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Abstract

For nonlinear difference equations, it is difficult to have analytic solutions of
it. Especially, when all the absolute values of the equation are equal to 1, it is
quite difficult to have an analytic solution of it.

We consider a second order nonlinear difference equation which can be trans-
formed into the following simultaneous system of nonlinear difference equations,

$\{\begin{array}{l}x(t+1)=X(x(t), y(t))y(t+1)=Y(x(t), y(t))\end{array}$

where $X(x, y)=x+y+ \sum_{i+j\geqq 2}c_{ij}x^{i}y^{j},$ $Y(x,y)=y+\sum_{i+j\geqq 2}d_{ij}x^{i}y^{j}$ and we
assume some conditions. For these equations, we will obtain analytic solutions.
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1 Introduction
At first we consider the following second order nonlinear difference equation,

$\{\begin{array}{l}u(t+1)=U(u(t), v(t))v(t+1)=V(u(t), v(t))\end{array}$ (1.1)

where $U(u,v)$ and $V(u,v)$ are entire functions for $u$ and $v$ . We suppose that the
equation (1.1) admits an equilibrium point $(u^{*},v^{*})$ : $(\begin{array}{l}u^{l}v^{*}\end{array})=(_{V}^{U}\{u^{*}u^{*}’ v^{*}v^{*}$ )) $)$ . We can
assume, without losing generality, that $(u^{*}, v^{*})=(O, 0)$ . Furthermore we suppose that
$U$ and $V$ are written in the following form

$(\begin{array}{l}u(t+1)v(t+1)\end{array})=M(\begin{array}{l}u(t)v(t)\end{array})+(_{V_{1}(u(t),v(t))}^{U_{1}(u(t),v(t))})$
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where $U_{1}(u, v)$ and $V_{1}(u, v)$ are higher order terms of $u$ and $v$ . Let $\lambda_{1},$ $\lambda_{2}$ be char-
acteristic values of matrix $M$ . For some regular matrix $P$ which decided by $M$ , put

$(\begin{array}{l}uv\end{array})=P(\begin{array}{l}xy\end{array})$ , then we can transform the system (1.1) into the following simultaneous

system of first order difference equations (1.2):

$\{\begin{array}{l}x(t+1)=X(x(t), y(t))y(t+1)=Y(x(t),y(t))\end{array}$ (1.2)

where $X(x, y)$ and $Y(x, y)$ are supposed to be holomorphic and expanded in a neigh-
borhood of $(0,0)$ in the following form,

$\{\begin{array}{l}X(x, y)=\lambda_{1}x+\sum_{i+j\geqq 2}q_{j}x^{i}\dot{\psi}=\lambda_{1}x+X_{1}(x,y)Y(x,y)=\lambda_{2}y+\sum_{i+j\geqq 2}d_{2j}x^{i}\dot{\oint}=\lambda_{2}y+Y_{1}(x, y))\end{array}$ (1.3)

or

$\{\begin{array}{l}X(x, y)=\lambda x+y+\sum_{i+j\geqq 2}c_{i_{J}’}’x^{i}\oint=\lambda x+X_{1}’(x, y)Y(x,y)=\lambda y+\sum_{i+j\geqq 2}d_{ij}’x^{i}y^{j}=\lambda y+Y_{1}’(x,y),(\lambda=\lambda_{1}=\lambda_{2}.)\end{array}$ (1.4)

In this paper we consider talytic solutions of difference system (1.2) in which $X,$ $Y$

are defined by (1.4). In [7] and [8], we have obtained general talytic solutions of (1.2)
in the case $|\lambda_{1}|\neq 1$ or $|\lambda_{2}|\neq 1$ . But in the caee $|\lambda_{1}|=|\lambda_{2}|=1$ , it is difficult to prove
an existence of analytic solution or seek an analytlc solution of the equation. For along
time we have not be able to derive asolution of the equation (1.2) under the condition.

For analytic solutions of anonlinear first order difference equations, Kimura [2]
has studied the cases in which eigenvalue equal to 1, furthermore Ytagihara [10] has
studied the cases in which the absolute value of the eigenvalue equal to 1. Then we
will study for analytic solutions of nonlinear second order difference equation in which
the absolute value of the eigenvalues of the matrix $M$ equal to 1.

