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1. INTRODUCTION

In [5], we have studied an aJternative definition of fibrewise uniformity and its gener-
alizations with covering types of axioms. Adopting covering uniformity as the starting
point, we have studied on fibewise extensions of fibrewise spaces. With this foundation,
extendability of fibrewise maps $hom$ dense subspace is the main theme of this report. That
is, for a fibrewise space $X,$ $A\subset X$ dense in X and a fibrewise continuous map $f$ : $Aarrow Y$,
when $f$ can be extended to whole space $X$? Some characterization theorems of extendable
fibrewise continuous maps are given.

In the next section, we recall definitions and notions on fibrewise topology. In section
3, we recall definitions and notions on fibrewise semi-uniformities $hom[4]$ and [5]. Some
facts which are used in section 4 are also stated here. Although we use the same terms as
used in [4], our definition of fibrewise semi-uniformity is stronger than that of in [4], so we
can prove these facts similarly but with more simple methods.

We give some characterizations of extendable fibrewise continuous maps in section 4.
Theorem 4.2 is the essential theorem for later characterizations and $Th\infty rem4.7$ is the key
result for extendabihty.

2. PRELIMINARIES

In this section, we refer to the notations used in the latter sections, further the notions
and notations in Fibrewise Topology.

Let $(B,\tau)$ be a fixed topological space with a fixed topology $\tau$ . For the base space $(B,\tau)$ ,
$TOP_{B}$ is the fibrewise category over B. (Cf. TOP is the topological category.)

A fibrewise set (resp. space) over $B$ consists of a set (resp. topological space) $X$ together
with a (resp. continuous) function $p:Xarrow B$ (called the $p$rvjection). Throughout this
paper, for fibrewise sets $X$ and $Y$ over $B$ the projections are $p:Xarrow B$ and $q:Yarrow B$,
respectively. For each point $b\in B$ , the fibre over $b$ is the subset $X_{b}=p^{-1}(b)$ of $X$ . Also
for each subset $B’$ of $B$ , we denote $X_{B’}=p^{-1}B’$ .

In this report, we assume that the base space $B$ is regular.
Throughout this paper, we will use the abbreviation $nbd(s)$ for neighborhood$(s)$. We also

use that for $b\in B,$ $N(b)$ is the set of all open nbds of $b$.
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Definition 2.1. (1) Let $p:Xarrow B$ be the continuous projection. The fibrewise space $X$

over $B$ is fibrewise $T_{i},$ $i=0,1,2$ , if for each point $x,$ $x’\in X_{b}$ such that $x\neq x’$ where
$b\in B$ , the following condition is respectively satisfied:

$i=0$: at least one of the points $x,x’$ has a nbd in $X$ not containing the other point.
$i=1$ : each of the points $x,x’$ has a nbd in $X$ not containing the other point.
$i=2$: the points $x$ and $x’$ have disjoint nbds in $X$ .

(2) ([3] Definition 2.15.) Let $p:Xarrow B$ be the continuous projection. The flbrewise space
$X$ over $B$ is fibrewise $T_{3}$ if for each point $x\in X_{b}$ , where $b\in B$ , and each nbd $V$ of $x$ in
$X$ , there exists $W\in N(b)$ such that $X_{W}\cap C1U\subset V$ , where Cl is the closure operator.

(3) Fibrewise $T_{3}$ and fibrewise $T_{0}$ space is called $fiboe\dot{w}se$ regular.

Note that fibrewise regular space is fibrewise $T_{2}$ ([3] Proposition 2.19).

Definition 2.2. For a fibrewise set $X$ over $B$ , by a b-filter (resp. b-filter base) on $X$ we
mean a pair $(b,\mathcal{F})$ , where $b\in B$ and $\mathcal{F}$ is a filter (resp. filter base) on $X$ such that $b$ is a
limit point of the filter $p_{*}(\mathcal{F})$ on $B$ .

