Geometric properties of certain analytic functions with real coefficients

Hitoshi Saitoh

Deppertment of Mathematics, Gunma National College of Technology, Maebashi, Gunma 371-8530, Japan saitoh@nat.gunma-ct.ac.jp

Abstract

Let \mathcal{T} be the class of analytic functions with real coefficients in the open unit disk U. For f(z) belonging to the class \mathcal{T} , some sufficient conditions for starlikeness and convexity are discussed. Furthermore, for f(z) in the class \mathcal{T} , we prove the starlikeness of f(z) having property $\text{Re}\{f'(z)\} > 0$.

2000 Mathematical Subject Classification: 30C45
Key words and phrases: Univalent function, Starlike function, Convex function,
Close-to-convex function, Libera transform

1 Introduction

Let A be the class of functions

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$.

We denote by S, S^* , K and C the subclasses of A whose members map U onto domain which are univalent, starlike, convex and close-to-comvex.

A function $f(z) \in \mathcal{A}$ is said to be starlike of order α $(\alpha < 1)$ in \mathbb{U} if and only if

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (z \in \mathbb{U}).$$

Similarly, $f(z) \in \mathcal{A}$ is said to be convex of order α ($\alpha < 1$) in \mathbb{U} if and only if

(1.3)
$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \alpha \qquad (z \in \mathbb{U}).$$

We shall denote by $S^*(\alpha)$ and $K(\alpha)$ the subclassses of A whose members satisfy (1.2) and (1.3), respectively.

It is known that for $0 \le \alpha < 1$, $\mathcal{S}^*(\alpha) \subset \mathcal{S}^*$, $\mathcal{K}(\alpha) \subset \mathcal{K}$ and that $\mathcal{S}^*(0) \equiv \mathcal{S}^*$, $\mathcal{K}(0) \equiv \mathcal{K}$. Chichra [2] showed that for $f(z) \in \mathcal{A}$ and $\alpha \ge 0$ the following implication holds in \mathbb{U} :

(1.4)
$$\operatorname{Re}\{f'(z) + \alpha f''(z)\} > 0 \Rightarrow \operatorname{Re}f'(z) > 0.$$

On the other hand, Singh and Singh [13], Mocanu [5] have the following results for $f(z) \in \mathcal{A}$, respectively.

(1.5)
$$\operatorname{Re}\left\{f'(z) + zf''(z)\right\} > -\frac{1}{4} \Rightarrow \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0,$$

(1.6)
$$\operatorname{Re}\left\{f'(z) + \frac{1}{2}zf''(z)\right\} > 0 \Rightarrow \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0.$$

Furthermore, Salagean [11] defined N the class of functions with negative coefficient, that is,

(1.7)
$$\mathcal{N} = \left\{ f(z) \in \mathcal{A} | f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \ a_n \ge 0 \right\}$$

and obtained the following implications that are that if $f(z) \in \mathcal{N}$ in \mathbb{U} , then

(1.8)
$$\operatorname{Re}\left\{f'(z) + zf''(z)\right\} > -1 \Rightarrow \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0,$$

(1.9)
$$\operatorname{Re}\{f'(z) + zf''(z)\} > 0 \Rightarrow \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \frac{1}{2}.$$

2 Pleliminaries

Recently, we prove the following Lemma in [9].

Lemma 1. [9, Nunokawa et al] Let $f(z) \in A$ and suppose that

(2.1)
$$\operatorname{Re}\{f'(z) + \alpha f''(z)\} > -\frac{\alpha}{2} \quad \text{in } \mathbb{U}$$

for some α ($\alpha > 0$). Then we have Ref'(z) > 0 in \mathbb{U} .

Next lemma was given by Nunokawa in 1993.

Lemma 2. [8] Let p(z) be analytic in \mathbb{U} , p(0) = 1, $p(z) \neq 0$ in \mathbb{U} and suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$|\arg p(z)| < \frac{\pi \alpha}{2}$$
 for $|z| < |z_0|$

and

$$|\arg p(z_0)| = \frac{\pi \alpha}{2}$$

where $\alpha > 0$. Then we have $\frac{z_0 p'(z_0)}{p(z_0)} = ik\alpha$ where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right)$$
 when $\arg p(z_0) = \frac{\pi \alpha}{2}$

and

$$k \leq -\frac{1}{2}\left(a+\frac{1}{a}\right)$$
 when $\arg p(z_0) = -\frac{\pi\alpha}{2}$

where

$$p(z_0)^{\frac{1}{\alpha}}=\pm i\alpha, \ and \ a>0.$$

Let us define T the class of analytic functions with real coefficients, that is,

(2.2)
$$\mathcal{T} = \left\{ f(z) \in \mathcal{A} | f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ a_n \in \mathbb{R} \right\}$$

where R is the set of real numbers. Then it follows that

$$\mathcal{N} \subset \mathcal{T} \subset \mathcal{A}$$
.

