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1 Introduction

Real options theory, pioneered by Brennan and Schwartz (1985), and McDonald and Siegel
(1986), and summarized in Dixit and Pindyck (1994), and higeorgis (1996), is a useful method-
ology for the economic evaluation and analysis of various investlnent projects under uncertainty.
In particular, the analysis of entry and exit problem is an important task in real options re-
search since the entry and exit model enables us to analyze the actual investment problems
as the start-up and shut-down of a power plant, the switching of production capacity, and the
suspension and restarting of an investment project.

The pioneering literature on entry and exit decision under uncertainty includes Brennan and
Schwartz (1985) and Dixit (1989). Many research groups have studied the extension of model
by using the Dixit model as a baseline model. Bar-Ilan and Strange (1996) introduce a model of
investment lags which is the time it takes to build the project. Boyarchenko and LevendorskiY
(2000) develop a discrete-time model taking into account non-Gaussian stochastic processes.
Zervos (2003) considers the operation problem with the abandonment of project. Sdal (2006)
discusses the entry and exit problems by use of a discount factor approach. Additionally, there
also exist the following application problems. Nas\"akk\"al\"a and Fleten (2004) analyze the invest-
ment and operating flexibility of gas-fired power plants. Wirl (2006) investigates a switching
problem of greenhouse gas emissions. Zhdanov (2007) examines the interactions between entry-
exit and financing decisions of firms in a competitive industry. Furthermore, Dixit (1988) extends
the entry-exit model by incorporating construction and scrapping decisions, and then Dixit and
Pindyck (1994) examine lay-up decisions for an oil tanker by using this entry-exit-scraPping
model. In these studies, two operating states of the mothballing and the operation have been
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analyzed. To our knowledge, more than three operating states and a operating state between
the mothballing and the operation, such as a partial operation, have not been investigated.

In this paper, we extend the entry-exit-scrapping model to allow for three operating states.
The dependence of switching thresholds on uncertainty and operating cost is investigated. Specif-
ically, we demonstrate the value of the investment option by comparing our proposed model with
the Dixit model. We also show the effect of the capacity in the partial operation on switching
thresholds. In addition, in order to examine the interactions between entry-exit-scraPping and
financing decisions, we propose a model for analyzing the investment policy of the firm which is
financed by issuing equity and debt.

The remainder of this paper is organized as follows. The next section describes the model
and derives the equations satisfied by the option value. Section 3 provides some numerical
results with respect to the effect of uncertainty and costs on each threshold value. In section 4,
we present a model in which the firm is partially financed with debt. Section 5 concludes.

2 The Model

Following Dixit (1988), we propose the entry-exit-scraPping model taking into account three
operating states such as a full operation, a partial operation, and a mothballing. The evolution
of the output prioe is assumed to follow a geometric Brownian motion:

$dP_{t}=\mu P_{t}dt+\sigma P_{t}dW_{t}$ , $P_{0}=p$ , (2.1)

where $\mu$ is the instantaneous risk-adjusted expected growth rate of $P_{t},$ $\sigma$ is the associated
volatility, and $W_{t}$ is a standard Brownian motion. We assume that the firm is risk-neutral, and
thus the appropriate discount rate is a risk-free rate $r>\mu$ .

Suppose that the firm has two states of the idle and operation which contains three states of
the full operation, the partial operation, and the mothballing. We also assume that the firm can
change the idle state and three operating states $Z_{t}\in\{0,1,2,3\}$ with a fixed cost. $Z_{t}=0,1,2,3$

represent the states of the idle, the full operation, the partial operation, and the mothballing,
respectively. The firm’s operation strategy is defined by the sequence of the pair of i-th switching
times $T_{i}$ and i-th switching operations. Therefore, the firm’s investment strategy $v$ is defined as
the following:

$v=(T_{i}, \zeta_{i})_{i\geq 0}$ , (2.2)

where $\zeta_{i}=Z_{T}$. is the control of the state. The profit functions in each state $\pi(P_{t};Z_{t})$ are given
by,

$\pi(P_{t};Z_{t})=\{\begin{array}{ll}0, Z_{t}=0,P_{t}-C. Z_{t}=1,\alpha(P_{t}-C), Z_{t}=2,-M, Z_{t}=3,\end{array}$ (2.3)

where $C$ is the operating cost, $0<\alpha<1$ is the rate of partial operation, $M$ is the maintenance
cost.
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The firm’s problem is to maximize the expected discounted value by selecting an optimal
control rule. The value function is expressed by the following equation:

