ey_{n}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JQ_{r}x_{n})H_{n}=\{z\in E : \phi(z,y_{n})\leq\phi(z,x_{n})\}W_{n}=\{z\in E:\langle x_{n}-z, Jx-Jx_{n}\rangle\geq 0\}x_{n+1}=Q_{H_{n}\cap W_{n^{X}}}\end{array}$

for all $n=1,2,$ $\ldots$ , where $J$ is the duality mapping on E. If $A^{-1}0$ is nonempty, then $\{x_{n}\}$

converges strongly to $Q_{A^{-1}0}x$ , where $Q_{A^{-1}0}$ is the generalized projection from $E$ onto $A^{-1}0$ .
Next, we obtain a weak convergence $th\infty rem$ for relatively nonexpansive mappings in a

Banach space which is connected with Reich [33], Browder and Petryshyn’s theorem [6] and
Rockafellar’s $th\infty rem[39]$ . Before proving it, we need the following proposition.

Proposition 3.5 (Matsushita and Thkahashi [25]). Let $E$ be a uniformly convex and
uniformly smooth Banach space, let $C$ be a nonempty closed convex subset of $E$ , and let $T$

be a relatively nonexpansive mapping frvm $C$ into itself such that $F(T)\neq\emptyset$ . Let $\{\alpha_{n}\}$ be a
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sequence of real numbers such that $0\leq\alpha_{n}\leq 1$ . Let $x_{1}\in C$ and let $\{x_{n}\}$ be the sequence
defined by

$x_{n+1}=Q_{C}J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JTx_{n})$

for $n=1,2,$ $\ldots.$ . Then $\{Q_{F(T)}x_{n}\}$ converyes strongly to a fixed point of $T$, where $Q_{F(T)}$ is the
generalized projection ftom $C$ onto $F(T)$ .

Using Proposition 3.5, we can prove the following weak convergence $th\infty rem$ .
Theorem 3.6 (Matsushita and Takahashi [25]). Let $E$ be a uniformly convex and uni-
formly smooth Banach space, let $C$ be a nonempty closed convex subset of $E$ , and let $T$ be a
relatively nonexpansive mapping ffom $C$ into itself such that $F(T)\neq\emptyset$ . Let $\{\alpha_{n}\}$ be a sequence
of real numbers such that

$0\leq\alpha_{n}\leq 1$ and $\lim_{narrow}\inf_{\infty}\alpha_{n}(1-\alpha_{n})>0$ .

Let $x_{1}\in C$ and let $\{x_{n}\}$ be the sequence defined by

$x_{n+1}=Q_{C}J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JTx_{n})$

for $n=1,2,$ $\ldots$ . If $J$ is weakly sequentially continuous, then $\{x_{n}\}$ converges weakly to $u$,
where $u= \lim_{narrow\infty}Q_{F(T)}x_{n}$ and $Q_{F(T)}$ is the generdized projection flom $C$ onto $F(T)$

Using Theorem 3.6, we can prove the following two weak convergence theorems.

Theorem 3.7 ([6]). Let $C$ be a nonempty closed convex subset of a Hilbert space $H,$ $\cdot let$ $T$

be a nonexpansive mapping fivm $C$ into itself such that $F(T)\neq\emptyset$ and let $\lambda$ be a real number
such that $0<\lambda<1$ . Let $x_{1}\in C$ and let $\{x_{n}\}$ be the sequence defined by

$x_{n+1}=\lambda x_{n}+(1-\lambda)Tx_{n}$

for $n=1,2,$ $\ldots$ . Then $\{x_{n}\}$ converges weakly to $u$ , where $u= \lim_{narrow\infty}P_{F(T)}x_{n}$ and $P_{F(T)}$ is
the metric projection fivm $C$ onto $F(T)$

Theorem 3.8. Let $E$ be a uniformly convex and uniformly smooth Banach space, let $A$ be a
maximal monotone operator fiom $E$ to $E^{*}$ such that $A^{-1}0\neq\emptyset$ , let $Q_{r}$ be the relative resolvent
of A where $r>0$ , and let $\{\alpha_{n}\}$ be a sequence of real numbers such that

$0\leq\alpha_{n}\leq 1$ and $\lim_{narrow}\inf_{\infty}\alpha_{n}(1-\alpha_{n})>0$ .