For the definitions of undefined terms and notions, see [2] and [3].

3. FIBREWISE SEMI-UNIFORMITIES IN THE NEW SENSE

In this section, we recall the definitions and facts from [4] and [5].
Let $X$ be a fibrewise set over $B$ and $W\in\tau$ . Let $\mu_{W}$ be a non-empty family of coverings

of $X_{W}$ and $\{\mu_{W}\}_{W\in\tau}$ the system of $\mu_{W},$ $W\in\tau$ . We say that $\{\mu_{W}\}_{W\in\tau}$ is a system of
coverings of $\{X_{W}\}_{w\epsilon_{\mathcal{T}}}$ . (For this, we briefly use the notations $\{\mu_{W}\}$ and $\{X_{W}\}$ ). Let $\mathcal{U}$

and $\mathcal{V}$ be families of subsets of a set $X$ . If $\mathcal{V}$ refines $\mathcal{U}$ in the usual sense, we denote $\mathcal{V}<\mathcal{U}$ .

For a family $\mathcal{U}$ of subsets of a set $X$ and $A\subset X$ , we set
$\mathcal{U}|_{A}=\{U\cap A|U\in \mathcal{U}\}$ .

Definition 3.1. (cf. Definition 3.5 of [5]) Let $X$ be a fibrewise set over $B$ , and $\mu=\{\mu_{W}\}$

be a system of coverings of $\{X_{W}\}$ . We say that the system $\{\mu_{W}\}$ is a $fibm\dot{w}se$ covering
uniformity (and a pair (X, $\mu$) or (X, $\{\mu_{W}\})$ is a fibrewise covering uniform space) if the
following conditions are satisfied:
(C1) Let $\mathcal{U}$ be a covering of $X_{W}$ and for each $b\in W$ there exist $W’\in N(b)$ and $\mathcal{V}\in\mu_{W’}$

such that $W\subset W$ and $\mathcal{V}<\mathcal{U}$ . Then $\mathcal{U}\in\mu_{W}$ .
(C2) For each $\mathcal{U}_{i}\in\mu_{W},$ $i=1,2$, there exists $u\in\mu_{W}$ such that $\mathcal{U}_{3}<\mathcal{U}_{i},$ $i=1,2$ .
(C3) For each $\mathcal{U}\in\mu_{W}$ and $b\in W$ , there exist $W^{j}\in N(b)$ and $\mathcal{V}\in\mu_{W’}$ such that $W’\subset W$

and $\mathcal{V}$ is a star refinement of $\mathcal{U}$ .
(C4) For $W’\subset W,$ $\mu_{W’}\supset\mu_{W}|x_{W}$, , where

$\mu_{W}|_{X_{W}},$ $=\{\mathcal{U}|_{X_{W}},|\mathcal{U}\in\mu_{W}\}$ and $\mathcal{U}|_{X_{W}},$ $=\{U\cap X_{W’}|U\in \mathcal{U}\}$ .
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By weakening the condition (C3) of Definition 3.1, we defined fibrewise g-uniformity (in
the new sense) in [5], and studied its properties. In this paper, fibrewise semi-uniformity
(in the new sense), intermediate concept between fibrewise covering (entourage) uniformity
and fibrewise g-uniformity (in the new sense), plays a central role.

Although we use the same term “fibrewise semi-uniformity” as in [4], note that the
Definition 3.2 in the below is slightly stronger than that of in [4], because fibrewise covering
(entourage) uniformity (in [5]) is slightly stronger than fibrewise uniform structure in [3].

Let $\{\mu_{W}\}$ be a system of coverings of $\{X_{W}\}$ . For $b\in B,$ $W,$ $W’\in N(b)$ with $W’\subset W$ ,
$\mathcal{U}\in\mu_{W}$ and $\mathcal{V}\in\mu_{W’}$ , we define the following:

$\mathcal{V}$ is a fiboewise local star $oefinem^{i}ent$ of $\mathcal{U}$ at $b$ if for each $V\in \mathcal{V}$ there exist
$\mathcal{W}\in\mu_{W’}$ and $U\in \mathcal{U}$ such that st(V, $\mathcal{W}$ ) $\subset U$ .