$V(p;v)= \sup_{v\in \mathcal{V}}E[\int_{0}^{\infty}e^{-rt}\pi(P_{t};Z_{t})dt-\sum_{i=0}^{\infty}e^{-rT_{i}}K(Z_{T_{i}-}, Z_{T_{i}})1_{t^{T.\cdot<\infty\}]}},$ (2.4)

where $\mathcal{V}$ is the collection of admissible controls, and

$K(O, 0)$ $=$ $K(1,1)=K(2,2)=0$, (2.5)

$K(0,1)$ $=$ $K_{I}$ , (2.6)

$K(1,2)$ $=$ $K_{C2}$ , (2.7)

$K(2,3)$ $=$ $K_{C1}$ , (2.8)

$K(3,2)$ $=$ $K_{E1}$ , (2.9)

$K(2,1)$ $=$ $K_{E2}$ , (2.10)

$K(3,0)$ $=$ $K_{A}$ , (2.11)

are fixed costs to change each state.
Using standard method in the literature as Dixit and Pindyck (1994), it can be shown that

the value of idle state $V_{0}$ , the full operation $V_{1}$ , the partial operation $V_{2}$ , and the mothballing
$V_{3}$ must satisfy the following ordinary differential equations:

$\frac{1}{2}\sigma^{2}p^{2}V_{0}’’+\mu pV_{0}’-rV_{0}=0$ , (2.12)

$\frac{1}{2}\sigma^{2}p^{2}V_{1}’’+\mu pV_{1}^{j}-rV_{1}+p-C=0$ . (2.13)

$\frac{1}{2}\sigma^{2}p^{2}V_{2}’’+\mu pV_{2}’-rV_{2}+\alpha(p-C)=0$, (2.14)

$\frac{1}{2}\sigma^{2}p^{2}V_{3}’’+\mu pV_{3}’-rV_{3}-M=0$ , (2.15)

The general solutions of Eqs. $(2.12)-(2.15)$ are given by the following equatioms:

$V_{0}(p)=a_{1}p^{\beta_{1}}$ , (2.16)

$V_{1}(p)=a_{2}p^{\rho_{2}}+ \frac{p}{r-\mu}-\frac{C}{r}$ , (2.17)

$V_{2}(p)=a_{3}p^{\beta_{1}}+a_{4}p^{\beta_{2}}+ \frac{\alpha p}{r-\mu}-\frac{\alpha C}{r}$, (2.18)

$V_{3}(p)=a_{5}l^{1}+a_{6}p^{\beta_{2}}- \frac{M}{r}$ , (2.19)

where $a_{1},$ $a_{2},$ $a_{3},$ $a_{4},$ $a_{5}$ , and $a_{6}$ are unknown constants, and

$\beta_{1}=\frac{1}{2}-\frac{\mu}{\sigma^{2}}+\sqrt{(\frac{\mu}{\sigma^{2}}-\frac{1}{2})^{2}+\frac{2r}{\sigma^{2}}}>1$ , $\beta_{2}=\frac{1}{2}-\frac{\mu}{\sigma^{2}}-\sqrt{(\frac{\mu}{\sigma^{2}}-\frac{1}{2})^{2}+\frac{2r}{\sigma^{2}}}<0$ . (2.20)

Unlike the entry-exit-scrapping model in Dixit (1988), there exists a partial operating state as.
Eq. (2.18) in this model. The first term in Eq. (2.18) represents the value of the option to switch
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from the partial operating to the full operating state. The second term in Eq. (2.18) is the value
of the option to mothball.

