On two sufficient conditions for univalency of real coefficient functions

Mamoru Nunokawa

Abstract

It is well known that if the function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is analytic in |z| < 1 and satisfies one of the following conditions

$$1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) > -\frac{1}{2} \quad \operatorname{in}|z| < 1$$

OT

$$1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) < \frac{3}{2} \qquad \operatorname{in}|z| < 1,$$

then f(z) is univalent in |z| < 1. In this paper, we improve the above conditions for the function f(z) whose coefficients are all real.

1. Introduction

Let \mathcal{A} be the set of analytic functions defined in the unit disk $\mathbf{E} = \{z \mid |z| < 1\}$ normalized by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

and let

$$S = \{f(z) | f(z) \in A \text{ and } f(z) \text{ is univalent in } E\}.$$

The late professor Ozaki [1] proved the following theorem.

Theorem A. Let $f(z) \in A$ and if f(z) satisfies one of the following conditions

(i)
$$1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) > -\frac{1}{2}$$
 in $|z| < 1$

or

(ii)
$$1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) < \frac{3}{2}$$
 in $|z| < 1$,

then we have $f(z) \in S$.

2. Theorems

First our theorem is contained in

Theorem 1. Let $f(z) \in A$, all the coefficients a_n , $2 \le n \in \mathbb{N} = \{1, 2, 3, \dots\}$ are real and suppose that

(1)
$$1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) > -1 \qquad (z \in \mathbf{E}).$$

Then we have $f(z) \in S$.

Proof. Suppose that if there exists a positive real number r, 0 < r < 1 for which f(z) is univalent in |z| < r but f(z) is not univalent in $|z| \le r$, then from the hypothesis, there exists two points $z_1 = re^{i\theta_1}$, $z_2 = re^{i\theta_2}$, $\theta_1 < \theta_2$ and $\theta_2 - \theta_1 < \pi$ for which $f(z_1) = f(z_2)$.

From the hypothesis (1), we have $f'(z) \neq 0$ in E,

because if f'(z) has a zero in E, then it is

impossible that f(z) satisfies the condition (1).

Let us put

$$C = \{z \mid z = re^{i\theta}, \theta_1 \le \theta \le \theta_2\}$$

and

$$C_{f(z)} = \{f(z) \mid z \in C\}.$$

Then we have

$$\begin{split} &\int_{C_{f(z)}} d \operatorname{arg} d f(z) = -\pi \\ &= \int_{C} d \operatorname{arg} f'(z) d z \\ &= \int_{\theta_{1}}^{\theta_{2}} \left(1 + \operatorname{Re} \left(\frac{z f''(z)}{f'(z)} \right) \right) d\theta \\ &> \int_{\theta_{1}}^{\theta_{2}} (-1) d\theta = \theta_{1} - \theta_{2} > -\pi. \end{split}$$

This is a contradiction and therefore it completes the proof.

Theorem 2. Let $f(z) \in A$, all the coefficients a_n , $2 \le n \in \mathbb{N} = \{1, 2, 3, \dots\}$ are real and suppose that

(2)
$$1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) < 2 \qquad (z \in \mathbb{E}).$$

Then we have $f(z) \in \mathcal{S}$.

Proof. Applying the same method as the proof of Theorem 1, if there exists a positive real number r, 0 < r < 1 for which f(z) is univalent in |z| < r but f(z) is not univalent in $|z| \le r$, then there are four points such as the proof of Theorem 1, $z_1 = re^{i\theta_1}$, $z_2 = re^{i\theta_2}$, $z_3 = re^{i(2\pi - \theta_2)}$ and $z_4 = re^{i(2\pi - \theta_1)}$, $0 < \theta_1 < \theta_2 < \pi$ for which we have $f(z_1) = f(z_2)$ and $f(z_3) = f(z_4)$. From the hypothesis, the tangent line at the point $f(z_1)$ and $f(z_2)$ is the common tangent and it is the same for the points $f(z_3)$ and $f(z_4)$. Therefore, we have

$$\int_{\theta_{-}}^{\theta_{2}} \left(1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) \right) d\theta = -\pi$$

and

$$\int_{2\pi-\theta_2}^{2\pi-\theta_1} \left(1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right)\right) d\theta = -\pi,$$

where $z = re^{i\theta}$.

From the hypothesis (2) and the same reason as the proof of Theorem 1, we have $f'(z) \neq 0$ in E.

From the hypothesis (2), we have

$$\int_{|z|=r} \left(1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right)\right) d\theta = 2\pi$$

$$= \int_{\theta_1}^{\theta_2} \left(1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right)\right) d\theta + \int_{\theta_2}^{2\pi - \theta_2} \left(1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right)\right) d\theta$$

$$+ \int_{2\pi - \theta_2}^{2\pi - \theta_1} \left(1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right)\right) d\theta + \int_{2\pi - \theta_1}^{2\pi + \theta_1} \left(1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right)\right) d\theta$$

$$< -\pi + \int_{\theta_2}^{2\pi - \theta_2} 2d\theta - \pi + \int_{2\pi - \theta_1}^{2\pi + \theta_1} 2d\theta$$

$$= \left\{4\pi - 2(\theta_2 - \theta_1)\right\} - 2\pi$$

$$< 4\pi - 2\pi = 2\pi.$$

This is a contradiction and so, it completes the proof.

Remark. A function $f(z) \in \mathcal{A}$ is typically real in \mathbb{E} if $(\operatorname{Im} f(z))(\operatorname{Im} z) > 0$ for $\mathbb{E}/\mathbb{R} = \{z \mid z \in \mathbb{E} \cap z \notin \mathbb{R}\}$. In Theorem 1, if f(z) is typically real and satisfies (1), then the conclusion continues to hold true.

References

[1] S. Ozaki, On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku 4(1941), 45 - 86.

Mamoru Nunokawa
Emeritus Professor of University of Gunma
Hoshikuki-Cho 798 - 8
Chuou-Ward, Chiba City 260 - 0808, Japan
E-mail: mamoru_nuno@doctor.nifty.jp