Deflnition 3.2. (cf. Definition 4.1 of [4]) Let $\mu=\{\mu_{W}\}$ be a system of coverings of
$\{X_{W}\}$ . Then $\mu=\{\mu_{W}\}$ is a fibrewise semi-uniformity if it satisfies (C1), (C2) and (C4) of
Definition 3.1 and

(FSU): For each $\mathcal{U}\in\mu_{W}$ and $b\in W$ , there exist $W’\in N(b)$ and $\mathcal{V}\in\mu_{W’}$ such that
$W\subset W$ and $\mathcal{V}$ is a fibrewise local star refinement of $\mathcal{U}$ at $b$.

The pair (X, $\mu$) (or (X, $\{\mu_{W}\}$ ) is called fibrewise semi-unifom space.
Clearly a fibrewise covering uniformity is a fibrewise semi-uniformity and a fibrewise

semi-uniformity is a fibrewise g-uniformity.

Deflnition 3.3. (cf. Definition 4.5 of [4])
(1) Let $\{\mu_{W}\}$ be a fibrewise fibrewise semi-unifomity and $\{\mu_{W}^{0}\}$ be a system of coverings

of $\{X_{W}\}$ satisfying that $\mu_{W}^{0}\subset\mu_{W}$ for all $W\in\tau$ , and $\mu_{W}^{0},$ $\supset\mu_{W}^{0}|_{X_{W}}$, for every
$W’\subset W$ .

We say that $\{\mu_{W}^{0}\}$ is a base for $\{\mu_{W}\}$ if for each $W$ and $\mathcal{U}\in\mu_{W}$ there exists
$\mathcal{V}\in\mu_{W}^{0}$ such that $\mathcal{V}<\mathcal{U}$ .

Further, we say that $\{\mu_{W}^{0}\}$ is a subbase for $\{\mu_{W}\}$ if for each $W$ and
$\mu_{W}’$ $:=$ {$\mathcal{U}_{1}\wedge\cdots$ A $\mathcal{U}_{\mathfrak{n}}|\mathcal{U}_{i}\in\mu_{W}^{0},$ $i=1,$ $\cdots$ , $n,$ $n\in N$},

then $\{\mu_{W}’\}$ is a base for $\{\mu_{W}\}$ , where we consider that $\mathcal{U}_{1}\wedge\cdots$ A $\mathcal{U}_{n}$ is a coverings
of $X_{W}$ .

(2) Let $\{\mu_{W}^{0}\}$ be a system of coverings of $\{X_{W}\}$ . We say that $\{\mu_{W}^{0}\}$ is a fiboeurise
semi-uniformity base if $\{\mu_{W}^{0}\}$ satisfies (C2), (C4) of Definition 3.1 and (FSU).

Unless otherwise stated, we use the notation $\{\mu_{W}^{0}\}$ for a base.
Next, we define various kinds of Cauchy filters for fibrewise semi-uniformity.

Deflnition 3.4. (cf. Deflnition 5.1 of [4]) Let $\mathcal{F}$ be a kfilter base.
We say $\mathcal{F}$ is Cauchy if for each $W\in N(b)$ and $\mathcal{U}\in\mu_{W}$ there exist $F\in \mathcal{F}$ and $U\in \mathcal{U}$

such that $F\subset U$ .
$\mathcal{F}$ is called strictly Cauchy if for each $W\in N(b),\mathcal{U}\in\mu_{W}$ there exist $W\in N(b),$ $F\in$

