On special metrics characterizing ω_1 -strongly countable-dimensional spaces

Masahiro Matsumoto

1 Introduction

In this note, we characterize the class of ω_1 -strongly countable-dimensional metrizable spaces by a special metric. A characterization of locally finite-dimensional metrizable spaces is also obtained.

If every finite open cover of a metrizable space X has a finite open refinement of order $\leq n + 1$, then X has covering dimension $\leq n$, dim $X \leq n$. For $\varepsilon > 0$, we let $S_{\varepsilon}(x)$ denote the ε -ball $\{y \in X \mid \rho(x, y) < \varepsilon\}$ about x.

In [5], [6] and [7], J. Nagata gave a characterization of metrizable spaces of dim $\leq n$ by a special metric.

Theorem 1.1 (J. Nagata [5], [6], [7]) The following conditions are equivarent for a metrizable space X:

(1) dim $X \leq n$.

(2) There is an admissible metric ρ satisfying the following condition: for every $\varepsilon > 0$, every point x of X and every n + 2 many points y_1, \dots, y_{n+2} of X with $\rho(S_{\varepsilon/2}(x), y_i) < \varepsilon$ for each $i = 1, \dots, n+2$, there are distinct natural numbers i and j such that $\rho(y_i, y_j) < \varepsilon$.

(3) There is an admissible metric ρ satisfying the following condition: for every point x of X and every n+2 many points y_1, \ldots, y_{n+2} of X, there are difficult natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x, y_j)$.

For the case of the separable metrizable spaces, J. de Groot [2] gave the following characterization.

Theorem 1.2 (J. de Groot [2]) A separable metrizable space X has dim $X \leq n$ if and only if X can introduce an admissible totally bounded metric satisfying the following condition:

For every point x of X and every n + 2 many points $y_1, ..., y_{n+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\rho(y_i, y_j) \leq \rho(x, y_k)$.

Let N denote the set of all natural numbers. A metrizable space X is the countable sum of finite-dimensional closed sets, we call X a strongly countable-dimensional.

In [8], J. Nagata extended Theorems 1.1 and 1.2 to strongly countable-dimensional metrizable spaces.

Theorem 1.3 (J. Nagata [8]) The following conditions are equivarent for a metrizable space X:

(1) X is strongly countable-dimensional.

(2) There is an admissible metric ρ satisfying the following condition: for every point x of X, there is an $n(x) \in \mathbb{N}$ such that for every n(x) + 2 many points $y_1, \ldots, y_{n(x)+2}$ of X, there are diffict natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x, y_j)$.

(3) There is an admissible metric ρ satisfying the following condition: for every point x of X, there is an $n(x) \in \mathbb{N}$ such that for every n(x) + 2 many points $y_1, \ldots, y_{n(x)+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\rho(y_i, y_j) \leq \rho(x, y_k)$.

In [3], Y. Hattori characterized the class of strongly countable-dimensional spaces by extending the condition (2) of Theorem 1.1.

Theorem 1.4 (Y. Hattori [3]) A metrizable space X is strongly countable-dimensional if and only if X can introduce an admissible metric ρ satisfying the following condition:

For every point x of X, there is an $n(x) \in \mathbb{N}$ such that for every $\varepsilon > 0$, and every n + 2 many points $y_1, \dots, y_{n(x)+2}$ of X with $\rho(S_{\varepsilon/2}(x), y_i) < \varepsilon$ for each $i = 1, \dots, n(x) + 2$, there are distinct natural numbers i and j such that $\rho(y_i, y_j) < \varepsilon$.

2 A characterization of ω_1 -strongly countable -dimensional spaces

In this section, we characterize the class of ω_1 -strongly countable-dimensional metrizable spaces by a special metric. A characterization of locally finite-dimensional metrizable spaces is also obtained. Theorem 2.4 and Theorem 2.5 are main theorems.

Definition 2.1 A metrizable space X is locally finite-dimensional if for every point $x \in X$ there exists an open subspace U of X such that $x \in U$ and dim $U < \infty$.

The first infinite ordinal number is denoted by ω and ω_1 is the first uncountable ordinal number.

Definition 2.2 A metrizable space X is called an ω_1 -strongly countable-dimensional space if $X = \bigcup \{P_{\xi} \mid 0 \leq \xi < \xi_0\}, \xi_0 < \omega_1$, where P_{ξ} is an open subset of $X - \bigcup \{P_{\eta} \mid 0 \leq \eta < \xi\}$ and dim $P_{\xi} < \infty$.