For the threshold prices of investment, each switching, and scrapping, the value of firm must
satisfy the following value-matching and smooth-pasting conditions:

$V_{0}(P_{I})=V_{1}(P_{I})-K_{I}$ , $V_{0}’(P_{I})=v1(P_{I})$ , (2.21)
$V_{1}(P_{C2})=V_{2}(P_{C2})-K_{C2}$ , $V_{1}’(P_{C2})=V_{2}’(P_{C2})$ , (2.22)
$V_{2}(P_{C1})=V_{3}(P_{C1})-K_{C1}$ , $V_{2}’(P_{C1})\cdot=V_{3}’(P_{C1})$ , (2.23)
$V_{3}(P_{E1})=V_{2}(P_{E1})-K_{E1}$ , $V_{3}’(P_{E1})=V_{2}’(P_{E1})$ , (2.24)
$V_{2}(P_{E2})=V_{1}(P_{E2})-K_{E2}$ , $V_{2}’(P_{E2})=V_{1}’(P_{E2})$ , (2.25)
$V_{3}(P_{A})=V_{0}(P_{A})-K_{A}$ , $V_{3}’(P_{A})=V_{0}’(P_{A})$ . (2.26)

As can be seen from these equations, an embedding of a operating state leads to an increase of
four equations compared with the Dixit model. These twelve equations provide a simultaneous
nonlinear equation system, which can determine the six thresholds $P_{I},$ $P_{C1},$ $P_{C2},$ $P_{E1},$ $P_{E2},$ $P_{A}$

and the six option value coefficients $a_{1},$ $a_{2},$ $a_{3},$ $a_{4},$ $a_{5},$ $a_{6}$ by means of a numerical calculation
method such as the Newton-Raphson method.

3 Numerical Analysis

In the previous section, we proposed the entry-exit-scrapping model which is extended to allow
for three operating states. In this section, we present the calculation results of each state value
and the differenoe of the value between the Dixit model and our proposed model. The base
case parameters used in this section are as follows: $\mu=0,$ $\sigma=0.2,$ $r=0.04,$ $C=2,$ $M=0.2$ ,
$\alpha=0.5,$ $K_{I}=10,$ $K_{C1}=0.1,$ $K_{C2}=0.5,$ $K_{E1}=2,$ $K_{E2}=1$ , and $K_{A}=3.5$ . Figure 1 shows the
value of the investment option and each operation, and the six thresholds. The difference of the
value at the threshold corresponds to fixed costs to change each state. We make a comparison
between the Dixit model and our proposed model by means of these values.

The dependence of the thresholds for each switching on the volatility of output price are
presented in Fig. 2. It is clear from this figure that thresholds $P_{I},$ $P_{E2}$ , and $P_{E1}$ increase and
the thresholds $P_{C2},$ $P_{C1}$ , and $P_{A}$ decrease with volatility. As in Dixit (1988), a large uncertainty
increases the inaction state. In order to investigate the effect of the switching times on the option
value, the difference of the value between the Dixit model and our proposed model is calculated.
Figure 3 illustrates the difference of the idle state value at $p=3$ between the Dixit model and
our proposed model, that is, $V_{0}^{This}(p)-V_{0}^{D}(p)$ as a function of the volatility. The difference of
the value decreases as the volatility increases. This is because an increase in volatility induces a
increases in the option value, and the difference of the value with respect to the number of the
switching state, which is the degree of the operating flexibility, becomes small.

In Fig. 4, the dependence of the thresholds for each switching on the operating cost are
shown. As shown in this figure, when the operating cost $C$ is less than 1.06, the mothballing
option becomes $wo$rthless. This boundary value $is$ larger than 0.73 calculated by use of the

188



Dixit model. Although an increase in the switching state leads to an increases in the value, the
existence region of each option decreases with the number of state. We show the difference of
the idle state value at $x=3$ between two models as a function of the operating cost in Fig. 5.
This difference of the value indicates the flexibility value in which the operation state increases.
It turns out that this flexibility value decreases as the operating cost $C$ increases.

Figure 6 present$s$ the dependence of the thresholds for each switching on the rate of partial
operation. Although the switching costs are constants so far, in this calculation, we assume that
the switching costs except $K_{I}$ and $K_{A}$ is a proportional to $\alpha$ as follows:

$K_{E1}=k_{E1}\alpha$ , $K_{E2}=k_{E2}(1-\alpha)$ , $K_{C2}=k_{C2},$ $\alpha$ $K_{C2}=k_{C2}(1-\alpha)$ ,

where $k_{E1},$ $k_{E2},$ $k_{C1}$ , and $k_{C2}>0$ are constants. It can be seen from this figure that $P_{E1}$ and
$P_{C1}$ are relatively sensitive to $\alpha$ . Thus, the influenc$e$ of $\alpha$ on the $s$witching between the partial
operation and the mothballing states is larger than that of other switching.