$\mathcal{F},$ $U\in \mathcal{U}$ and $\mathcal{V}\in\mu_{W’}$ such that $W’\subset W$ and $st(F, \mathcal{V})\subset U$.
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Deflnition 3.5. (cf. Definition 5.3 of [4]) Let $\mathcal{F}$ and $\mathcal{F}’$ be strictly Cauchy b.filter bases.
We say that $\mathcal{F}$ and $\mathcal{F}’$ are equivalent, $\mathcal{F}\sim \mathcal{F}’$ in notation, if for each $W\in N(b),\mathcal{U}\in\mu_{W}$

and $F\in \mathcal{F}$, there exist $W’\in N(b),$ $\mathcal{V}\in\mu_{W’}$ and $F’\in \mathcal{F}’$ such that $W’\subset W$ and
$st(F’, \mathcal{V})\subset st(F,\mathcal{U})$ .

The $relation\sim is$ an equivalence relation.
Next we cite some facts $bom[4]$ and [5]. We can prove these with similar methods as in

[4].

Lemma 3.6. (cf. Lemma 5.5 of [4])
(1) If $\mathcal{F},\mathcal{F}’$ are strictly Cauchy bfilter bases and $\mathcal{F}\sim \mathcal{F}’$ , then $\cap C1F=\cap C1P$.
(2) If $\mathcal{F}$ is a strictly Cauchy bfilter base and converges to $x$ , then $x\in\cap C1\mathcal{F}$.
(3) If $\mathcal{F}$ is a strictly Cauchy $k$filter base and $x\in\cap C1\mathcal{F}$, then $F$ converges to $x$ .

Definition 3.7. (cf. Definition 5.7 of [4]) Let $\mathcal{F}$ be a strictly Cauchy kfilter base. We say
that the kfilter generated by $\{st(F,\mathcal{U})|F\in \mathcal{F},\mathcal{U}\in\mu_{W}^{0}, W\in N(b)\}$ is the star b-filter of $\mathcal{F}$

with respect to $\{\mu_{W}^{0}\}$ and denote $st(\mathcal{F};\{\mu_{W}^{0}\})$ .
Deflnition 3.8. (cf. Definition 5.10 of [4])

(1) Let $\mathcal{F}$ be a Cauchy $k$filter.
$\mathcal{F}$ is a weak star b-filter with respect to $\{\mu_{W}^{0}\}$ if for each $F\in \mathcal{F}$ there exist

$W\in N(b)$ and $\mathcal{U}\in\mu_{W}^{0}$ such that $U\subset F$ for each $U\in \mathcal{U}\cap \mathcal{F}$, that is, $\cup(\mathcal{U}\cap \mathcal{F})\subset F$ .
(2) A Cauchy $k$filter is called a minimal Cauchy b-filter if it contains no proper sub-

family which is a Cauchy $k$filter.

Proposition 3.9. (cf. Proposition 6.2 of [4]) Let $\{\mu_{W}^{0}\}$ be a fibrewise semi-uniformity
base and $\mathcal{F}$ be a $k$Mter base. Then $\mathcal{F}$ is strictly Cauchy if and only if $\mathcal{F}$ is Cauchy.
Proposition 3.10. (cf. Proposition 6.3 of [4]) Let $\{\mu_{W}^{0}\}$ be a fibrewise semi-uniformity
base and $\mathcal{F},\mathcal{F}’$ be strictly Cauchy b-filter bases. Then following statements are equivalent:

(1) $\mathcal{F}\sim \mathcal{F}’$ .
(2) For each $W\in N(b),\mathcal{U}\in\mu_{W}^{0}$ and $F\in \mathcal{F}$, there exists $F’\in \mathcal{F}’$ such that $F’\subset$

$st(F,\mathcal{U})$ .
(3)

$ForeachW.\in F\cup F\subset UN(b)$
and $\mathcal{U}\in\mu_{W}^{0}$ , there exist $F\in \mathcal{F},$ $F’\in \mathcal{F}’$ and $U\in \mathcal{U}$ such that

$Th\infty rem3.11$ . (cf. Theorem 6.4 of [4]) Let $\{\mu_{W}^{0}\}$ be a fibrewise semi-uniformity base.
Then every Cauchy $k$filter contains a weak star b-filter. And the three types of Cauchy
filters – star kfilters, weak star kfilters and minimal Cauchy $k$filters–are all coincident.

