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Abstract

Answering negatively a question ofKjita and Shakhmatov [2], TLchenko
and Torres Falc6n [6] have constructed an example of a countable (and
thus, $\sigma$-compact) totally bounded group that is not compactly generated.
We observe that any countable non-finitely generated abelian group $G$

equipped with its Bohr topology fails to be compactly generated, thereby
obtaining an abundant supply of totally bounded groups providing a
counter-example to the question of FUjita and Shakhmatov [2].

A group $G$ is finitely generated if $G$ is algebraically generated by its finite
subset.

A group $G$ is called $\sigma$-compact provided that $G$ can be represented as a
union of a countable family of its compact subsets, and $G$ is called compactly
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generated if $G$ is algebraically generated by its compact subset. One can easily
see that a compactly generated group is $\sigma$-compact.

Fujita and Shakhmatov [2] proved that a $\sigma$-compact metric group is com-
pactly generated. The same result also holds for a wider class of groups that
contains both metric and locally compact groups, see [3].

Answering a question of Fujita and Shakhmatov [2], Tkachenko and Tor-
res Falc\’on [6] have constructed an example of a countable (thus, $\sigma$-compact)
totally bounded group that is not compactly generated. (Recall that a group
$G$ is totally bounded if it is (topologically and algebraicaUy) isomorphic to a
subgroup of some compact group.)

The main purpose of this note is to observe that any countable non-finitely
generated abelian group $G$ equipped with its Bohr topology fails to be com-
pactly generated, thereby obtaining an abundant supply of totally bounded
groups providing a counter-example to the question of Fujita and Shakhmatov
[2].

Let $G$ be an abelian group. The Bohr topology of $G$ is the weakest group
topology on $G$ making all characters $\chi$ : $Garrow \mathbb{T}$ continuous, where $\mathbb{T}$ is the
torus group. The Bohr topology of $G$ is totally bounded, and the group $G$

equipped with this topology is usually denoted by $c\#$ .
According to the celebrated result of Glicksberg [4], $G*$ has no infinite

compact subsets. Thus, $G\#$ is compactly generated if and only if $c\#$ is finitely
generated. This $\dot{i}$lmediately yields the following

Theorem 1. Let $G$ be a countable abelian group that is not finitdy generated.
Then $c\#$ is a $\sigma$-compact totally bounded group that is not compacuy generated.

It should be noted that there are only countably many finitely generated
abelian groups, as every such group has the form

$\mathbb{Z}^{n}x\mathbb{Z}(m_{1})x\ldots\cross \mathbb{Z}(m_{k})$ , (1)

where $n,$ $m_{1)}\ldots,$ $m_{k}$ are integer numbers and $\mathbb{Z}(k)$ denotes the cyclic group
of order $k$ . On the other hand, there are continuum many $p\ovalbox{\tt\small REJECT}$ non-
isomorphic countable abelian groups. (In fact, even the group $\mathbb{Q}$ of rational
numbers contains continuum many pairwise non-isomorphic subgroups.)

Corollary 2. Let $G$ be a countable abelian group that is not isomorphic to a
group of the form (1). Then $c\# i_{8}$ a $\sigma$-compact totally bounded group that is
not compactly generated.

Let us finish with some concrete examples.

Corollary 3. $\mathbb{Q}^{\#}$ is a ( $\sigma$-compact) divisible totally bounded group that is not
compactly generated.
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Corollary 4. If $G$ is a countably infinite torsion group, then $c\#$ is a $(\sigma-$

compact) totally bounded group that is not compactly generated.

It follows $hom$ Corollary 4 that $(\mathbb{Q}/\mathbb{Z})\#$ is a ( $\sigma$-compact) divisible totally
bounded group that is not compactly generated.

Furthermore, from Corollary 4 one can easily obtain an infinite family of
( $\sigma$-compact) $non\sim compactly$-generated totally bounded torsion groups that are
pairwise non-homeomorphic even as topological spaces. Indeed, if $G$ and $H$

are countably infinite torsion groups of distinct prime exponent, then $c\#$ and
$H\#$ are not homeomorphic as topological spaces ([5, 1]).
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