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This note is an outline of [5]. The main object is the two types of spaces, O-dimensional
compact metric spaces and countable metric spaces . They seem, at first sight, to have
no relation to rigidity. Indeed, the well known Cantor-Bendixson theorem says that every
space $X$ can be decomposed as

$X=K\cup S$

with $K$ a closed subset having no isolated points and $S$ a scattered space. As well known,
the kernel $K$ , if not empty, is homeomorphic to the Cantor set in case $X$ is a Odimensional
compact metric space and to the rationals in case $X$ is a countable metric space. Thus, in
either case, $X$ can not be a rigid space with the trivial exceptions of the one point space and
the empty set. As for (non-compact and non-countable) O-dimensional separable metric
spaces, a rigid exampe is known. (See Kuratowski [2])
Deflnition 1. A space $X$ is defined to be kemel-ngid if $X$ has a non-empty kernel $K$ and
for any homeomorphism $h:Xarrow X$ , the restriction $h|K$ is the identity map.

Concerning kemel-rigidity, the two types of spaces, O-dimensional compact metric spaces
and countable metric spaces, have quite different aspects; the former does not contain a
kernel-rigid example (Theorem 2), but the latter does (Theorem 4).

Let us start with basic notations. For a space $X$ let $x^{(0)}=X$ and $X_{(0)}$ the set of the
isolated points of $x^{(0)}$ . If $\beta$ is a non-limit ordinal, let $x^{(\beta)}=X^{(\beta-1)}-X_{(\beta-1)}$ and $x_{(\beta)}$

the set of the isolated points of $x^{(\beta)}$ , where $\beta-1$ means the ordinal preceding $\beta$ . If $\beta$ is
a limit ordinal, let $x^{(\beta)}=n_{\gamma<\beta}x^{(\gamma)}$ and $x_{(\beta)}$ the set of the isolated points of $x^{(\beta)}$ .

Each $x^{(\beta)}$ is a closed subset of $X$ , and each $x_{(\beta)}$ is a discrete open subset of $x^{(\beta)}$ .
The first ordinal $\alpha$ for which $x^{(\alpha)}=x^{(\alpha+1)}$ is called the length of the space $X$ and is

denoted by leng(X). If leng(X) $=\alpha$ the subset $K=x^{(\alpha)}$ is called the kemel of $X$ and
$S=X-X^{(a)}$ is called the scattered part of $X$ . If $K=\emptyset$ then $X$ is called scatterd .
Clearly the scattered part $S$ of a space $X$ is scattered and satisfies leng$(S)=leng(X)$ .

The following properties are easily checked.
(P-1) If $\beta$ is an ordinal and $U$ is an open set of $X$ then $X^{\langle\beta)}\cap U=U^{(\beta)}$ and $X_{(\beta)}\cap U=U_{(\beta)}$

(P-2) If $\beta\leq\gamma$ then $x_{(\gamma)}\subseteq\overline{X_{(\beta)}}$ so that $\overline{x_{(\gamma)}}\subseteq\overline{X_{(\beta)}}$ .

-Non-existence of kernel-rigid O-dimensional compact metric spaces-

The following notion was used by Knaster and Reichbach [1] to formulate some extension
theorems of homeomorphisms.
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Deflnition 2. Let $X=K\cup S$ be a space. The scattered part $S$ is said to be full-attached
to $K$ if $K\neq\emptyset$ and $K\subseteq\overline{x_{(\beta)}}$ for every $\beta<leng(X)$ .
Theorem 1. (Knaster and Reichbach, see [1 , Corollary 4]) Let an ordinal $\alpha$ be given and
let $X=K\cup S$ be $a$ O-dimensional compact metric space of length $\alpha$ with $S$ full-attached to
K. Then the topological type of $X$ is uniquely determined.

We thus denote by $F(\alpha)$ the O-dimensional compact metric space $X=K\cup S$ of length
$\alpha$ with $S$ full-attached to $K$ . In particular, $F(O)$ denotes the Cantor set $K$ .
Theorem 2. There is no O-dimensional compact metric spaoe which is $kemel-\dot{n}gid$.
Proof. Let $X=K\cup S$ be a O-dimensional compact metric space with a non-empty kemel
$K$ and a scattered part $S$ . Define an ordinal $\beta$ by

