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CERTAIN SUBCLASSES OF
MULTIVALENT FUNCTIONS

OH SANG KWON AND BYUNG GU PARK

ABSTRACT. The object of the present paper is to drive some properties

of certain class Kn p(4, B) of multivalent analytic functions in the open
unit disk E.

1. Introduction

Let A, be the class of functions of the form

f(z) = zP 4 iap.,_kz"""‘ (1.1)
—3 | .

which are analytic in the open unit disk E = {z € C: |2|] < 1}. A
function f € A, is said to be p-valently starlike functions of order a of
it satisfies the condition

2f'(2)
Re { ) }>a (0La<p,z€E).
We denote by S (a).

On the other hand, a function f € A, is sais to be p-valently close-
to-convex functions of order «a if it satisfies the condition

Re {z;’f('g)} >a (0<a<pz€E),

for some starlike function g(z). We denote by Cyp(a).
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For f € A, given by (1.1), the generalized Bernardi integral operator
F, is defined by

_c+p ? c—1
Fi(s) = <% / O -

. c+
—z‘°+zc+ ika,, x2"** (c+p >0,z € E).

For an analytic function g, defined in E by
o0
9(z) =2+ Y bppp2®t*
' k=1
and Flett [3] defined the multiplier transform I" for a real number n by
o0
Ig(z) = Z(p +k+1)""bpr2?** (2 € E).
k=0
Clearly, the function I"g is analytic in F and
I(I%g(z)) = I""*g(2)

for all real number n and pu.
For any integer n, J. Patel and P. Sahoo [5] also defined the operator
D", for an analytic function f given by (1.1), by

00 -n
: k+1
an(z) =2 4 E (1%__4—_) ap+kzp+k

. (1.3)
= f(z) x 27~* [z + Z (%ﬁ) z"”'l} (z € E)
where * stands for the Hadamard product or convolution.
It follows from (1.3) that
AD"f(2)) = (p+1)D"" f(z) - D"f(2). (1.4)

We also have

zf'(z) + f(z)
p+1 )

D°f(z) = f(z) and D7 f(z)=
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If f and g are analytic functions in E, then we say that f is subordi-
nate to g written f < g or f(2) < g(2), if there is a function w analytic
in E, with w(0) = 0, |w(z)| < 1 for 2 € E, such that f(z) = g(w(z)),
for z € E. If g is univalent then f < g if and only if f(0) = g(0) and
f(E) C g(E).

Making use of the operator notation D", we introduce a subclass of
A, as follows:

Definition 1.1. For any integer n and —1 < B < A < 1, a function
f € A, is said to be in the class K, ,(A,B) if

z2(D"f(2)  p(1+A4z)
2P < 1+ Bz (1.5)

where < denotes subordination.

For convenience, we write

p’
where K, ,(a) denote the class of function f € A, satisfying the in-

equality
Re {Z(D—:‘:(Z—))-}>a (0<a<p, z€E).

We also note that Ky ,(a) = Cp(e) is the class of p-valently close-to-
convex functions of order a. |

In this present paper, we derive some properties of certain class
K, (A, B) by using the differential subordination.

2. Preliminaries and Main Results

In our present investigation of the general class K, ,(A, B), we shall
require the following lemmas.
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Lemma 1 [4]. If the function p(z) = 1 + ¢12 + c22% + - -+ is analytic

in E, h(z) is convex in E with h(0) = 1, and v is complex number such
that Re v > 0. Then the Briot-Bouquet differential subordination

p) + T < 1ea)
implies
p(z) <q(z) = zl'v Az t""1h(t)dt < h(z) (z € E)
and g(z) is the best dominant.

For complex number a, b and ¢ # 0, —1, —2, - - -, the hypergeometric
: b (a+1)b(b+1)
L] - - a a a 2 e 9w
2Fi(a,bjc;2) =1+ —=+ Sl + 1) z°+ (2.1)

represents an analytic function in E. It is well known by (1] that

Lemma 2. Let a, b and c be realc #0, —~1, =2, --- and ¢ > b > 0.
Then

L(b)T(c - b)

1
=11 - )b 1(1 — t2)"%dt = oFi(a,b;c 2
[ #a-nta - NG nessd
2Fi(a,bic;2) = (1 - 2)" %211 (a,c - big ﬁ"‘i)
and
2 Fi(a,b;c; 2) = 2 F1(b, a;c; 2). (2.3)

Lemma 3 [6]. Let ¢(z) be convex and g(z) is starlike in E. Then for

F
F analytic in E with F(0) = 1, ¢¢** J
bull of F(E). |

(E) is contained in the convex

14+ Az
1+ Bz

Lemma 4 [2]. Let ¢(z) =1+ k§ cxz* and ¢(z) < . Then
=1 }

lex| < (A - B).
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Theorem 1. Let n be any integer and -1 < B < A< 1. Iff e
K, (A, B), then

z(D™ f(2)) p(l+ Az)

@ CIE=TEEs @eD, 29
where

[ 2F1(1 ,P+1,p+2 —Bz)

P
2(2) = J A22F1(1,p+2,p+3 Bz), B#0 (2.5)