Deflnition 3.12. (cf. Definition 5.17 of [4]) (X, $\{\mu_{W}\}$ ) is said to be fibnnise complete if
every weak star $k$Mter $(b\in B)$ with respect to $\{\mu_{W}^{0}\}$ converges.

Deflnition 3.13. (cf. Definition 5.19 of [4]) Let (X, $\{\mu_{W}\}$ ) and $(Y, \{\nu_{W}\})$ be fibrewise
semi-uniform spaces and $X\subset Y$ . $(Y, \{\nu_{W}\})$ is a fibrewise completion of (X, $\{\mu_{W}\}$ ) if
(1) $(Y, \{\nu_{W}\})$ is fibrewise complete,
(2) $\{\nu_{W}|_{X}\}=\{\mu_{W}\}$ ,
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(3) (X, $\tau(\{\mu_{W}\})$ ) is dense in $(Y, \tau(\{\nu_{W}\}))$ .
Theorem 3.14 (cf. Theorem 6.7 of [4]). The fibrewise completion of fibrewise semi-
uniform space is also a fibrewise semi-uniform space.

Theorem 3.15 (cf Theorem 4.13 of [5]). Let $p:Xarrow B$ be a cloned map and $b\in B$ .
Suppose that for every $W\in N(b)$ , and open covering $\mathcal{U}$ of $X_{W}$ there exist $W’\in N(b)$ and
$\mathcal{V}\in\mu_{W’}$ such that $W\subset W$ and $V<\mathcal{U}$ . Then every Cauchy kMter converges.

Further, under the conditions in this theorem minimal Cauchy b-filters are $weU$ star
kfilters.

4. CHARACTERIZATIONS OF EXTENDABLE FIBREWISE MAPS

Throughout this section $A$ is a dense subspace of a fibrewise space $X$ .
Let $G$ be an open set of the subspace $A$ . We define an open set $E_{X}(G)$ of $X$ with

$E_{X}(G):=X-C1_{X}(A-G)$ ,
where $C1_{X}$ is the closure operator in $X$ .
Lemma 4.1. The foUowings hold for open subsets $G,$ $H$ of $A$ ;
(1) $E_{X}(G)\cap A=G$ ,
(2) If $G\subset H$ , then $E_{X}(G)\subset E_{X}(H)$ ,
(3) $E_{X}(G\cap H)=E_{X}(G)\cap E_{X}(H)$ ,
(4) $E_{X}(G)=\cup${ $M\subset X|M$ is open in $X$ and $M\cap A=G$}.

For a coUection $\mathcal{G}$ of open subsets of $A$ , put
$E_{X}(\mathcal{G})$ $:=\{E_{X}(G)|G\in \mathcal{G}\}$ .

Next Theorem is essential for the following results.

Theorem 4.2. Let $Y$ be a fibrewise regular space, $f$ : $Aarrow Y$ be a fibrewise continuous
map. Let $\nu=\{\nu_{W}\}$ be a fibrewise complete semi-uniformity on $Y$ compatible with the
topology of $Y$ and $\nu_{0}=\{\nu_{W}^{0}\}$ be a base for $\nu$ where every $\nu_{W}^{0}$ consist of open coverings of
$Y_{W}$ . Let us put

$H(\nu_{0})$ $:= \bigcup_{b\epsilon B}[\cap\{\cup E_{X}(f^{-1}(V))|V\in\nu_{W}^{0},W\in N(b)\}]$ .
Then there exists uniquely a fibrewise continuous map $g$ : $H(\nu_{0})arrow Y$ which is an extension
of $f$ . Moreover, if $\mathcal{V}’$ is a local star refinement of $\mathcal{V}$ at $b$, then