Let $x_{1}\in E$ and let $\{x_{n}\}$ be the sequence defined by

$x_{n+1}=J^{-1}(\alpha_{n}Jx_{n}+(1-\alpha_{n})JQ_{r}x_{n})$

for $n=1,2,$ $\ldots$ . If $J$ is weakly sequentially continuous, then $\{x_{n}\}$ converges weakly to $u$

in $A^{-1}0$ , where $u= \lim_{narrow\infty}Q_{A^{-1}0}x_{n}$ and $Q_{A^{-1}0}$ is the generalized projection fivm $E$ onto
$A^{-1}0$ .

Kamimura and Takahashi [18] extended Solodov and Svaiter’s result [41] to the following
$th\infty rem$ by using Lemma 3.1 and the resolvents defined by (3.2).
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Theorem 3.9 ([18]). Let $E$ be a uniformly convex and uniformly smooth Banach space and let
$A$ be a maximal monotone operator from $E$ into $E^{*}such$ that $A^{-1}0\neq\phi$ . Let $Q_{r}=(J+rA)^{-1}J$

for all $r>0$ and let $\{x_{n}\}$ be a sequence generated by

$\{\begin{array}{l}x_{1}\in Ey_{n}=Q_{r_{n}}x_{n}H_{n}=\{z\in E:\langle z-y_{n}, Jx_{n}-Jy_{n}\rangle\leq 0\}W_{n}=\{z\in E:\langle z-x_{n}, Jx_{1}-Jx_{n}\rangle\leq 0\}x_{n+1}=Q_{H_{n}\cap W_{n}}x_{1},n=1,2,\ldots\end{array}$

where $\{r_{n}\}$ is a sequence of positive numbers such that $\lim\inf_{narrow\infty}r_{\mathfrak{n}}>0$ . Then, $\{x_{n}\}$

convefges strongly to $Q_{A^{-1}0}x_{1}$ , where $Q_{A^{-1}0}$ is the generalized projection of $E$ onto $A^{-1}0$ .
Kamimura, Kohsaka and Takahashi [15] also proved a weak convergence theorem of Mann’s

type for maximal monotone operators in a Banach space. Before stating the theorem, we need
the following strong convergence thmrem.

Theorem 3.10 ([15]). Let $E$ be a smooth and uniformly convex Banach space. Let $A\subset$

$ExE^{*}$ be a maximal monotone operator such that $A^{-1}0$ is nonempty, let $Q_{r}=(J+rA)^{-1}J$

for all $r>0$ and let $Q_{A^{-1}0}$ be the generalized projection of $E$ onto $A^{-1}0$ . Let $\{x_{n}\}$ be a
sequence defined as follows: $x_{1}=x\in E$ and

$x_{n+1}=J^{-1}(\alpha_{n}J(x_{n})+(1-\alpha_{n})J(Q_{r_{n}}x_{n}))$ , $n=1,2,$ $\ldots$ ,

where $\{\alpha_{n}\}\subset[0,1]$ and $\{r_{n}\}\subset(0, \infty)$ . Then, the sequence $\{Q_{A^{-1}0}(x_{n})\}$ converges strongly
to an element of $A^{-1}0$ , which is a unique element $v\in A^{-1}0$ such that

$\lim_{narrow\infty}\phi(v, x_{n})=\underline{\min_{1\nu\in A0}}\lim_{narrow\infty}\phi(y, x_{n})$ .

Using Theorem 3.10, we can prove the following theorem in a Banach space which generalizes
the results of Rockafellar [39] and Kamimura and Takahashi [16] in a Hilbert space.

Theorem 3.11 ([15]). Let $E$ be a smooth and unifomly convex Banach space whose duality
mapping $J$ is weakly sequentially continuous. Let $A\subset ExE^{*}$ be a maximal monotone
operator such that $A^{-1}0$ is nonempty, let $Q_{r}=(J+rA)^{-1}J$ for all $r>0$ and let $Q_{A^{-1}0}$ be the
generalized projection of $E$ onto $A^{-1}0$ . Let $\{x_{n}\}$ be a sequence defined as follows: $x_{1}=x\in E$

and
$x_{n+1}=J^{-1}(\alpha_{n}J(x_{n})+(1-\alpha_{n})J(Q_{r_{n}}x_{n}))$ , $n=1,2,$ $\ldots$ ,

where $\{\alpha_{n}\}\subset[0,1]$ and $\{r_{n}\}\subset(0, \infty)$ satisfy

$\lim_{narrow}\sup_{\infty}\alpha_{n}<1$ and $\lim_{narrow}\inf_{\infty}r_{n}>0$ .