P+ 1
—— — 0

; 1+ ey 2Az, B

and q(z) is the best dominant of (2.4). Furthermore, f € K, ,(p(p, A4, B)),
where

( p2F1(1,p+1;p +2; B)
p(p, A, B) = ‘Ii"(;i_':-—zl)-AzFl(laP“"z;Pﬁ'?’;B)a B#0 (2.6)
[y .
Proof. Let et ’
(s = 22 LG (27)

where p(z) is analytic function with p(0) = 1.
Using the identity (1.4) in (2.7) and differentiating the resulting equa-
tion, we get

z2(D”f(2))" _
TR A

ZE) (L =hE). @)

Thus, by using Lemma 1 (for v = p + 1), we deduce that

p(s) < (p+ D20+ [T EEE L sy g(a)) _
sP(1+ Asz)
=(+1) / 1+ Bsz (2.9)

1 gpt+1 p
= 1)A 8.
(p+1)/0 1+Bszds+(p+ ) Z/O 1+ Bsz
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By using (2.2) in (2.9), we obtain

[ 2 Fy(1,p+ 1;p+ 2; —Bz)
p+1
Az Fi(1, 2; ;- ,
p(z) < q(z) = 4 +p+2 z2Fi(L,p+2;p+3;—-Bz), B#0
p+1
1 DY P~—1
ST a - B=0.

Thus, this proves (2.5).
Now, we show that

Re g(2) 2 g9(-r) (lzl=r<1). (2.10)

Since ~1 < B < A < 1, the function (1 + A2)/(1 + Bz) is con-
vex(univalent) in E and

Re (1+Az) >1247 o (lz2) = r < 1).

1+Bz) ~ 1-Br
Setting
1+ Asz
2) = <s<
g(s.2) 1+ Bes (0<s<1, z€E)

and du(s) = (p+1)sPds, which is a positive measure on [0, 1], we obtain
from (2.9) that

1
12)= [ oo 2)due) (< E)
Therefore, we have

1 14 _
Re ¢g(2) = /0 Re g(s, 2)dp(s) > /0 i_gﬁ:dﬂ(s)

which proves the inequality (2.10).
Now, using (2.10) in (2.9) and letting r — 1™, we obtain

. {Z(D":f(z))'} > p(p, A, B),
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where
( p2Fi(1,p+ 1;p+ 2 B)
p(p+1) _ _
p(0,A,By=0 ~ py2 AFi(1,p+2;p+3;B), B#0
p(p+1)
_ Beo.
PR 0

This proves the assertion of Theorem 1. The result is best possible
because of the best dominent property of g(z).

Putting A =1~ %;: and B = ~1 in Theorem 1, we have the following:

Corollary 1. For any integer n and 0 < a < p, we have

Kpp(@) C Kn1,5{p(p, @)),

where

+1
p(p,a) = p2 F1 (1,p+1; p+2; —1)—2%2—)(1—20)21"1(1,p+2;p+3; -1).

(2.11)
The result is best possible.
Taking p = 1 in Corollary 1, we have the following:
Corollary 2. For any integer n and 0 < a < 1, we have
Kn(0) C Knt1(d(a))
where
= - k 2.12
8(a) =1+4(1 2a)zk+2( ~1)%. (2.12)

k=1

Theorem 2. For any integer n and 0 < a < p, if f(z) € Knq1,p(a)

~1+ T+ (p+1)
then f € K, y(a) for |z| < R(p), where R(p) = Py l(p ) .
The result is best possible. |
Proof. Since f(z) € Kn41 (), we have
n41 ’
AP IE) ok (p-a)ul(z), (0<a<p), (2.13)

2P
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where w(z) = 14+wjyz+wqez+-- - is analytic and has a positive real part
in E. Making use of the logarithmic differentiation and using identity
(1.4) in (2.13), we get

| i(_.l?_"_;{;@l_ —a=(p-a) [w(z) + ;w_;_(i)] . (2.14)

Now, using the well-known by [5],
|zw'(2)| < 2r

Re w(z) = 1 -2

in (2.14). We get |
z2(D"f(z)) _ 1 Re z2v/(2)

Re {20 - = G- areue) {14 5 T

1 |aw'(2)]
> (p— @)Re w(z){l“p+1Rew(z)}

. 1-r 1 2r
> - - .
2 (p a)1+r{1 p+11-—r2}
It is easily seen that the right-hand side of the above expression is

- 1 P
1+ \/p:l(P+1) . Hence f € K, p(a) for

‘ I
D — =<
and Re w(z) > Ty (2l =r < 1),

positive if |z| < R(p) =
lz] < R(p).

To show that the bound R(p) is best possible, we consider the func-
tion f € A, defined by

D™+ f(z)) 1-
z( zpf(z)) =a+(p_a)l+z

(z € E).