$E_{X}(f^{-1}(V’))\wedge H(\nu_{0})<g^{-1}(V)$ .
We recall the definition of fibrewise uniformly continuous map.
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Deflnition 4.3. Suppose that (X, $\{\mu_{W}^{0}\}$ ), $(Y, \{\nu_{W}^{0}\})$ are fibrewise semi-uniform spaces and
$f$ : $Xarrow Y$ is a fibrewise map.

$f$ is uniformly continuous if for every $b\in B,$ $W\in N(b)$ and $\mathcal{V}\in\nu_{W}^{0}$ , there exists
$W’\in N(b)$ such that $W\subset W$ and $f^{-1}(\mathcal{V})|_{X_{W}},$ $\in\mu_{W}^{0},$ , where $f^{-1}(\mathcal{V})$ $:=\{f^{-1}(V)|V\in \mathcal{V}\}$ .

$f$ is uniform isomorphism or unimorphism if $f$ is bijection and $f,$ $f^{-1}$ are uniformly
continuous.

We have an application of Theorem 4.2.

Theorem 4.4. Let (X, $\mu$) be an fibrewise semi-uniform space, $(A, \mu|_{A})$ a dense subspace of
(X, $\mu$) and $(Y, \nu)$ a fibrewise complete semi-uniform fibrewise $T_{2}$ space. The every fibrewise
uniformly continuous map $f$ from $(A,\mu|_{A})$ to $(Y, \nu)$ can be extended to a fibrewise uniformly
contimuous map from (X, $\mu$) to $(Y, \mu)$ .
Corollary 4.5. Let (X, $\mu$) be a fibrewise semi-uniform fibrewise $T_{2}$ space. The any two
fibrewise complete semi-uniform fibrewise $T_{2}$ space as its dense subspace are uniformly
isomorphic by a flbrewise uniform isomorphism which leaves invariant each point of $X$ .
Corollary 4.6. Let $Y$ be a fibrewise regular space. Let $X$ be a dense subspace of Y.
Then $Y$ is obtained as the fibrewise completion $(Y, \nu)$ of fibreiwse semi-uniform space
(X, $\mu$), where $\nu$ is a fibrewise complete semi-uniformity on $Y$ which is compatible with the
topology of $Y$ and $\mu=\nu|x$ .

Next Theorem is the key result for extendability.

Theorem 4.7. Let $f$ : $Aarrow Y$ be a flbrewise continuous map where $Y$ is a fibrewise
regular space. Let $\nu=\{\nu_{W}\}$ be a fibrewise complete semi-uniformity on $Y$ compatible
with the topology, and $\nu_{0}=\{\nu_{W}^{0}\}$ a subbase for $\nu$ such that $\nu_{W}^{0}$ consists of open coverings
of $Y_{W}$ for every $W\in\tau$ . Let us put

$H(\nu_{0})$ $:= \bigcup_{b\in B}[\cap\{\cup E_{X}(f^{-1}(V))|V\in\nu_{W}^{0}, W\in N(b)\}]$ .
Then the followings hold:
(a) $f$ is extended to a fibrewise continuous map $g:H(\nu_{0})arrow Y$ .
(b) $H(\nu_{0})$ is the largest subspace of $X$ which contains $A$ and over which $f$ is extendable.
(c) $H(\nu_{0})=$ {$x\in X|f(\mathcal{N}(x)$ A $A)$ converges to a point of $Y_{p\langle x)}$ }, where $\mathcal{N}(x)$ is the nbd

filter of $x$ in $X$ .
Following theorems are easily proved by Theorem 4.7 and Theorem 4.2.