Then, $\{x_{n}\}$ converges weakly to an element $v$ of $A^{-1}0$ , where $v= \lim_{narrow\infty}Q_{A^{-1}0}(x_{n})$ .
As a direct consequence of $Th\infty rem3.11$ , we obtain the following:

Theorem 3.12. Let $E$ be a smooth and uniformly convex Banach space whose duality mapping
$J$ is weakly sequentially continuous. Let $A\subset ExE^{*}$ be a maximal monotone operator such
that $A^{-1}0$ is nonempty, let $Q_{r}=(J+rA)^{-1}J$ for all $r>0$ and let $Q_{A^{-1}0}$ be the generalized
projection of $E$ onto $A^{-1}0$ . Let $\{x_{n}\}$ be a sequence defined as follows: $x_{1}=x\in E$ and

$x_{n+1}=Q_{r_{n}}x_{n}$ , $n=1,2,$ $\ldots$ ,
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where $\{r_{n}\}\subset(0, \infty)$ satisfies $\lim\inf_{narrow\infty}r_{n}>0$ . Then, the sequence $\{x_{n}\}$ converges weakly
to an element $v$ of $A^{-1}0$ , where $v= \lim_{narrow\infty}Q_{A0}-1(x_{n})$ .

Problem. If $E$ and $E^{*}$ are uniformly convex Banach spaces, does Theorem 3.12 hold without
assumming that $J$ is weakly sequentially continuous ?

4 Generalized nonexpansive mappings

Let $E$ be a smooth Banach space and let $D$ be a nonempty closed convex subset of $E$ . A
mapping $R:Darrow D$ is called generalized nonexpansive if $F(R)\neq\emptyset$ and

$\phi(Rx, y)\leq\phi(x, y)$ , $\forall x\in D,\forall y\in F(R)$ ,

where $F(R)$ is the set of fixed points of $R$ . A point $p$ in $C$ is said to be a generalized
asymptotic fixed point of $T[13]$ if $C$ contains a sequence $\{x_{n}\}$ such that $Jx_{n}arrow*$ Jp and the
strong $\lim_{\mathfrak{n}arrow\infty}(Jx_{n}-JTx_{n})=0$ . The set of generalized asymptotic fixed points of $T$ will be
denoted by $\check{F}(T)$ .

Let $E$ be a reflexive and smooth Banach space and let B C $E^{*}\cross E$ be a maximal monotone
operator. For each $\lambda>0$ and $x\in E$ , consider the set

$R_{\lambda}x:=\{z\in E:x\in z+\lambda BJ(z)\}$ .
Then $R_{\lambda}x$ consists of one point. We also denote the domain and the range of $R_{\lambda}$ by $D(R_{\lambda})=$

$R(I+\lambda BJ)$ and $R(R_{\lambda})=D(BJ)$ , respectively. Such $R_{\lambda}$ is called the generalized resolvent of
$B$ and is denoted by

$R_{\lambda}=(I+\lambda BJ)^{-1}$ .
We get some properties of $R_{\lambda}$ and $(BJ)^{-1}0$ .
Proposition 4.1 ([12]). Let $E$ be a reflexive and strictly convex Banach space with a $I$}$\cdot\acute{e}chet$

differentiable nom and let B C $E^{*}xE$ be a macimal monotone operator with $B^{-1}0\neq\emptyset$ . Then
the following hold:

1. $D(R_{\lambda})=E$ for each $\lambda>0$ ;
2. $(BJ)^{-1}0=F(R_{\lambda})$ for each $\lambda>0$ , where $F(R_{\lambda})$ is the set of fixed points of $R_{\lambda}$ ;
S. $(BJ)^{-1}0$ is closed;
4. $R_{\lambda}$ is generalized $none\varphi ansive$ for each $\lambda>0$ .

Proposition 4.2 ([13]). Let $E$ be a smooth and uniformly convex Banach space, let $B\subset$

$E^{*}xE$ be a maximal monotone operator with $B^{-1}0\neq\emptyset$ , and let $R_{\lambda}$ be the generalized resolvent
of $B$ for $\lambda>0$ . Then $\check{F}(R_{\lambda})=F(R_{\lambda})$ .

