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1. Introduction

Russian option was introduced by Shepp and Shiryaev [6], [7] and is one of perpetual American
lookback options. In Russian option the buyer has the right to exercise it at any time. On
the other hand, in callable Russian option not only the buyer but also the seller has the right
to cancel it at any time. This option is formulated as coupled optimal stopping problem. See
Cvitanic and Karatzas [1] Kifer [2].

Kyprianou [5] derived the closed-form solution in the case where the dividend rate is zero.
Suzuki and Sawaki (8] gave the pricing formula with positive dividend. Kou and Wang [4] gave
the closed form for the value function of perpetual American put options without dividend and
so on. Suzuki and Sawaki [9] derived the pricing formula of non-callable Russian option for
double exponential jump diffusion processes.

In this paper, we deal with callable Russian options. A callable Russian option is a contact
that the seller and the buyer have the rights to cancel and to exercise at any time, respectively.
We present the pricing formula of callable Russian options for double exponential jump diffusion
processes. The pricing of such an option can be formulated as a coupled optimal stopping
problem which is analyzed as Dynkin game. We derive the value function of a callable Russian
option and its optimal boundaries. Also some numerical results are presented to demonstrate
analytical sensitives of the value function with respect to parameters.

This paper is organized as follows. In section 2 we introduce a pricing model of callable
Russian options by means of a coupled optimal stopping problem given by Kifer [2]. Section
3 presents the value function of callable Russian options for double exponential jump diffusion
processes. Section 4 presents numerical examples to verify analytical results. We end the paper
with some concluding remarks and future work.

2. Pricing model
In this section we consider the pricing model for the callable Russian option. Let B(t) be the

process of the riskless asset price at time t defined by B(t) = B(0)e™, where r is positive
interest rate. Let W (t) be a standard Brownian motion and N(t) be a Poisson process with the
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intensity A. Let J; denote i.i.d. positive random variables. Y; = log J; has a double exponential
distribution and its the density function is given by

f(y) = pme "Y1 50y + qn2e™V 11 <o)

where 71 > 1,72 > 0 and 0 < p,¢ < 1 such that p+ ¢ ='1. Under a risk-neutral probability, the
process of the risky asset price S(t) at time ¢ satisfies the stochastic differential equation

N(t)
-;-(‘?% pdt + kdW (t +d(Z(J—1 (2.1)

where u and x > 0 are constants. Define another probability measure P as

p—r+d+ A
K 4

dp 1,
Pls = exp{—bW(t) - §b t} , b=
where d is the positive continuous dividend rate of the risky asset, F; = a(W(s), N(s), {Ji})

and

m an2
=FJi]-1= + -
¢ =Bl m-—1 mn+l

By Girsanov’s theorem, W (t) = W (t) — bt is a Browman motion with respect to P.
We can rewrite (2.1) as

N(1)
df't(t)) (r = d = AC)dt + mdW (t) +d( 3 (J; 2.2)
=1

Solving (2.2) gives S(t) = S(0) exp X (t), where
N(t)

X(t)-(r—d-——n —,\C)t+nW +ZY

Let V(v) be a function of class C?. Then the infinitesimal generator £ of the process S(t) is
given by

LV(v) = %n2v2V”(v) F(r=d= AoV (v) + A /_ * (V(ve¥) = V(v)) f(v)dy
for all v > 0.

Next we introduce the four real numbers 31, 82, 83, 64 Kou and Wang (2003) showed that
the equation G(0) = « for all & > 0 has the solutions 831, Be, —f3, —fB4, where

_ g la 1o <p771 qane )
G(G)—G(r d 5k )\C)+20n + A ‘771"9+ — -1

And the four solutions satisfy

0<Bhi<m<PBa<oo, 0<fB3<m<pfs<o0.