For a metrizable space X and a non-negative integer n, we put

$$P_n(X) = \bigcup \{ U \mid U \text{ is an open subspace of } X \text{ and } \dim U \leq n \}.$$

We notice that for each ordinal number α , we can put $\alpha = \lambda(\alpha) + n(\alpha)$, where $\lambda(\alpha)$ is a limit ordinal number or 0 and $n(\alpha)$ is a non-negative integer.

Definition 2.3 Let X be a metrizable space and α either an ordinal number ≥ 0 or the integer -1. Then strong small transfinite dimension sind of X is defined as follows:

(1) sind X = -1 if and only if $X = \emptyset$.

(2) sind $X \leq \alpha$ if X is expressed in the form $X = \bigcup \{P_{\xi} \mid \xi < \alpha\}$, where $P_{\xi} = P_{n(\xi)}(X - \bigcup \{P_{\eta} \mid \eta < \lambda(\xi)\})$.

Furthermore, if sind X is defined, we say that X has strong small transfinite dimension.

Clearly, a metrizable space X is locally finite-dimensional if and only if sind $X \leq \omega$ (R. Engelking [1]). And X is ω_1 -strongly countable-dimensional if and only if there is a $\xi_0 < \omega_1$ such that sind $X \leq \xi_0$.

Theorem 2.4 is one of main theorems. Thus we characterize the class of ω_1 -strongly countable-dimensional metrizable spaces by a special metric.

Theorem 2.4 The following conditions are equivalent for a metrizable space X:

(a) X is an ω_1 -strongly countable-dimensional space.

(b) There are an admissible metric ρ for X, an ordinal number $\alpha < \omega_1$ and a family $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfing the following conditions: (b-1) $X_0 = X, X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$ and $X_{\beta} = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit. (b-2) For every point x of X there are an open neighborhood U(x) of x in $X_{\beta(x)}$, where $\beta(x) = \max\{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in \mathbb{N}$ such that for every $\varepsilon > 0$, every point x' of U(x) and every n(x) + 2 many points $y_1, ..., y_{n(x)+2}$ of X with $\rho(S_{\varepsilon/2}(x'), y_i) < \varepsilon$ for each i = 1, ..., n(x) + 2, there are distinct natural numbers i and j such that $\rho(y_i, y_j) < \varepsilon$.

(c) There are an admissible metric ρ for X, an ordinal number $\alpha < \omega_1$ and a family $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfing the following conditions: (c-1) $X_0 = X, X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$ and $X_{\beta} = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit. (c-2) For every point x of X there are an open neighborhood U(x) of x in $X_{\beta(x)}$, where $\beta(x) = \max\{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in \mathbb{N}$ such that for every point x' of U(x) and every n(x) + 2 many points $y_1, \ldots, y_{n(x)+2}$ of X, there are distinct natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x', y_j)$.

(d) There are an admissible metric ρ for X, an ordinal number $\alpha < \omega_1$ and a family $\{X_\beta \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfing the following conditions: (d-1) $X_0 = X, X_\beta \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$ and $X_\beta = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit. (d-2)

For every point x of X there are an open neighborhood U(x) of x in $X_{\beta(x)}$, where $\beta(x) = \max\{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in \mathbb{N}$ such that for every point x' of U(x) and every n(x) + 2 many points $y_1, \dots, y_{n(x)+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\rho(y_i, y_j) \leq \rho(x', y_k)$.

Also Theorem 2.5 is one of main theorems. We characterize the class of locally finite-dimensional metrizable spaces by a special metric.

Theorem 2.5 The following conditions are equivalent for a metrizable space X:

(a) X is a locally finite-dimensional space.

(b) There is an admissible metric ρ for X satisfing the following conditions: For every point x of X, there are an $n(x) \in \mathbb{N}$ and an open neighborhood U(x) of x in X such that for every $\varepsilon > 0$, every point x' of U(x) and every n(x) + 2 many points $y_1, \ldots, y_{n(x)+2}$ of X with $\rho(S_{\varepsilon/2}(x'), y_i) < \varepsilon$ for each $i = 1, \ldots, n(x) + 2$, there are distinct natural numbers i and j such that $\rho(y_i, y_j) < \varepsilon$.

(c) There is an admissible metric ρ for X satisfing the following conditions: For every point x of X, there are an $n(x) \in \mathbb{N}$ and an open neighborhood U(x) of x in X such that for every point x' of U(x) and every n(x) + 2 many points $y_1, \ldots, y_{n(x)+2}$ of X, there are distinct natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x', y_j)$.