In this present paper, making use of theorems in [2], [5], td [9] we will seek an
analytic solution of (1.2), in which $X,$ $Y$ are defined by (1.4) td $\lambda=1$ such that
$X_{1}(x, y)\not\equiv O$ or $Y_{1}(x,y)\not\equiv O$ , i.e., we suppose that

$\{\begin{array}{l}X(x, y)=x+y+\sum_{\simeq}q_{j}x^{i}y^{j}=x+X_{1}(x, y)i+j>2Y(x, y)=y+\sum_{i+j\geqq 2}d_{ij}x^{i}y^{j}=y+Y_{1}(x, y)\end{array}$ (1.5)

Further we assume $d_{20}=0$ .
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Next we consider a functional equation

$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))$ , (16)

where $X(x, y)$ and $Y(x, y)$ are holomorphic functions in $|x|<\delta_{1},$ $|y|<\delta_{1}$ . We assume
that $X(x, y)$ and $Y(x, y)$ ar$e$ expanded there as in (1.5).

Consider the simultaneous system of difference equations (1.2). Suppose (1.2) ad-
mits a solution $(x(t), y(t)).$ If $\frac{dx}{dt}\neq 0$ , then we can write $t=\psi(x)$ with a function $\psi$ in
a neighborhood of $x_{0}=x(t_{0})$ , and we can write

$y=y(t)=y(\psi(x))=\Psi(x)$ , (17)

as far as $Ttdx\neq 0$ . Then the function $\Psi$ satisfies the equation (1.6).
Conversely we assume that a function $\Psi$ is a solution of the functional equation

(1.6). If the first order differenc$e$ equation

$x(t+1)=X(x(t), \Psi(x(t)))$ , (18)

has a solution $x(t)$ , we put $y(t)=\Psi(x(t))$ . Then the $(x(t), y(t))$ is a solution of (1.2).
Hence if there is a solution $\Psi$ of (1.6), then we can reduce the system (1.2) to a singl$e$

equation (1.8).

We have proved the existenoe of solutions $\Psi$ of (1.6) in [3] ([4]), [5] and [8], and we
have proved the existence of solutions in the case which $X$ and $Y$ are defined by (1.5)
in [7] and [8]. in other conditions. Hereafter we consider $t$ to be a complex variable,
and concentrate on the difference system (1.2). We define domain $D_{1}(\kappa_{0}, R_{0})$ by

$D_{1}(\kappa_{0}, R_{0})=\{t : |t|>R_{0}, |\arg[t]|<\kappa_{0}\}$ , (1.9)

where $\kappa_{0}$ is any constant such that $0< \kappa_{0}\leqq\frac{\pi}{4}$ and $R_{0}$ is sufficiently large number
which may depend on $X$ and $Y$ . Further we define domain $D^{*}(\kappa, \delta)$ by

$D^{*}(\kappa, \delta)=\{x;|\arg[x]|<\kappa, 0<|x|<\delta\}$ , (1.10)

where $\delta$ is a small constant and $\kappa$ is a constant such that $\kappa=2\kappa_{0}$ , i.e., $0< \kappa\leqq\frac{\pi}{2}$ .
Further we defined $g_{0}^{\pm}$ as following for the cofficients of $X(x,$ $y$ and $Y(x, y)$

$g_{0}^{-}(c_{20},d_{11},d_{30})= \frac{\frac{-(2c_{20}-d_{11})+\sqrt{(2c_{20}-d_{11})^{2}+8d_{30}}}{-(2c_{20}-d_{11})-\sqrt{(2c_{20}-d_{11})^{2}+8d_{30}’}4}}{4}g_{0}^{+}(c_{20},d_{11},d_{30})=$ $(112)(1..11)$

respectively.
Our aim in this paper is to show the following Theorem 1.