Remark 2.1. When the dividend rated =0, 8; = 1.
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Define the process

U(t) = max(vs, sup S(u))/S(¢), S(0)=s,v>1.
0<ust

Then the value function of non-callable Russian options is given by
Vr(v) = sup E[e™""¥(r) | ¥(0) =],
T
where the supremum is taken for all stopping times 7.
Theorem 2.1. (Suzuki and Sawaki [9]) The value function V(v) of Russian option is given by

A(v))vPt + B(v;)vP? + C(v)v=? + D(v v‘m, 1<v<wv
VR<v>={v,( D + Blun)v® + C(vn) (o, 1<v <

The coefficients are determined by

Alv)) = (ﬂ(Zl- I; /)8(1;?)1—316 ) {(ﬂ2 —nl)(ﬁi + 1)'01 _ (B2 +7,;‘]41_(%1— ﬁS)Dvl—m}
1 3 2 — M1 1 —
B(v)) = (ﬂ(ﬂ2 ; ;g;vff; ; {(51 —nl)(ﬂf + 1)’01 _ (61 +Ti4lfﬁﬁ44— B3) Dvl_ﬂ‘}
2 — Ml 2 3 1 —
_ B (B -)(B=1)  (Bi+B)(Ba+Ba) - g
Cln) = (B1 + B3)(B2 + B3) { nm -1 b ™ + Ba Dv, }

and

A(vy) B(v1) C(uv1) D(vy)
m+m+m+&+m—&+m—m

Moreover, the optimal boundary v, is the solution in (1,00) to the equation
A(v)B1 + B(v)B2 — C(v)Bs — D(v)Bs =0

and the optimal stopping time is given by

0.

F=inf{t > 0| ¥(t) > v1}.

3. Callable Russian options

We assume that p = 1 and ¢ = 0. It means that the jump is down only. Then we can express
G(0) as ‘

- g L2 _ 142,02 <_"7i_._1)
G(O)—O(r d- 5 )\C)+29n+)\ —

and the equation G(6) = r has three solutions 3y, 82, — 84, which satisfy
1<Bi<m<Pa<oo, 0<fy<o0.

Let o denote a cancel time for the seller and 7 an exercise time for the buyer. If the seller cancels
the contract, the buyer receives ¥(o) + § from the seller. We can think of § > 0 as the penalty
cost for the cancel. On the other hand, if the buyer exercises it, (s)he receives ¥(7) from the
seller. Therefore, the payoff function is given by

(\I’(U) + 6)1{a<-r} + \I’(T)l{‘rSa}'
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Let 75,0 denote the set of all stopping times with values in the interval [0, 00]. Then the value
function V*(v) of the callable Russian option is defined by

V*(v) = inf sup J(o,T1,v), (3.1)

0€70,00 T7€70,00
where _
J(o,7,v) = Ele™ " {(¥(0) + 8)1{g<r} + U(T)1{r<o1} | T(0) = ).
And the function V*(v) satisfies the inequalities
v V*(v) v+,

which provides the lower and the upper bounds for the value function of the callable Russian
option.
We define two sets A and B as
A = {veR"|V(@) =v+6}
B = {veR*|V()=uv}.
A and B are called the seller’s cancel region and the buyer’s exercise region, respectlvely Then
the two optimal stopping times are given by

oca = inf{t>0]¥(t) € A},
T8 = inf{t > 0| ¥(t) € B}.
Then for any v, & = 04 and 7 = 7 attain the infimum and supremum in (3.1), i.e., we have
V*(v) = J(6,%,v).
The pair (6, 7) is the saddle point of J(o, T, v).

Remark 3.1. The seller minimizes the payoff function and ¥(¢t) > ¥(0) = v > 1. From this, it
~ follows that the seller’s optitnal cancel region is {1}.

Lemma 3.1. Suppose that r—d—1x%—X( > 0. Then the function V (v) is Lipschitz continuous
and its Radon-Nikodym derivative satisfies

0<V'(v) L1, ae v (3.2)

Proof. Since 6,7 and ¥(t) depends on the initial value v, we write them as 6,7V and ¥(t,v).
Replacing the optimal stopping times 7V by another stopping time 7%, we get the inequalities

V(v) < J(6%,%,v), V(u) 2> J(6% 7", u).
Note that 27 — z§7 < (21 — 22)* for any 21,20 € R. For any v > u, we have
0 < V(v) - V(u)
J(&%, 7%, v) J(““ PV u)
Ele~o®*" M) (@(8% A $Y,0) — B(6% A7V, 1)) |
E[e 2" M) H-1(5% A #¥){(v — sup H,)* — (u — sup Hy)*}]

]

< (v-wECI (6" A1)
< v-u,
where H(t) = exp X (t). Therefore, we obtain
0< M <1.
v-u

This means that V(v) is Lipschitz continuous and satisfies (3.2). a
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If the penalty § is too large, the seller never cancels. How large 4 is it?