$\beta=\min\{\gamma|K-\overline{X_{(\gamma)}}\neq\emptyset\}$

and put $D=K-\overline{X_{(\beta)}}$ . Since $D$ is a non-empty open set of $K$ we can flnd two distinct
points, say $p$ and $q$ , of $D$ and using O-dimensionality of $X$ , two disjoint clopen sets $U,$ $V$

of $X$ included in $X-\overline{X_{(\beta)}}$ and satisfying $p\in U$ , $q\in V$ . Let $U$ be written as $U=K’\cup S’$

with $K’$ the kernel of $U$ and $S’$ the scattered part of $U$ . By (P-1) and the definition of $\beta$

we have
$\overline{U_{(\gamma)}}=U\cap\overline{X_{(\gamma)}}\supseteq U\cap K=K’$

for every $\gamma<\beta$ . Note that leng$(U)=\beta$ because $U\cap x_{(\gamma)}\neq\emptyset$ for every $\gamma<\beta$ and
$U\cap X_{(\gamma)}=\emptyset$ for every $\gamma\geq\beta$ . Consequently $S’$ is full-attached to $K’$ . Thus $U\approx$

$F(\beta)$ and, analogously, $V\approx F(\beta)$ so that $U\approx V$ by the uniqueness of $F(\beta)$ . Taking a
homeomorphism $h:Uarrow V$ , define a homeomorphism $f$ : $Xarrow X$ by

$f(x)=\{\begin{array}{ll}h(x) if x\in Uh^{-1}(x) if x\in Vx if otherwise.\end{array}$

Then $f$ moves the point $p$ , which completes the proof.

-A kernel-rigid countable metric space-

Let $\alpha$ be a non-limit ordinal and $n$ a natural number. The compact countable metric
space $Xsatis\phi ingleng(X)=\alpha$ and $|X^{(a-1)}|=n$ , the uniqueness of which was assured
by Mazurkiewicz and Sierpi\’{n}ski [3] , is denoted by $MS(\alpha, n)$ .
Deflnition 3. Let $\beta$ be an ordinal. A scattered space $X$ is called $\beta$-rzgid if $h(x)=x$
whenever $x\in x_{(\beta)}$ and $h$ : $Xarrow X$ is a homeomorphism. A $\beta$-rigid scattered space $X$ is
call $non- t\dot{n}\dot{m}al$ if $|X_{(\beta)}|\geq\aleph_{0}$ .
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Proposition 1. If a Hausdorff scattered space $X$ is $\beta$-rigid, then $X$ is $\gamma$-rigid for every
$\gamma\geq\beta$ .
Remark. Standing on the opposite side we define a scattered space $X$ to be $\beta$-homogeneous
if for any points $a,$ $b\in X_{(\beta)}$ there is a homeomorphim $h$ : $Xarrow X$ sending $a$ to $b$ . A
scattered space $X$ is called rankwise homogeneous if $X$ is $\beta$-homogeneous for every $\beta$ .

By the Mazurkiewicz-Sierpi\’{n}ski theorem ([3]), compact countable metric spaces and
locally compact countable metric spaces are rankwise homogeneous. There are many other
types of rankwise homogeneous scattered countalble metric spaces. (See [4, Table 1])

The following theorem assures the existence of a $\beta$-rigid scattered countable metric space
in which, furthermore, a sudden shift happens from homogeneity to rigidity.
Theorem 3. For any ordind $\beta\geqq\omega$ , there exists a non-trivzal $\beta-\dot{n}gid$ scattered countable
metric space $X$ of length $\beta+1$ which is $\gammaarrow homogeneous$ for every $\gamma<\beta$ .
Remark. If $\beta<\omega$ there does not exist a non-trivial $\beta$-rigid scattered countable metric
space.
Lemma 1. Let $X=K\cup S$ be a Hausdorff space with a non-empty kemel K. If $S$ is
full-attached to $K$ and is $\beta$-regid for some $\beta<leng(X)$ , then $X$ is kemel ngid.

Theorem 4. There nists a kemel-ngid countable metric space.

References.

[1] B. Knaster and M. Reichbach, Notion d’homog\’en\’eit\’e et pmlongements des hom\’eo-
morphies, Fund. Math. 40 (1953), 180-193.

[2] K. Kuratowski, Sur la puissance de l’ensemble des ‘nombres de dimension’ au sens
de M. F\dagger $\cdot$\’echet, Fund. Math. 8 (1925), 201-208.

[3] S. Mazurkiewicz and W. $Sierpi4ski$ , Contribution \‘ala topologie des ensembles $d$と nom-
brables, $Rnd$ . Math. 1 (1920), 17-27.

[4] S. Oka, Topological classification of the scauered countable metric spaces of length 3,
to appear.

[5] S. Oka Scauered spaces and kemd rigidity, Mem. Fac. Educ. Kagawa University II
57 (2007), 73-78.

3