In [9], we have the following theorem.

Theorem A. [9] Let $f(z) \in \mathcal{T}$ and suppose that

$$\operatorname{Re}\{f'(z) + \alpha z f''(z)\} > 0$$
 in \mathbb{U}

where $\alpha \geq 1$. Then we have

$$1 + \operatorname{Re}\left\{\frac{zf''(z)}{f'(z)}\right\} > \frac{\alpha - 1}{\alpha} \quad \text{in } \mathbb{U},$$

or f(z) is convex of order $\frac{\alpha-1}{\alpha}$.

Remark 1. Putting $\alpha = 1$ in Theorem 1, we have

$$\begin{split} &f(z)\in\mathcal{T},\quad \operatorname{Re}\{f'(z)+zf''(z)\}>0\\ &\Rightarrow 1+\operatorname{Re}\left\{\frac{zf''(z)}{f'(z)}\right\}>0 \qquad (z\in\mathbb{U})\\ &\Rightarrow \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\}>\frac{1}{2} \qquad (z\in\mathbb{U}). \end{split}$$

Let \mathcal{P}' be the subclass of \mathcal{A} whose members f(z) satisfy $\operatorname{Re} f'(z) > 0$ in \mathbb{U} . It is well-known that \mathcal{P}' is a subclass of \mathcal{C} whose elements are close-to-convex in \mathbb{U} .

3 Main results

Theorem 1. Let $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ be analytic in \mathbb{U} and all coefficients p_i are real numbers. Suppose that

(3.1)
$$\operatorname{Re}\{p(z) + \alpha z p'(z)\} > 0 \quad \text{in } \mathbb{U}$$

where $\alpha \geq 1$. Then we have

(3.2)
$$1 + \operatorname{Re}\left\{\frac{zp'(z)}{p(z)}\right\} > 0 \quad \text{in } \mathbb{U}.$$

Proof. Using assumption (3.1) and Lemma1, we have

$$Re\{p(z)\} > 0$$
 in \mathbb{U} .

Therefore, we hae

(3.3)
$$\left|\arg p(z) + \arg\left(1 + \alpha \frac{zp'(z)}{p(z)}\right)\right| < \frac{\pi}{2} \quad \text{in } \mathbb{U}.$$

for a sufficiently small and positive ϵ , there exists a point $z_1 \in \mathbb{U}$ such that

$$|\arg p(z)| < \frac{\pi}{2}\epsilon$$
 for $|z| < |z_1|$

and

$$|\arg p(z_1)| = \frac{\pi}{2}\epsilon,$$

then from Lemma 2, we have

$$\frac{z_1 p'(z_1)}{p(z_1)} = i\epsilon k$$

where

$$k \ge 1$$
 when $\arg p(z_1) = \frac{\pi}{2}\epsilon$

and

$$k \leq -1$$
 when $\arg p(z_1) = -\frac{\pi}{2}\epsilon$.

Then it follows that for the case $\arg p(z_1) = \frac{\pi}{2}\epsilon$, we have

(3.4)
$$\arg\left(1+\alpha\frac{z_1p'(z_1)}{p(z_1)}\right)=\arg(1+i\alpha\epsilon k)$$

$$= \tan^{-1} \alpha \epsilon k \ge \tan^{-1} \alpha \epsilon > 0.$$

And for the case $\arg p(z_1) = -\frac{\pi}{2}\epsilon$, we also have

(3.5)
$$\arg\left(1 + \alpha \frac{z_1 p'(z_1)}{p(z_1)}\right) = \arg(1 + i\alpha \epsilon k)$$
$$= \tan^{-1} \alpha \epsilon k \le \tan^{-1}(-\alpha \epsilon) < 0.$$

From the assumption of Theorem 1, the image domains of the open unit disk \mathbb{U} under the mapping w = p(z) and $w = 1 + \alpha \frac{zp'(z)}{p(z)}$ are symmetric with respect to the real axis. Therefore, from above properties (3.4) and (3.5), it shows that the image domains of the open unit disk \mathbb{U} under the mapping w = p(z) and $w = 1 + \alpha \frac{zp'(z)}{p(z)}$ are the same side of the complex plane which is devided into two parts by the real axis.