4 Equity and Debt Financing

In previous section, we considered an unlevered firm which is financed entirely with equity.
This case is a standard framework in literature on real options. However, many firms are
financed by issuing not only equity but also debt. Recently many researchers have studied the
interaction among firm’s investment and financing decisions under uncertainty by means of real
option framework (Mauer and Ott, 2000; Mauer and Sarkar, 2005; Lyandres and Zhdanov, 2006;
Sundaresan and Wang, 2006). We therefore expand the model illustrated above to allow for debt
financing in this section.

Since equityholders choose the switching times $T_{i\geq 0}$ and the default time $T_{d}$ optimally, the
value function of equity, after the investment option is exercised and then the firm starts oper-
ating, is given by the following equation:

$E(p)= \sup_{T_{i\geq 0},T_{d}>0}E[\int^{T_{d}}e^{-r(s-t)}(1-\tau)(\pi(P_{t}; Z_{t})-c)ds-\sum_{i=0}^{\infty}e^{-r(T_{i}-t)}K(Z_{T_{i}-}, Z_{T}\dot{.})1_{\{T\dot{.}<T_{d}\}]}$ ,

(4.1)

where $\tau$ is a constant corporate tax rate, and $c$ is a continuous coupon payment. Unlike the
model presented above, suppose that the firm can abandon the project forever at the scrapping
time, that is, has no idle state because there exists the default in this model.

Since the holders of debt receive the continuous coupon payment, the value of debt can be
expressed as

$D(p)= \mathbb{B}[\int^{T_{l}}te^{-r(s-t)}cds+e^{-r(T_{d}-t)}(1-\theta)\frac{(1-\tau)(ff_{d}-C)}{r-\mu}]$ , (4.2)

where $\theta$ is the proportional bankruptcy cost, $0\leq\theta\leq 1$ . The holders of debt receive the value
of the unlevered firm net of bankruptcy costs.

When the output price rises above the investment threshold $P_{I}$ , the firm can start operating
by incurring the investment cost $K_{I}$ . The firm is partially financed by debt at the investment
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time $T_{I}$ . The value of the investment option $E_{0}(p)$ is given by

$E_{0}(p)= \sup_{T_{I}>0}E[e^{-rT_{I}}\{E_{1}(P_{t})-(K_{I}-D(P_{t}))\}]$ , (4.3)

where $E_{1}(P_{t})$ is the equity value of full operation. For the threshold price of investment $P_{I}^{L}$ , the
value of the investment option must satisfy the following value-matching and smooth-pasting
conditions:

$E_{0}(P_{I}^{L})$ $=$ $E_{1}(P_{I}^{L})-(K_{I}-D(P_{I}^{L}))=V_{L}(P_{I}^{L})-K_{I}$, (4.4)
$E_{0}’(P_{I}^{L})$ $=$ $V_{L}’(P_{I}^{L})$ , (4.5)

where $V_{L}(p)=E_{1}(p)+D(p)$ . From these calculations, the value of levered firm with three
operating states, and the threshold for investment, switching, and default can be obtained.

5 Concluding Remarks

We have proposed the entry-exit-scrapPing model with three operating states. The values of the
idle state, the full operation, the partial operation and the mothballing, and the threshold values
of investment, each switching, and abandonment were presented. In particular, we showed the
dependence of switching thresholds on uncertainty and operating cost. We also showed the
difference of the value between the Dixit model and our proposed model in order to examine
the value of operation flexibility. It was found that the $e$mbedding of a operating state leads to
increase in the value of the firm and the investment opportunity. Moreover, we presented the
entry-exit-scrapping model of the levered firm which is financed with equity and debt.

For future work, we will analyze the entry-exit-scrapping strategy of the levered firm by
use of the model presented above, and show the optimal capital structure and the agency cost
between the firm-valu$e$-maximizlng and the equity-value-maximizing policies. Additionally, we
will investigate the entry-exit-scrapping problems with $n$ operating states such as more than
four states.
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憶

Figure 1: Values of idle state, each operation, and mothballing.
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Figure 2: Thresholds of the switching as a function of the volatility.
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Figure 3: Difference of the value of the investment option as a function of the volatility.
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Figure 4: Thresholds of the switching as a function of the oparating cost.
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Figure 5: Difference of the value of the investment option as a function of the operating cost.
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Figure 6: Thresholds of the switching as a function of the rate of partial operation.
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