Lemma 3.2. Set §* = Vr(1) — 1. If the penalty § > §*, the seller never cancels. In other words,
the callable Russian option is reduced to Russian option.

Proof. Consider the function U(v) = Vg(v) — v — . Since it holds U’(v) < 0 by Lemma 3.1 and
U(1) = 6" ~ 6 <0, we have Vg(v) < v+ 6. Hence, it follows that V*(v) < v+ & because it holds
that V*(v) < Vr(v). O

We introduce the function for vy = €% > 1

o B: -8B
V(v)={Av1+sz+CU 4, 1<v<y (3.3)

v, v 2 vp.

We set v = €® and V(v) = V(&) = V(z). In what follows, we determine the coefficients 4, B, C
and e®. In order to determine the coefficients, we prepare the conditions. By value matching
condition, we have

AeP170 | BeP2®o | Ce=Pazo — %o

and by smooth pasting condition, we have
AByePr™ + Bpyefr™0 — Ofye R0 = %0,

We can get the last condition by using the infinitesimal generator £ of the process X (t) given
by

£V(@) = 387" (@) + (r = d= 382 =XV @) + A [ (V@ +4) - V() )y

for all v > 0. For z < zp, we obtain

/O; V(z +y)f(y)dy

= / zo_z( Aefr(@+y) | BePa(z+y) Ce‘ﬁ“(“""”))nle"’”ydy + = e“Hne MVdy
0 To—IT
B c )
= Bz B2z —~Baz
= e + ——e™*" 4+ ——e
m (771",31 m — B2 M + Ba

—ne~M(@o-z) ( efrzo eb2zo 4 __.C_...e"ﬁﬂo _ ) )
m =B m ~ B2 m + Bs m-1

From this, we obtain
(L-r)V(z)
1
= Aef® (%B% +B(r—d— %f& - ,\c)) + BePe® (%ﬁ% + Ba(r —d - §n2 - ,\g))

+0e™84 (3(=80)" = Bu(r - d = 26 = X0))

3 [ Vi@ - 0+ )7 (@)

= AeP7g(By) + Be"7g(f;) + Ce™*=g(—,)

' C e*o
—Apm e—m(z0—7) ( ebrzo ePexo |~ —Pazo _ ___) ,
P m— A m — B2 7 + B4 m-—1
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where g(z) = G(—z) —r. By Lemma 2.1 in Kou and Wang [3], we have g(8;) = g(82) = 9(B4) =
0. Since (£ — r)V(z) = 0 holds, we get the condition

B C e®o
Brzo B2xo —Bazo —
- e + ——e + —e — =0 3.4
m— A m — B2 m + Ba m—1 (34)
Lemma 3.3. Solving the following equations
» AePizo | BeP2zo + Ce~Pazo = 20
AB1eP1%0 4 BB,eP2%0 — OB e Pato — g0
A C e*o -
Brzo B2z0 —Bazo _
€ + el 4 € =
m— b m — e m + Ba m—1
gives the solutions
4 = Mm=B)B-1Be+Y) gz
(m —1)(B1 + Ba)(B2 — B1)
B = Lo—m)Bri=1Be+]) gy

(m —1)(B2 + B4)(B2 — B1)
C = (m +B)(B2 = 1)(B1 = 1) e(1+84)z0
(m = 1)(B1 + B4)(B2 + Ba) '

Since the coefficients A, B, C depend on g, we denote them as A(zo), B(zo) and C(zp). The
number vy = e*° given by (3.3) satisfies the equation '

A(z9)eP120 + B(z0)e?™0.+ C(zg)e™P4%0 = 6 + 1.
In the remainder of this section, we discuss the case where p,q > 0. We set a function V (v)

V() = AvPt + BvP2 + Cu=8 4 Du=P4 1< v <y
1 v, v > 1.