Now then, if there exists a point $z_0 \in \mathbb{U}$ such that

$$\left| \arg \left(1 + \alpha \frac{zp'(z)}{p(z)} \right) \right| < \frac{\pi}{2} \quad \text{for } |z| < |z_0|$$

and

$$\left| \arg \left(1 + \alpha \frac{z_0 p'(z_0)}{p(z_0)} \right) \right| = \frac{\pi}{2},$$

then for the case

$$\arg\left(1+\alpha\frac{z_0p'(z)}{p(z)}\right)=\frac{\pi}{2}$$

we have $\arg p(z_0) > 0$. This contradicts (3.3) and for the case

$$\arg\left(1+\alpha\frac{z_0p'(z_0)}{p(z_0)}\right)=-\frac{\pi}{2},$$

we have $\arg p(z_0) < 0$. This contradicts (3.3) and therefore, we have

$$1 + \alpha \operatorname{Re} \frac{zp'(z)}{p(z)} > 0 \quad \text{in } \mathbb{U}.$$

Letting p(z) = f'(z), we have Theorem A. Furthermore, putting $p(z) = \frac{f(z)}{z}$ for $f(z) \in \mathcal{A}$, we have

Corollary 1. Let $f(z) \in \mathcal{T}$ and suppose that

$$\operatorname{Re}\left\{(1-lpha)rac{f(z)}{z}+lpha f'(z)
ight\}>0 \qquad (z\in\mathbb{U})$$

and $\alpha \geq 1$. Then we have

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \frac{\alpha - 1}{\alpha}$$
 $(z \in \mathbb{U}),$

that is, f(z) is starlike of order $\frac{\alpha-1}{\alpha}$.

Remark 2. In 1962, Krzyz [3] gave an example of a function $f(z) \in \mathcal{P}'$ such that $f(z) \notin \mathcal{S}^*$

However, in the case of $f(z) \in \mathcal{T}$, we have

Theorem 2. Let $f(z) \in \mathcal{T}$. If $\operatorname{Re} f'(z) > 0$ in \mathbb{U} , then we have $f(z) \in \mathcal{S}^*$.

Proof. Putting $\alpha = 1$ in Corollary 1, we prove Theorem 2.

Using our results, we have many starlike functions and convex functions.

Example 1. Let $f(z) \in \mathcal{T}$ and $\alpha \geq 1$. If

$$f'(z) + \alpha z f''(z) = \frac{1+z}{1-z},$$

then we have

$$f(z) = z + \sum_{n=2}^{\infty} \frac{2}{n(1+(n-1)\alpha)} z^n \in \mathcal{K}\left(\frac{\alpha-1}{\alpha}\right).$$

Example 2. Putting $\alpha = 1$ in Example 1, we have

$$f(z) = z + \sum_{n=2}^{\infty} \frac{2}{n^2} z^n \in \mathcal{K}, \qquad |f(z)| < \frac{\pi^2 - 3}{3} = 2.289 \cdots$$

Example 3. Let $f(z) \in \mathcal{T}$ and $\alpha \geq 1$. If

$$(1-\alpha)\frac{f(z)}{z} + \alpha f'(z) = \frac{1+z}{1-z},$$

then we have

$$f(z) = z + \sum_{n=2}^{\infty} \frac{2}{1 + (n-1)\alpha} z^n \in \mathcal{S}^*\left(\frac{\alpha-1}{\alpha}\right).$$

Example 4. Letting $\alpha = 1$ in Example 3, we have

$$f(z) = z + \sum_{n=2}^{\infty} \frac{2}{n} z^n \in \mathcal{S}^*.$$

Next result is well-known. Let

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \qquad (c > -1)$$

that is, Libera transform. If $f(z) \in \mathcal{P}'$, then $F(z) \in \mathcal{P}'$.

A natural question arise, that is, If $f(z) \in \mathcal{P}'$, is the Libera transform of f(z) starlike in

U?

Singh and Singh [12] answered.

Theorem B. ([12]) If $f(z) \in \mathcal{P}'$, then the function F(z), defined by

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \qquad (c > -1)$$

belongs to S^* for all $c (-1 < c \le 0)$.

We consider the next question, that is,

"If $f(z) \in \mathcal{T}$ and Re f'(z) > 0, is the Libera transform of f(z) convex in \mathbb{U} ?"