(d) There is an admissible metric ρ for X satisfing the following conditions: For every point x of X, there are an $n(x) \in \mathbb{N}$ and an open neighborhood U(x) of x in X such that for every point x' of U(x) and every n(x) + 2 many points $y_1, \ldots, y_{n(x)+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\rho(y_i, y_j) \leq \rho(x', y_k)$.

To obtain those theorems, we need the following lemmas and theorems. Essentially, the following lemma is the same as [3; Lemma 1.5]. By a minor modification in the proof of [3; Lemma 1.5], we obtain the following lemma.

Lemma 2.6 ([3; Lemma 2.5], [8; Lemma 1]) Let n be a non-negative integer and let $\{F_m \mid m = 0, 1, ...\}$ be a closed cover of a metrizable space X such that dim $F_m \leq (n-1)+m$, $F_m \subset F_{m+1}$ for m = 0, 1, ... Then for every open cover U of X, there are a sequence $\mathcal{V}_1, \mathcal{V}_2, ...$ of discrete families of open sets of X and an open cover W of X which satisfy the following conditions:

(1) $\bigcup \{ \mathcal{V}_k \mid k \in \mathbb{N} \}$ is a cover of X.

(2) $\bigcup \{\mathcal{V}_k \mid k \in \mathbb{N}\}$ refines \mathcal{U} .

(3) If $W \in W$ satisfies $W \cap F_m \neq \emptyset$, then W meets at most one member of \mathcal{V}_k for $k \leq (n+0) + (n+1) + \ldots + (n+m)$ and meets no member of \mathcal{V}_k for $k > (n+0) + (n+1) + \ldots + (n+m)$.

Let Q^* denote the set of all rational numbers of the form $2^{-m_1} + ... + 2^{-m_t}$, where $m_1,...,m_t$ are natural numbers satisfying $1 \le m_1 < ... < m_t$.

Essentially, the following lemma is the same as [3; Lemma 1.6]. By a minor modification in the proof of [3; Lemma 1.6], we obtain the following lemma.

Lemma 2.7 ([3; Lemma 2.6], [8; Lemma 3]) Let n be a non-negative integer and let $\{F_m \mid m = 0, 1, ...\}$ be a closed cover of a metrizable space X such that dim $F_m \leq (n-1) + m$, $F_m \subset F_{m+1}$ for m = 0, 1, ... Then for every $q \in Q^*$, there is an open cover S(q) which satisfies the following conditions:

(1) $S(q) = \bigcup_{i=1}^{\infty} S^{i}(q)$, where each $S^{i}(q)$ is discrete in X.

(2) $\{St(x, S(q)) \mid q \in Q^*\}$ is a neighborhood base at $x \in X$.

(3) Let $p, q \in Q^*$ and p < q. Then S(p) refines S(q).

(4) Let $p, q \in Q^*$ and p < q. If $S_1 \in S^i(p)$ and $S_2 \in S^i(q)$, then $S_1 \cap S_2 = \emptyset$ or $S_1 \subset S_2$.

(5) Let $p, q \in Q^*$ and p + q < 1. Let $S_1 \in \mathcal{S}(p), S_2 \in \mathcal{S}(q)$ and $S_1 \cap S_2 \neq \emptyset$. Then there is an $S_3 \in \mathcal{S}(p+q)$ such that $S_1 \cup S_2 \subset S_3$.

(6) For every $q \in Q^*$ and every $S \in \bigcup \{S^i(q) \mid i > (n+0) + (n+1) + ... + (n+m)\}, S \cap F_m = \emptyset.$

By Lemma 2.6 and Lemma 2.7, we obtain the following theorem.

Theorem 2.8 Let α be an ordinal number with $\alpha < \omega_1$ and let n be a non-negative integer. The following conditions are equivarent for a metrizable space X:

(a) sind $X \leq \omega \alpha + n$.

(b) There are an admissible metric ρ for X and a family $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfing the following conditions: (b-1) $X_0 = X, X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha, X_{\beta} = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit, and $X_{\alpha} = \emptyset$ if n = 0. (b-2) For every point x of X there are an open neighborhood U(x) of x in $X_{\beta(x)}$, where $\beta(x) = \max\{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in N_{\beta(x)}$ such that for every $\varepsilon > 0$, every point x' of U(x) and every n(x) + 2 many points $y_1, \dots, y_{n(x)+2}$ of X with $\rho(S_{\varepsilon/2}(x'), y_i) < \varepsilon$ for each $i = 1, \dots, n(x) + 2$, there are distinct natural numbers i and j such that $\rho(y_i, y_j) < \varepsilon$, where

$$N_{\beta(x)} = \left\{ egin{array}{ll} \mathbb{N}, & \mbox{if } eta(x) < lpha, \ \{n-1\}, & \mbox{if } eta(x) = lpha. \end{array}
ight.$$