Theorem 1 Suppose $X(x, y)$ and $Y(x, y)$ are expanded in the forms (1.5). We defined
$A_{2}=g_{0}^{+}(c_{20}, d_{11}, d_{30})+c_{20}$ , $A_{1}=g_{0}^{-}(c_{20}, d_{11}, d_{30})+c_{20}$ . We suppose

$d_{20}=0,$ $A_{2}<0$ , (1.13)
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and we assume the following conditions,

$(g_{0}^{+}(c_{20}, d_{11}, d_{30})+c_{20})n\neq c_{20}-d_{11}-g_{0}^{+}(c_{20}, d_{11}, d_{30})$ (1.14)
$(g_{0}^{-}(c_{20}, d_{11}, d_{30})+c_{20})n\neq c_{20}-d_{11}-g_{0}^{-}(c_{20}, d_{11}, d_{30})$ (1.15)

for all $n\in N,$ $(n\geqq 4)$ . Then we have formal solutions $x(t)$ of (1.2) the following $fo m$

- $\frac{1}{A_{2}t}(1+\sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})^{-1},$ $- \frac{1}{A_{1}t}(1+\sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})^{-1}$, (116)

where $\hat{q}_{jk}$ are constants defined by $X$ and Y.
Further suppose $R_{1}= \max(R_{0},2/(|A_{2}|\delta)))$ , then there are two solutions $x_{1}(t)$ and

$x_{2}(t)$ of (1.2) such that
(i) $x_{s}(t)$ are $hol.omo\eta hic$ and $x_{s}(t)\in D^{*}(\kappa,\delta)$ for $t\in D_{1}(\kappa_{0}, R_{1}),$ $s=1,2$ ,
(ii) $x_{\epsilon}(t)$ are expressible in the following form

$x_{1}(t)=- \frac{1}{A_{1}t}(1+b_{1}(t,$ $\frac{\log t}{t}))^{-1},$ $x_{2}(t)=- \frac{1}{A_{2}.t}(1+b_{2}(t,$ $\frac{\log t}{t}))^{-1}$ , (1.17)

where $b_{1}$ ($t$ , log $t/t$), $b_{1}$ ($t$ , log $t/t$ ) are asymptotically expanded in $D_{1}(\kappa_{0}, R_{1})$ as

$b_{1}(t,$
$\frac{\log t}{t})\sim\sum_{j+k\geqq 1}\hat{q}_{jk(1)}t^{-j}(\frac{\log t}{t})^{k},$

$b_{2}(t,$
$\frac{\log t}{t})\sim\sum_{j+k\geqq 1}\hat{q}_{jk(2)}t^{-j}(\frac{\log t}{t})^{k}$ ,

as $tarrow\infty$ through $D_{1}(\kappa_{0}, R_{1})$ .

2 Proof of Theorem 1
In [2], Kimura considered the following first order difference equation

$w(t+\lambda)=F(w(t))$ , (D1)

where $F$ is represented in a neighborhood of $\infty$ by a Laurent series

$F(z)=z(1+ \sum_{j=m}^{\infty}b_{j^{Z^{-j}}}),$ $b_{m}=\lambda\neq 0$ . (2.1)

He defined the following domains

$D(\epsilon, R)=\{t$ : $|t|>R,$ $| \arg[t]-\theta|<\frac{\pi}{2}-\epsilon$ , or ${\rm Im}(e^{1(\theta-\epsilon)}t)>R$ ,

or ${\rm Im}(e^{i(\theta+\epsilon)}t)<-R$}, (2.2)
$\hat{D}(\epsilon, R)=\{t$ : $|t|>R,$ $|$ 釘$g[t]-\theta-\pi|<\frac{\pi}{2}-\epsilon$ or ${\rm Im}(e^{-i(\theta+\pi-\epsilon)_{t)>R}}$

or ${\rm Im}(e^{-i(\theta+\pi+\epsilon)}t)<-R$}, (2.3)
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where $\epsilon$ is an arbitrarily small positive number and $R$ is a sufficiently large number
which may depend on $\epsilon$ and $F,$ $\theta=\arg\lambda$ , (in this present paper, we consider the case
$\lambda=1$ in (D1)). He proved the following Theorem A and B.

Theorem A. Equation $(D1)$ admits a formal solution of the form

$t(1+ \sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})$ (2.4)

containing an arbitrary constant, where $\hat{q}_{jk}$ are constants defined by $F$ .