Next, we get the following result for generalized nonexpansive mappings.
$Prop_{O8}ition4.3$ . Let $C$ be a nonempty closed subset of a smooth and strictly convex Banach
space E. Let $R_{C}$ be a retraction of $E$ onto C. Then $R_{C}$ is sunny and generalized noneapansive
if and only if

$\langle x-R_{C}x, J(R_{C}x)-J(y)\rangle\geq 0$

for each $x\in E$ and $y\in C$ .
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Let $E$ be a smooth and strictly convex Banach space and let $C$ be a nonempty closed subset
of $E$ . Then, a sunny generalized nonexpansive retraction of $E$ onto $C$ is unique. In fact, let
$R,$ $S$ be two sunny generalized nonexpansive retractions of $E$ onto $C$ . Then, by Proposition
4.3, for each $x\in E$ , we have

\langle x--Rx, $J(Rx)-J(y)\rangle$ $\geq 0$ , (x–Sx, $J(Sx)-J(y)\rangle$ $\geq 0,$ $\forall y\in C$.
From $Rx,$ $Sx\in C$ , we get

\langle x--Rx, $J(Rx)-J(Sx)\rangle$ $\geq 0$ , \langle x--Sx, $J(Sx)-J(Rx)\rangle$ $\geq 0$ .
From these inequalities, we have

\langle Sx--Rx, $J(Rx)-J(Sx)\rangle$ $\geq 0$ .
Since $E$ is strictly convex, we get $Sx=Rx$ .

Before showing an example of sunny generalized nonexpansive retractions, we recall the
$f_{0}nowing$ theorem.

Theorem 4.4 ([34]). Let $E$ be a Banach space and let $A\subset E\cross E^{*}$ be a mamimal monotone
operator with $A^{-1}0\neq\emptyset$ . If $E^{*}$ is stnctly convex and has a Fre’chet differentiable norm. Then,
for each $x\in E,$ $\lim_{\lambdaarrow\infty}(J+\lambda A)^{-1}J(x)$ exists and belongs to $A^{-1}0$ .

Using Theorem 4.4, we get the following result.

Theorem 4.5 ([12]). Let $E$ be a unifomly convex Banach space with a P\dagger $\cdot$\’echet differentiable
nom and let B C $E^{*}xE$ be a maximal monotone operator with $B^{-1}0\neq\emptyset$ . Then the following
hold:

1. For each $x\in E,$ $\lim_{\lambdaarrow\infty}R_{\lambda}xe$ ntsts and belongs to $(BJ)^{-1}0$;
2. If $Rx$ $:= \lim_{\lambdaarrow\infty}R_{\lambda}xfor$ each $x\in E$ , then $R$ is a sunny generalized $none_{W^{nsive}}$

retraction of $E$ onto $(BJ)^{-1}0$ .
Next, we discuss proximal point algorithms for generalized resolvents of a maximal monotone

operator B C $E^{*}\cross E$ . We start with the following lemma. Compare this lemma with the
results in Kamimura and Takahashi [18], and Kohsaka and Takahashi [20].

Lemma 4.6. Let $E$ be a reflexive, strictly convex, and smooth Banach space, let B C $E^{*}xE$

be a maximal monotone operator with $B^{-1}0\neq\emptyset$ , and $R_{r}=(I+rBJ)^{-1}$ for all $r>0$ . Then

$\phi(x, R_{r}x)+\phi(R_{r}x, u)\leq\phi(x,u)$

for all $r>0,$ $u\in(BJ)^{-1}0$ , and $x\in E$ .
The following is a strong convergence theorem for generalized nonexpansive mappinga in a

Banach space which is related to Nakajo and Talrahashi’s theorem [29] in a Hilbert space.

Theorem 4.7 (Ibaraki and $Ih]ahashi[13]$ ). Let $E$ be a unifomly convex and uni-
fomly smooth Banach space, let $T$ be a generalized nonexpansive mapping fhom $E$ into it-
self with $F(T)\neq\phi$ and let $\{\alpha_{n}\}$ be a sequence of real numbers such that $0\leq\alpha_{n}<1$ and
$\lim_{8}up_{narrow\infty}\alpha_{n}<1$ . Suppose that $\{x_{n}\}$ is given by

$\{\begin{array}{l}x_{\sim}=x\in Ey_{n}=\alpha_{n}x_{n}+(1-\alpha_{\mathfrak{n}})Tx_{n})H_{n}=\{z\in E : \phi(z, y_{n})\leq\phi(z,x_{n})\}W_{n}=\{z\in E;\langle x_{n}-z, Jx-Jx_{n}\rangle\geq 0\}x_{n+1}=R_{H_{n}\cap W_{n}^{X}}\end{array}$

132



for all $n=1,2,$ $\ldots$ , where $J$ is the duality mapping on E. If $\check{F}(T)=F(T)$ , then $\{x_{n}\}$

converges strongly to $R_{F(T)}x$ , where $R_{F(T)}$ is the sunny generalized nonexpansive retraction
from $C$ onto $F(T)$ .