Noting that
z(D”f(z))’_a=(p_a) 1-—z{1 1 -2z }

p T Ui na-2
_ 1-2z((p+1)—(p+1)2%2 -2z
_(p—a)-1+z{ (p+1)—(p+1)22 }
=0
for z = —lt i+ (p+1)

1 , we complete the proof of Theorem 2.
p _

Putting n = ~1, p = 1 and 0 < @ < 1 in Theorem 2, we have the
following: :
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Corollary 8. If Re f'(z) > «, then Re {zf"(z) + 2f'(2)} > a for
-1++5
|2] < —

Theorem 3. (a) If f € K, ,(A, B), then the function F, defined by
(1.2) belongs to K, ,(A, B).
(b) f € K, »(A, B) implies that F. € K, ,(n(p,,c, A, B)) where

r p2Fi(L,p+cp+c+1;B)

p(p+c) |
- AqxFi(1, 1; 2;B), B
ﬂ(P,C,A,B):{ p+c+1 2 1( ptc+Lliptc+ ) #0

p- Hpte) B=o.
\ p+c+1

Proof. Let
z(D"F(z))
pz
where ¢(z) is analytic function with ¢(0) = 1. Using the identity
z(D"F,(2))' = (p + ¢)D" f(2) — cD"F(z) (2.16)
in (2.15) and differentiating the resulting equation, we get

«(D"f(2))’ 9(2)
T Ay

, (2.15)

Since f € K, (A, B),
z¢'(z) 1+ Az
9(z) + 1+ Bz’
By Lemma 1, we obtain F, (z) € Knp(A B). We deduce that

+ Az
14+ Bz
where ¢(z) is given (2.5) and g¢(z) is best deminent of (2.17).

This proves the (a) part of theorem. Proceeding as in Theorem 3,
the (b) part follows. ‘

(2.17)

#(z) < 9(x) <

Putting A =1- 2—; and B = -1 in Theorem 2, we have the following:
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Corollary 4. If f € K,, ,(A,B) for0 £ a < p, then F, € K, ,H(p, c, c)
where

H(p,c,a) =p-2F(l,p+cp+c+1;-1)

+c
_pf—c+1(p“2°‘)2Fl(1,P+C;p+c+1;—1).

Setting ¢ = p = 1 in Theorem 3, we get the following result.

Corollary 4. If f € K, p(a) for 0 £ o < 1, then the function

G(z) = % /0 ’ f(t)dt

belongs to the class K,(6(c)), where §(c) is given by (2.12).

Theorem 4. For any integer n and 0 < o < p and ¢ > —p, if F. €
K, p(a) then the function f defined by (1.1) belongs to K, () for

-1 1 2
el < Rip,o) = 2+ V1 ++o)
p+c

. The result is best possible.
Proof. Since F, € K, p(a), we write

2(D"F.Y

2P

=a+ (p - a)w(z), (2.18)

where w(z) is analytic, w(0) = 1 and Re w(z) > 0 in E. Using (2.16)
in (2.18) and differentiating be resulting equation, we obtain

Re {f-(-l-)—'-;ég-ﬂ - a} = (p - a)Re {'w(z) 42w } | (2.19)

p+ec

Now, by following the line of proof of Theorem 2, we get the assertion
of Theorem 4.
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Theorem 5. Let f € K, ,(A, B) and ¢(z) € A, convex in E. Then
(f * 8(2))(2) € Ko p(4, B).

Proof. Since f(z) € K, (4, B),

2(D"f(2)) < 1+ Az
pzP 1+ Bz’

2(D"(f *¢)(2))" _ #(z) *2(D"f)’
p2P x ¢(2) ¢(z) * pzP
8(2) + z(D" f(z))

' o (2.20)
yik4

¢(2) * pz?
Then applying Lemma 3, we deduce that

&(z) x pz?P <1 + Bz’

Hence (f * ¢(2))(z) € K, p(A, B).

Theorem 6. Let a function f(z) defined by (1.1) be in the class K, (A, B).
Then

p(A-B)p+Ek+1)"
(1+p)*(p+k)

|ap+x| < for k=1,2,---. (2.21)

The result is sharp.
Proof. Since f(z) € K, ,(A, B), we have

n ! 1+4
f_(_%{}fz_)_sqb(z) and ¢(Z)<1IB§'

Hence

2D"f(2)) =pzPd(z) and ¢(z) =1+ Y cx2® (2.22)
k=1
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From (2.22), we have

(D" f(z)Y == (z" + Z (ﬁ%‘%) ap+kzp+k)

‘Pzp+2(p+k+1) (p+ F)apia®tt
k=1

= pz? (1 + Eckzk) .
k=1
Therefore

1+ "
(I—JTk—i—l_) (p + k)apti = pek. (2.23)

By using Lemma 4 in (2.23),

1+ "
(Eﬂ_ﬁ_f) (p + k)lapyil|

=lex] < A-B.
p

Hence
p(A-B)p+k+1)"

<
k] < T e+ )
The equality sign in (2.21) holds for the function f given by

pzP~l 4 p(A - B —1)2°

n L
(D"f(2)) = — (2.24)
Hence
! — —
z(D" f(2)) =1+(A B 1)z_< 1+ Az fork=1,2,--
sz 1-2 1+BZ

The function f(z) defined in (2.24) has the power series representation
in E,

L S p(A-B)p+k+1)"
f(z):z +Z (1+P)"(p+k) 2Ptk
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