(c) There are an admissible metric ρ for X and a family $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfing the following conditions: (c-1) $X_0 = X, X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha, X_{\beta} = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit, and $X_{\alpha} = \emptyset$ if n = 0. (c-2) For every point x of X there are an open neighborhood U(x) of x in $X_{\beta(x)}$, where $\beta(x) = \max\{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in N_{\beta(x)}$ such that for every point x' of U(x) and every n(x) + 2 many points $y_1, \dots, y_{n(x)+2}$ of X, there are distinct natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x', y_j)$, where

$$N_{\beta(x)} = \begin{cases} \mathbb{N}, & \text{if } \beta(x) < \alpha, \\ \{n-1\}, & \text{if } \beta(x) = \alpha. \end{cases}$$

Remark 2.9 Let $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ be a family of closed sets of X satisfing the condition (b-1). Then we shall show that for every point x of X, there is a maximum element $\beta(x)$ of $\{\beta \mid x \in X_{\beta}\}$. Indeed, if $x \in X_{\lambda(\alpha)}$, then $\beta(x) = \max\{\beta \mid x \in X_{\beta}, \lambda(\alpha) \leq \beta \leq \alpha\}$. Now, we suppose that $x \in X_{\lambda(\alpha)}$, there is a minimum element $\beta_0 > 0$ of $\{\beta \mid x \notin X_{\beta}\}$. Assume that β_0 is limit. By the condition (b-1), $x \in \bigcap\{X_{\beta} \mid \beta < \beta_0\} = X_{\beta_0}$. This contradicts the definition of β_0 . Therefore β_0 is not limit and hence $\beta(x) = \beta_0 - 1$.

By Theorems 1.2 and 2.8, we obtain the following theorem.

Theorem 2.10 Let α be an ordinal number with $\alpha < \omega_1$ and let n be a non-negative integer. The following conditions are equivarent for a compact metrizable space X: (a) sind $X \leq \omega \alpha + n$.

(d) There are an admissible totally bounded metric ρ for X and a family $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfing the following conditions: (d-1) $X_0 = X$, $X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$, $X_{\beta} = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit, and $X_{\alpha} = \emptyset$ if n = 0. (d-2) For every point x of X there are an open neighborhood U(x) of x in $X_{\beta(x)}$, where $\beta(x) = \max\{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in N_{\beta(x)}$ such that for every point x' of U(x) and every n(x)+2 many points $y_1, \ldots, y_{n(x)+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\rho(y_i, y_j) \leq \rho(x', y_k)$, where

$$N_{\beta(x)} = \begin{cases} \mathbb{N}, & \text{if } \beta(x) < \alpha, \\ \{n-1\}, & \text{if } \beta(x) = \alpha. \end{cases}$$

By Theorems 2.8 and 2.10, we obtain the Main Theorem 2.4 and Theorem 2.5.

References

- [1] R. Engelking, Theory of Dimensions Finite and Infinite, Heldermann Verlag (1995).
- [2] J. de Groot, On a metric that characterizes dimension, Canad. J. Math. 9 (1957), 511-514.
- [3] Y. Hattori, On special metrics characterizing topological properties, Fund. Math. 126 (1986), 133-145.
- [4] M. Katětov, On the relations between the metric and topological dimensions, Czech. Math. J. 8 (1958) 163-166.
- [5] J. Nagata, On a relation between dimension and metrization, Proc. Jap. Ac. 32 (1956), 237-240.

- [6] J. Nagata, On a special metric characterizing a metric space of dim $\leq n$, Proc. Japan Acad. 39 (1963), 278-282.
- [7] J. Nagata, On a special metric and dimension, Fund. Math. 55 (1964), 181-194.
- [8] J. Nagata, Topics in dimension theory, General Topology and its Relations to Modern Analysis and Algebra (Proc. Fifth Prague Topology Symposium 1981), Heldermann Verlag, Berlin (1982), 497-507.
- [9] J. Nagata, Modern Dimension Theory, revised and extended edn., Heldermann, Berlin, 1983.
- [10] J. Nagata, Open problems left in my wake of research, Topology and its Appl. 146-147 (2005), 5-13.
- [11] Z. Shmuely, On strongly countable-dimensional sets, Duke Math. J. 38 (1971), 169-173.

Masahiro Matsumoto Institute of Mathematics University of Tsukuba Ibaraki, 305-8571 Japan e-mail: masahiro@math.tsukuba.ac.jp