Theorem B. Given a fonnal solution of the $fom(2.4)$ of $(Dl)$ , there exists a
unique solution $w(t)$ satisfying the following conditions:

(i) $w(t)$ is holomorphic in $D(\epsilon, R)$ ,
(ii) $w(t)$ is $e\varphi ressible$ in the form

$w(t)=t(1+b(t,$ $\frac{\log t}{t}))$ , (2.5)

where the domain $D(\epsilon, R)$ is defined by (2.2) and $b(t, \eta)\prime is$ holomorphic for $t\in D(\epsilon, R)$ ,
$|\eta|<1/R$ , and in the expansion

$b(t, \eta)\sim\sum_{k=1}^{\infty}b_{k}(t)\eta^{k}$ ,

$b_{k}(t)\prime is$ asymptotically develop-able into

$b_{k}(t) \sim\sum_{j+k\geqq 1}^{\infty}\hat{q}_{jk}t^{-j}$ ,

as $tarrow\infty$ through $D(\epsilon, R)$ , where $\hat{q}_{jk}$ are constants which are defined by $F$ .
Also there exists a unique solution $\hat{w}$ which is holomorphic in $\hat{D}(\epsilon, R)$ and satisfies

a condition analogous to (ii), where the domain $\hat{D}(\epsilon, R)$ is defined by (2.3).

In Theorem A and $B$ , he defined the function $F$ as in (2.1). In our method, we can
not have a Laurent series of the function $F$ . Hence we derive following Propositions.

In the following, $A_{2}$ and $A_{1}$ denote the constants $A_{2}=g_{0}^{+}(c_{20}, d_{11}, d_{30})+c_{20}<0$ ,
$A_{1}=g_{0}^{-}(c_{20}, d_{11}, d_{30})+c_{20}<0$ , in Theorem 1, where $c_{20}$ is the coefficient in (1.5), and
$g_{0}^{\pm}(c_{20}, d_{11}, d_{30})$ are defined by the coefficients in (1.5) as in (1.11) and (1.12).

Proposition 2. Suppose $\tilde{F}(t)$ is formally expanded such that

$\tilde{F}(t).=t(1+\sum_{j=1}^{\infty}b_{j}t^{-j})$ , $b_{1}=\lambda\neq 0$ . (2.6)
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Then the equation
$\psi(\tilde{F}(t))=\psi(t)+\lambda$ (2.7)

has a formal solution

$\psi(t)=t(1+\sum_{j=1}^{\infty}q_{j}t^{-j}+q\frac{\log t}{t}$

ノ
, (28)

where $q_{1}$ can be arbitrarily prescribed while other coefficients $q_{j}(j\geqq 2)$ and $q$ are
uniquely determined by $b_{jf}(j=1,2, \cdots)$ , independently of $q_{1}$ .

Proposition 3. Suppose $\tilde{F}(t)$ is holomorphic and expanded asymptotically in { $t$ ;
$-1/(A_{2}t)\in D^{n}(\kappa,\delta),$ $A_{2}<0$ } as

$\tilde{F}(t)\sim t(1+\sum_{j\approx 1}^{\infty}b_{j}t^{-j})$ , $b_{1}=\lambda\neq 0$ ,

where $D^{*}(\kappa,\delta)$ is defined in (1.10). Then the equation (2.7) has a solution $w=\psi(t)$ ,
which is holomorphic in $\{t;-1/(A_{2}t)\in D^{*}(\kappa/2, \delta/2), A_{2}<0\}$ and has an asymptotic
.expansion

$\psi(t)\sim t(1+\sum_{j=1}^{\infty}q_{j}t^{-j}+q\frac{\log t}{t})$ ,

there.

These Propositions are proved as in [2] pp.212-222. Since $A_{1}\leqq A_{2}<0$ and
$\kappa_{0}=\kappa/2$ , we see that $t\in D_{1}(\kappa_{0},2/(|A_{2}|\delta))$ equivalent to $x\in D^{*}(\kappa_{0}, \delta/2)$ .

