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1 Introduction

Let Q2 be a bounded domain in R%(d = 2, 3) and T be a positive constant. We consider the
problem governed by the nonstationary Navier-Stokes equations subject to the Dirichlet
boundary conditions; find (u,p) : @ x (0,7) — R? x R such that

rQ-’l£+(u V)u—V(2uD(u))+Vp f inQx(0,7),

) V u=0 in Q x (0,T), (1)
u=g onTI x (0,T),

Lu=u° inQ, att=0,

where u is the velocity, p is the pressure, f is an exterior force, g is a boundary velocity,
u® is an initial velocity, (> 0) is a viscosity, I' = 89, and D(u) is the strain-rate tensor

defined by
au. 8u

A second-order-in-time charactenstlc ﬁmte element scheme for convection-diffusion
problems had been developed in [2], where they had proved stability and convergence
theorems. Using their idea, we have developed a second order characteristic finite element
scheme [1] for (1). Our scheme is the combination of a second-order-in-time characteristic
finite element scheme and the first-order-in-time characteristic finite element scheme (see
Figure 1). The scheme has such advantages that it is of second order in At and that the
matrices are symmetric. The combined scheme is stable even for high Reynolds number
problems. In this paper we consider the stability. The contents of the paper are as follows.

*E-mail : notsu@math. kyushu-u.ac.jp
'E-mail : tabata@math.kyushu-u.ac.jp



74

u?""\ Second order. (uP™*\  First order up
tee n-1) ————— n—a | .7 n)|]
Py Aty = O(At) \Pn At = O(Atz) Pn
Figure 1: Time evolution of the scheme

We introduce the scheme in Section 2 and present a sufficient condition for the scheme
to be stable in Section 3. In the last section we check the condition numerically in an
example and solve a cavity flow problem with high Reynolds numbers.

We use the function spaces L?(2) and W1*°(Q). For any normed space X we use the
notation || - ||x to represent the X-norm. We omit € in the notations of norms, and use
Il - | to show the L2-norms || - ||za, | - ||(zays, |l - ll(zayexa.

2 A second order characteristic finite element scheme

For time increments At, At' and velocities u, v : @ — R%, we define X;(u, At) and
Xo(u,v, A, At) by

Xi(u, At)(z) =z — u(z)At

Xa(u,v, A, At)(z) =z — {(1 + 2o — u(@)ar) - AL

2At At (@ — u(@)(At + At))} At

respectively. The X; (i = 1,2) are used for the i-th order approximate values of upwind‘
points. For a function ¢ over Q x (0,T), we set Y™ = ¢(:,t"), where t" is defined by
t™ = nAt. The symbol o means the composition of functions,

(%" o X)(z) = ¢"(X(2)).
Let 7, = { K} be a triangulation of Q. We define Q, by

Q, = int U{K: K e T}

and I', = 0Q. Let At be a time increment, and Ny be a positive integer. We set a = 1/Nj,
Aty = (1 — a)At and At; = alAt. We define A by

A={neR;n=ma, meN, 1<m<N}U{neR; neNU(N-a), 1 <n< Nr}

and set Ag = A U {0}, where Ny = [T'/At]. In the following definitions we use the same
notation (-,-) to represent the L?(f)-inner products in the scalar- and vector-valued
function spaces. Suppose {u}}ner, C H (%)%, {pP}nea C H(S%) and f € CO(L3(Q)%)
be given. We define linear forms Ag, *(un, pn), ATy (un, Pr), Fon “(f, un), Fiuf on H3(Q)¢
and Bruy, on LE(Q) as follows:

n—a __ X n—l, n-2 At ,At
(AGh *(un, pn), vn) = (uh upto z(Aut up 0, At) h)
0
d .
+0(DOR™) + D™ 0 Xa(uR™, Mto), Dluw)) +vta 35 (Dy(u i) om)
i,5,k=1

;{(V Vh, P """) (V "'1oX1(uZ"1,Ato),vh)},
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n up —uy %o Xy(up~, At n n
(5 un, ), o) = (BB DA0) Y 43y (D), D) = (7 on,28),

(Fon “(f,un), vn) = %(f“—a + 1 °X1(UZ"1:Ato),vh), (Finfrvn) = (", vn),
(Bhun, gn) = (V - ufy, q).

We set finite element spaces

Xp = {'Uh € Co(ﬁh)d; ’Uhl}{ € Pz(K)d, VK} )
Va(g) = {vn € X; vn(P) = g(P)(node P.€ Th)}, Vi =Va(0),

Qr = {qh € C°(Th); anlk € Pi(K), K, A gn dz = 0}-
h

For the given function f the notation fy(-,t) means II, f(-,t), where IT, : C°(Q,)¢ — X
is the interpolation operator.
A second order characteristic finite element approximation to problem (1) is the fol-
lowing; find {(u}, p) € Va(g™) x @Qn; n € A} such that
general stage:

n):a(uh)ph) = f(?;a(fhiuh) in W, (2&«)

Bp~%up =0 in @},
A% (un,pp) = Flofn in V3, (2b)

B;:uh =0 in Q;n
(n= 2"" )NT)1
initial stage:
A (un, pr) = Fip* fn in Vj,
Bp*®up =0 in Qj, (2¢)
u?, = Hhuo,
(m= 1) aNO)-

We find (up~%,pp~®) from (2a) and find (u},p}) from (2b). The absence of (u}, p}) is
covered by (2c). (2a) is a second order scheme in Aty, and (2b) and (2c) are first order

schemes in At;. If we set Atg = O(At) and Aty = O(At?), the scheme (2) is of second
order in At.