By value matching condition and smooth pasting condition, we have
AePriTo o BePro 4 Ce—Rszo 4 De=Pamo = g0
A,Ble’gl"”” + Bﬂgeﬁ”" - C’ﬁ3e_ﬁ3m° - Dﬁ4e’ﬂ4“° = %0

respectively. For 1 < = < zp, we have

[ e+ nraay

0
— / (Aeal(x-g-y) + BeP2(E@+y) 4 Ce—Ps(z+y) 4 De‘ﬁ"(x'*'y))qnzemydy .
T1i—x .
+ / P (AA D) 4 Befaaty) 4 Cemh@y) 4 Demfa(aHY))pmy MY gy
000
" e Hpme~ MY dy

To—-2

phz B22 —3ax —Bazx
e e + ———e + ———e¢ )
e+ 61 n2 + B2 12 — B3 N2 — B4

B p C D
—gmyem(@1=T) ( oy B e O pue ____e-ﬁ4x1>
m 2 + B n2 + B2 n2 — O3 12 — B4

- o




B C ' _ )
Bz B2z — B3z Bax
e _|.. ——— .+_ —_ + e
m— 5 m — B2 m + B3 m + B4

+pm <

6[31 zo 4 B eﬂ?ﬂ) +

eTo

+pnle_n1 (mo—m) .
m—1

Therefore, we obtain
(L -r)V(z)

= Ak (301 (r-d-2e - 2008)
+Bef® (%,33 +r—d= 2w~ Ac)ﬂz)
+0e (L=0) + (r — d =~ 262 = XO)(~65) )
£De e (=00 + a3 - 30(-50)

2 [~ Ve +pf@dy - 0+ 1))

= AeP%g(B1) + Be”®g(B;) + CePo"g(—f3) + De~P4=g(—By)

—B3xo e—ﬁwu)
m — B n — B2 m + B3 m + Ba

ea:o

A\pm e~ M (zo—2) (Aeﬁm Befaro  Cerfsm | De s
- 1

7 n+b m+B m-—B n2-p

Since (£ —r)V(z) =0 for z; < = < 7 , we can get

ehrzo 4 ;_B_eﬁzwo + e Pszo 4 D e~ Pazo _ e = 0
m-—55 m — B2 m + B3 m + Pa m-1
Pz + Leﬁzzl + c e Pz + _____l_)___e—ﬁwl = 0.

n2 + B n2 + B2 m2 — B3 n2 — PB4
Lemma 3.4. Solving the equations yields

AePr12o | BeP2mo 4 Cle=Bszo | pe—Fazo

Aﬂleﬁwo + Bﬁze[}zxo _ 0,336"'33% _ Dﬁ4e_ﬁ4z°
C D
Bizo B2zo —B3zo —Bazo
e + + ——e —e =
m— 56 m — B2 m + Bs m + Ba

‘the solutions

+ + + ~
m—PF m-B2 m+B m+Bs m-1
AeP1T1 Befrri Ce—F3T1 De—Pam1 )

+ .

e*o

e

e¥o

m-—1

4 = m- Br)e~Fro {(52 ~1)(Bs + 1) 20 _ (B2 + B4)(Ba — ﬁa)De—mzo}

(B + B3)(B2 — B1) m—1 m + Ba

5 _ _(B—m)eh {(ﬂl — VB +1) o _ (Br+Ba)(Bs — Bs) De‘f"""}

(B2 — B1) (B2 + Ba) m—1 m + Ba
__(m+Ba)e®™ (B -1){Ba~1) ;0 (Bi+B)(B2+B4) f —pizo
¢ = (B + B3)(B2 + Bs) { m -1 ¢ m + Ba De } '

And the solutions of the equations

ePrzr + B et + ¢ e P31 + D

. > ___e—ﬁwl
2 + 51 n2 + B2 N2 — O3 M2 — B4

A+B+C+D-6-1 = 0

45
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are given by

_ _Mm+Bi [Ba+ B, B2t

A = ﬂ2~ﬂ1{722—53C+772—.34D+6+1}
_ M+ 0Be (Bi+ 06 B+ B

B = 52—ﬁ1{772—[330+n2—ﬂ4D+6+1}'

By the above lemma, we can determine the coefficients A, B, C, D and vg.