Theorem 4.8. Let $(Y, \nu)$ be a fibrewise complete semi-uniform fibrewise $T_{2}$ space, $f$ :
$Aarrow Y$ a fibrewise continuous map, and $\nu_{0}=\{\nu_{W}^{0}\}$ a subbase for $\nu$ such that $\nu_{W}^{0}$ consists
of open coverings of $Y_{W}$ for every $W\in\tau$ . Then $f$ is extendable over $X$ if and only if
$\cup E_{X}(f^{-1}(V))\supset X_{b}$ for every $b\in B,$ $W\in N(b)$ and $\mathcal{V}\in\nu_{W}^{0}$ .
Theorem 4.9. Let $f$ : $Aarrow Y$ be a fibrewise continuous map, where $Y$ is a fibrewise
regular space. Then $f$ is extendable over $X$ if and only if $f$ ($\mathcal{N}(x)$ A $A$) converges for each
$x\in X$ .
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Theorem 4.10. Let $Y$ be a fibrewIse regular space, projection $q:Yarrow B$ be closed and $\mathcal{B}$

be a base for the open sets of Y. Then fibrewise continuous map $f$ : $Aarrow Y$ is extendable
over $X$ if and only $if\cup E_{X}(f^{-1}(\mathcal{V}))\supset X_{b}$ for every $b\in B$ and $\mathcal{G}\subset \mathcal{B}with\cup \mathcal{G}\supset Y_{b}$.

If the range space $Y$ is fibrewise compact and fibrewise $T_{2}$ , we can deduce more precise
result.

Proposition 4.11. Let $Y$ be a fibrewise compact and fibrewise $T_{2}$ space, $f$ : $Aarrow Y$

fibrewise continuous map and projection $p:Xarrow B$ be closed. Then $f$ is extendable over
$X$ if and only if for every $b\in B,$ $W\in N(b)$ and open cover $\mathcal{V}$ of $Y_{W}$ there exist $W’\in N(b)$

and finite open cover $\mathcal{U}$ of $X_{W’}$ such that $W’\subset W$ and $\mathcal{U}\wedge A<f^{-1}(V)$ .
Theorem 4.12. Let $Y$ be a fibrewise compact and fibrewise $T_{2}$ space. Then fibrewise
continuous map $f$ : $Aarrow Y$ is extendable over $X$ if and only if $C1_{X}f^{-1}(C)\cap C1_{X}f^{-1}(D)=\emptyset$

for any $W\in\tau$ and closed subsets $C$ and $D$ of $Y_{W}$ with $C\cap D=\emptyset$ .
At last, we can prove a dual form of Theorem 4.8.

Theorem 4.13. Let $(Y, \nu)$ be a fibrewise complete semi-uniform fibrewise $T_{2}$ space, $f$ :
$Aarrow Y$ a fibrewise continuous map, and $\nu_{0}=\{\nu_{W}^{0}\}$ a subbase for $\nu$ such that $\nu_{W}^{0}$ consists
of open coverings of $Y_{W}$ for every $W\in\tau$ .

Then fibrewise continuous map $f$ : $Aarrow Y$ is extendable over $X$ if and only if for every
$b\in B,$ $W\in N(b)$ and $\mathcal{V}\in\nu_{W}^{0}$ ,

$[\cap\{C1_{X}f^{-1}(Y-V)|V\in \mathcal{V}\}]\cap X_{b}=\emptyset$.
Next theorem is dual form of Theorem 4.10 and easy to prove.

Theorem 4.14. Let $Y$ be a flbrewise regular space, projection $q:Yarrow B$ be closed and
$\mathcal{A}$ be a base for the closed sets of Y. Then $f$ is extendable over $X$ if and only if

$[\cap C1_{X}f^{-1}(F)|F\in \mathcal{F}]\cap X_{b}=\emptyset$

for every $b\in B$ and $\mathcal{F}\subset A$ with $(\cap \mathcal{F})\cap Y_{b}=\emptyset$ .
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