3 Stability of the scheme

In this section we present a proposition on the stability of the scheme. Those hypotheses
are checked numerically in Section 4.

For a given series {w" }ea, in a normed space X, we introduce norms ||+ | (x), || |li2¢x,
Il - ||t§(X) defined by

Ny 1/2
lwllieox) = {{5{’0‘ lw™llx, (lwlleex) = {Atz ||'w"”§r} )

n=1
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No Np 1/2
llwllz x) = {Atl >l + D (Atoflw % + Atlllw"llgr)} :

m=1 n=2

Hypothesis 1. There exists constants My, Ma, ¢, and c; independent of At, o and h
such that

(1) lunllioo(wriooyey < My,

(i) Xi(u" V% A0)(Q) CQ (m=1,---,Np), X3(ul~%, At;)(Q) C Q,
Xl(u,)‘:_lvAtO)(Q) cQ, X2(uh_1au2—2a Ato)(Q) cQ (n =2, ’NT)a

(i) Yn (n=2,---,Nr), v|D(u)|?® < v(1 4 c18t0) | D(up~)|? + ca| £7]I2,

(iv) IVPallarayy £ M.

Proposition 1. Let (up,pr) be the solution of (2) with g = 0. Suppose that Hypothesis 1
holds. Then there exists a positive constant C' independent of At, o and h such that

unllio(zaysy + /v Aol D(un)lieo ((z2yaxay
< C{IhRll + VoD@ + 1 Tpnllaqaayy + Ialgums }

4 Numerical results

In this section we show numerical results in d = 2 with P2/P1 element. In [4] it is
remarked that much attention should be paid to numerical integration of composite func-
tions. We used a numerical integration formula of degree five on each triangle [3].

For a number N € Nweset At =1/N and Ny =N +1, i.e.,

1 1 1
=5 M=o A= 3)

At N+l NN+1)

Since it holds that
Aty = O(At), Aty = O(At?) as N — +o0,

the scheme (2) is of second order in At.
To check the assumptions of Proposition 1, we solve the following example.

Example 1. We take Q = (—0.5,0.5)%, T =1 and five values of v,
v=1, 107}, 1072, 1073, 1074
The functions f, u® and g are given so that the ezact solution is

U1 (Z1, T2, t) = — 45in®(2nt) cos*(nz;) cos®(wz;) sin(ny),
ua(Z1, T2, t) =4 8in®(27t) cos® (7, ) cos? (nz,) sin(mz, ),
p(z1, T2, t) =sin(2w(t + 1 + z3)).
Let Np be the division number of each side of €2, and we set N = Ny in (3). We

used almost uniform meshes with Np = 32, 40, 48, 56 by FreeFEM (5] (see Figure 2).
When v = 1074, M; decreased as Ny increased from M; = 40 to 14. For the other -
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Figure 2: A sample mesh (Ng = 5)

values of v, M; remained almost constant, M; ~ 13. We set ¢, = max{c;, c;}. For each
v=1, 1071, 1072, 103 and 104, ¢, was almost constant,

c~2x107% 3x10™, 3x1075% 3x10°% 3x 1077,
respectively. M, remained almost constants,
M; = 6.3,
for every v.
Example 2 (a regularized cavity-flow). We take Q = (0,1)?, T =500, f =0, u® =0,
16z2(1 — z1)? (z2=1
91(z1, 72, 1) = 0 i( ) Exz ” 1; )
g2 = 0 and three values of v, ’
v=10"2% 1073, 2 x 107*

Reynolds number Re (= 1/v) equals to 100, 1,000 and 5, 000, respectively. Consider-
ing the boundary layers, we used nonuniform meshes refined near the boundary. Figure 3
shows the meshes (N = 50 for Re = 100, 1,000, Nq = 100 for Re = 5, 000).

Figure 3: Meshes of Re = 100, 1,000 (left) and Re = 5,000 (right)

We set N = 10 (Re = 100, 1,000), 20 (Re = 5,000) in (3), and total step numbers are
5,000 and 10, 000, respectively. We computed (minimum) values, which satisfied (i)-(iv)
of Hypothesis 1. For Re = 100, they were

M;~92, c.~017, M;=35.17.
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For Re = 1000, they were

M, =173, c.~022, M;=~4.1.
For Re = 5000, they were

M; =398, c.=~0.24, M;= 3.6.

At t = 500 every solution was almost stationary. Figure 4 exhibits the streamlines,
which show the flow patterns well of this problem.

e

r
Figure 4: The streamlines of Re = 100 (left), Re = 1,000 (center) and Re = 5,000 (right)

5 Conclusions

We have presented a sufficient condition for the scheme (2) to be stable. In a numerical
example we have seen the condition is reasonable. In another numerical example we have
solved successfully a cavity flow problem with Reynolds numbers up to 5,000.
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