We can also prove the following weak convergence theorem, which is a generalization of
Kamimura and Takahashi’s weak convergence theorem (Theorem 1.2).

Theorem 4.8. Let $E$ be a smooth and uniformly convex Banach space whose duality mapping
$J$ is weakly sequentially continuous. Let $B\subset E^{*}\cross E$ be a maximal monotone operator, let
$R_{r}=(I+rBJ)^{-1}$ for all $r>0$ and let $\{x_{n}\}$ be a sequence defined as follows: $x_{1}=x\in E$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})R_{r_{n}}x_{n}$ , $n=1,2,$ $\ldots$ ,

where $\{\alpha_{n}\}\subset[0,1]$ and $\{r_{n}\}\subset(0, \infty)$ satisfy

$\lim_{narrow}\sup_{\infty}\alpha_{n}<1$ and $\lim_{narrow}\inf_{\infty}r_{n}>0$ .

If $B^{-1}0\neq\emptyset$ , then the sequence $\{x_{n}\}$ converg es weakly to an element of $(BJ)^{-1}0$ .

5 Concluding remarks
Recently, Matsushita and Takahashi [27] proved the following strong convergence theorem

for nonexpansive mappings in a Banach space which is related to Nakajo and Takahashi’s
theorem [29].

Theorem 5.1 (Matsushita and $Ib ahash\ddagger[27]$ ). Let $E$ be a unifomly convex and smooth
Banach space, let $C$ be a nonempty bounded closed convex subset of $E$ and let $T$ be a nonex-
pansive mapping fiom $C$ into itself. Let $\{x_{n}\}$ be a sequence in $C$ defined by

$\{\begin{array}{l}x_{1}=x\in CC_{n}=\overline{co}\{z\in C : \Vert z-y_{n}\Vert\leq\Vert z-x_{n}||\}D_{n}=\{z\in C:(x_{n}-z, Jx-Jx_{n}\rangle\leq 0\}x_{n+1}=P_{C_{n}\cap D_{n}}x\end{array}$

for all $n=1,2,$ $\ldots$ , where $P_{C_{n}\cap D_{n}}$ is the metric projection $fmmE$ onto $C_{n}\cap D_{n}$ and $\{t_{n}\}$ is
a sequence in $(0,1)$ with $t_{n}arrow 0$ . Then $\{x_{n}\}$ converges strongly to the element $P_{F(T)}x$ , where
$P_{F(T)}$ is the the metnc projection ftom $E$ onto $F(T)$ .

For the proof of Theorem 5.1, Matsushita and Takahashi [27] used essentially the following
Bruck’s theorem [7]:

Theorem 5.2 (Bruck [7]). Let $C$ be a closed convex subset of a unifomly convex Banach
space E. Then for each $r>0$ , there exists a strictly increasing convex continuous function
$\lambda:[0, \infty)arrow[0, \infty)$ such that $\lambda(0)=0$ and

$\lambda(\Vert\tau(\sum_{j=0}^{n}\lambda_{j}x_{j})-\sum_{j=0}^{n}\lambda_{j}Tx_{j}\Vert)\leq 0\leq j<k\leq n\max(||x_{j}-x_{k}\Vert-||Tx_{j}-Tx_{k}||)$

for all $n\in N,$ $\{\lambda_{j}\}\in\Delta_{f}^{n}\{x_{j}\}\subset C\cap B_{r}$ and $T\in Lip(C, 1)$ , where $\Delta^{n}=\{\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\}$ ;

$0\leq\lambda_{j}$ and $\sum_{j=0}^{n}\lambda_{j}=1$ }, $B_{r}=\{z\in E : ||z\Vert\leq r\}$ and Lip$(C, 1)$ is the set of all
nonezp ansive mappings of $C$ into $E$ .
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Problem. Can we prove Thrrem 5.1 under assuming that $C$ is a closed and convex subset
of $E$ and $T:Carrow C$ is a nonexpansive mapping with $F(T)\neq\emptyset$ ?
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