4. Main Theorem

In this section we give the main theorem. In order to prove it, we needs the following lemmas.

Lemma 4.1. Assume that a function V(v) has the following properties.

1. (L-7r)V(v) L0, forv > vg.

2. It holds (£ — r)V(v) =0 and V(z) satisfiesv < V(v) <v+4 for 1 < v < .

3. At v =-vy we have V'(vg—) = V'(vo+).
Then, V is the value function of callable Russian options with dividend, i.e., V* = V holds. The
optimal ezercise region is the interval [vg,00) and the optimal cancel region is {1}.

In what follows we will explore the properties of the function V'(v) in Lemma 4.1.
Lemma 4.2. For v > vy the function V(v) satisfies
(L-r)V(v)<O.

Proof. Since V(a:) = e for ¢ > xo, we have

[« <IN [o <] T
/ V(z+y)f(y)dy = / mest-mvgy = A2
0 0 , m-1

Hence, we obtain

(£ - nW(z) = l;-e"’ez +(r—d- -1—n2 - X()e” + -—/\—nL—em —(A+7r)e®
2 2 m-=1
= —de® <0.
That is, it holds (£ - r)V(v) < 0. O

Lemma 4.3. For 1 < v < vy the function V(v) satisfies (C — r)V(v) =0 and
v< V) <v+4d.

Proof. The former assertion is known. We will show the latter one. The second derivative
of V(v) is nonnegative because 81,82 > 1 and A,B,C > 0. It follows that V is a convex
function. Since V(v) is a convex function, V’(v) is increasing. From this, we can see that
V/(v) < 1for 1 < v < vg. By the boundary conditions V(1) = § + 1 and V(vg) = vg, we have
v< V() <v+4. a

Lemma 4.4. Set :
h(v) =6 + 1 — A(v)v? — B(v)v®? — C(v)v~%, (4.1)

Then the equation h(v) = 0 has the unique solution in the interval (1, 00).
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Proof. By (4.1), a direct computation yields

A1) = 6+1
(m=B)B=DBs+1)  Bo~m)Bri-1)(Bs+1) (m+B)B:—1)(B~1)

(Mm=1)(Br+B8)(B2=PB1) (m—1)(Ba+B)B2a~5) (m—1)(51+B2)(Ba+Ba)
= §>0.

Furthermore, Since h(0o) = —o0, h”(v) < 0 and h/(1) = 0, the equation h(v) = 0 has the unique
solution in (1, 00). O

Theorem 4.1. Let V*(v) denote the value function of the callable Russian option. If § > &*,

the value function is equal to non-callable Russian option, i.e. V*(v) = Vr(v). If § < 6., then
V*(v) is given by

SV (4.2)

Vi) = { Aol + B(uo)vP? + C(vg)v™P, 1< v <
(v) = v, v > v

and the optimal stopping times are given by

Q

= inf{t >0 | ¥(t) =1},
= inf{t >0 ]| ¥(t) > v}

=

The optimal boundary vy for the buyer is the unique solution to the equation
A(w)v®t + B(w)v? + C(zo)v ™ = 6 + 1.

Moreover, the function V (v) is also represented by

V(v) = B /0 et (r - LV (U(2))dt].

5. Numerical example

In this section we present some numerical examples which show that theoretical results are
varied and that some effects of the parameters on the price of callable Russian option. We set
r=01,d=009, k=03, p=1, ¢g=0, ;m =50, A= 3. Using these parameter, §* is 0.248.

Figure 1 shows that the optimal exercise boundary as the penalty § increases from 0.1 up to
6*. From the figure, we can see that the optimal boundary vy is increasing in the penalty 4.

Figure 2 demonstrates the value function of the callable Russian option with jumps. Dashed
lines represent § = 0.1,0.15 from the bottom. Real line represents § = 0.2. From this figure, we
can recognize that V(v) is convex and increasing in v.
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Figure 1: Optimal boundary for the buyer

Figure 2: The value function
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