Theorem 3. $f(z) \in \mathcal{T}$ and Re f'(z) > 0, then the function

(3.6)
$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \qquad (c > -1)$$

belongs $\mathcal{K}(-c)$ for all c $(-1 < c \le 0)$.

Proof. By diffentiating (3.6), we have

$$F'(z) + \frac{1}{c+1}zF''(z) = f'(z).$$

Therefore,

$$\operatorname{Re}\left\{F'(z) + \frac{1}{c+1}zF''(z)\right\} = \operatorname{Re}f'(z) > 0$$

and $\frac{1}{c+1} \ge 1$ $(1 < c \le 0)$. Using Theorem A, we have

$$1 + \operatorname{Re}\left\{\frac{zF''(z)}{F'(z)}\right\} > -c \qquad (0 \le -c < 1).$$

That is, $F(z) \in \mathcal{K}(-c)$.

Putting c = 0 in Theorem 3, we have

Corollary 2. If $f(z) \in \mathcal{T}$ and Re f'(z) > 0, then the function

$$g(z) = \int\limits_0^z \frac{f(t)}{t} dt$$

belongs to K, that is, $g(z) \in K$.

To prove our next result, we prepare the following lemma due to Owa and Nunokawa [10].

Lemma 3. [10] Let p(z) be analytic in \mathbb{U} with p(0) = 1, $p'(0) = \cdots = p^{(n-1)}(0) = 0$. If $\text{Re}\{p(z) + \alpha z p'(z)\} > \beta$ $(z \in \mathbb{U})$,

then

$$\operatorname{Re}\{p(z)\} > \beta + (1 - \beta) \left\{ 2 \int_0^1 \frac{1}{1 + \rho^{n\operatorname{Re}(\alpha)}} d\rho - 1 \right\} \qquad (z \in \mathbb{U})$$

where $\alpha \neq 0$, $Re(\alpha) \geq 0$ and $\beta < 1$.

Letting $\beta = 0$, n = 1 in Lemma3, and applying Theorem 3, we can prove next Theorem.

Theorem 4. If $f(z) \in \mathcal{T}$ and Ref'(z) > 0, let the function F(z) given by (3.6), then we have

$$\operatorname{Re} F'(z) > 2 \int_0^1 \frac{1}{1 + \rho^{\frac{1}{c+1}}} d\rho - 1 > 0.$$

Putting c = 0 in Theorem 4, we have

Corollary 3. If $f(z) \in \mathcal{T}$ and Ref'(z) > 0, and let the function

$$g(z) = \int_0^z \frac{f(t)}{t} dt,$$

then we have

$$\operatorname{Re} g'(z) > 2\log 2 - 1.$$

Letting c = 1 in Theorem 4, we can get

Corollary 4. If $f(z) \in \mathcal{T}$ and Ref'(z) > 0, and let the function

$$s(z) = \frac{2}{z} \int_0^z f(t)dt,$$

then we have

$$Res'(z) > 3 - 4 \log 2.$$

References

[1] S. D. Bernardi, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 24(1970), 312 - 318.

- [2] P. N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62(1977), 37 43.
- [3] J. Krzyz, A counterexample concerning univalent functions, Mat. Fiz. Chem. 2(1962), 57 58.
- [4] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755 758.
- [5] P. T. Mocanu, New extensions of a theorem R. Singh and S. Singh, Mathematica (Cluj). 37(60)(1995), 171 182.
- [6] P. T. Mocanu, On starlikeness of Libera transform, Mathematica (Cluj). 28(51)(1986), 153-155.
- [7] M. Nunokawa, On properties of Non-Caratheodory functions, Proc. Japan. Aced. Ser. A 68(1992), 152 - 153.
- [8] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan. Acad. Ser. A 69(1993), 234 237.
- [9] M. Nunokawa, S. Owa, J. Nishiwaki and H. Saitoh, Sufficient conditions for starlikeness and convexity of analytic functions with real coefficients, (to appear) Southeast Asian Bull. Math.
- [10] S. Owa and M. Nunokawa, Applications of subordination theorem, Jour. Math. Anal and Appl. 188(1)(1994), 219 226.
- [11] G. S. Salagean, Sufficient conditions for starlikeness and convexity of analytic functions with negative coefficients, Mathematica. Tome. 47(70), 2(2005), 209 216.
- [12] S. Singh and R. Singh, Starlikeness of close-to-convex functions, Indian J. pure appl. Math. 13(2)(1982), 190 194.
- [13] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106(1)(1989), 145 152.