We define a function $\phi$ to be the inverse of $\psi$ such that $w=\psi^{-1}(t)=\phi(t)$ . Then we
have $\phi 0\psi(w)=w,$ $\psi 0\phi(t)=t$ , furthermore $\phi$ is a solution of the following difference
equation

$w(t+\lambda)=\tilde{F}(w(t))$ , (D)

where $\tilde{F}$ is defined as in Propositions 2 and 3 (see pp.236 in [2]). Hereafter, we put
$\lambda=1$ , since $\theta=0$ , then we have the following Propositions 4 and 5 similarly to
Theorem A and B.

Proposition 4. Suppose $\overline{F}(t)$ is formally expanded as in (2.6). Then the equation
$(D)$ has a formal solution

$w= \phi(t)=t(1+\sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})$ . (2.9)

where $\hat{q}_{jk}$ are constants which are defined by $\tilde{F}$ as in Theorem $A$ .
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Proposition 5. Suppose a function $\phi$ is the inverse of $\psi$ such that $w=\psi^{-1}(t)=$

$\phi(t)$ . Given a formal solution of the form (2.9) of $(D)$ where $\tilde{F}(t)$ is defined as in
Propositions 3, there exists a unique solution $w(t)=\phi(t)$ which is holomorphic and
asymptotically expanded in $\{t;t\in D_{1}(\kappa_{0},2/(|A_{2}|\delta))\}$ as

$w=\phi(t)=t(1+b(t,$ $\frac{\log t}{t}))$ , (2.10)

where

$b(t,$ $\frac{\log t}{t})\sim\sum_{j+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k}$ .

This function $\phi(t)$ is a solution of difference equation of $(D)$ .

In [9], we have proved the following Theorem C.

Theorem C. Suppose $X(x, y)$ and $Y(x,y)$ are defined in (1.5). Suppose $d_{20}=0$ ,

$\frac{2c_{20}+d_{11}\pm\sqrt{(2c_{20}-d_{11})^{2}+8d_{30}}}{4}\in \mathbb{R},$ $\frac{2c_{20}+d_{11}+\sqrt{(2c_{20}-d_{11})^{2}+8d_{30}}}{4}<0$ ,
(2.11)

and we assume the following conditions,

$(g_{0}^{+}(c_{20}, d_{11}, d_{30})+c_{20})n\neq c_{20}-d_{11}-g_{0}^{+}(c_{20}, d_{11}, d_{30})$ (2.12)
$(g_{0}^{-}(c_{20}, d_{11}, d_{30})+c_{20})n\neq c_{20}-d_{11}-g_{0}^{-}(c_{20}, d_{11}, d_{30})$ (2.13)

for all $n\in N_{f}(n\geqq 4)$, where

$g_{0}^{+}( c_{20}, d_{11}, d_{30})=\frac{-(2c_{20}-d_{11})+\sqrt{(2c_{20}-d_{11})^{2}+8d_{30}}}{4}$ ,

$g_{0}^{-}(c_{20)}d_{11}, d_{30})= \frac{-(2c_{20}-d_{11})-\sqrt{(2c_{20}-d_{11})^{2}+8d_{30}}}{4}$ ,

respectively, then we have a fomal solution $\Psi(x)=\sum_{n\geqq 2}^{\infty}a_{n}x^{n}$ of (1.6). nnher, for
any $\kappa,$ $0< \kappa\leqq\frac{\pi}{2}$ , there are a $\delta>0$ and a solution $\Psi(x)$ of (1.6), which is holomorphic
and can be expanded asymptotically as

$\Psi(x)\sim\sum_{n=2}^{\infty}a_{n}x^{n}$ , (2.14)

in the domain $D^{*}(\kappa,\delta)$ which is defined in (1.10).

Proof of Theorem 1. At first we will have formal solutions. Rom Theorem $C$ , we
have a formal solution $\Psi(x)$ of (1.6) which can be formally expanded such that

$\Psi\langle x$ ) $= \sum_{n=2}^{\infty}a_{n}x^{j}$ . (2.15)
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where $a_{2}=g_{0}^{\pm}(c_{20}, d_{11}, d_{30})$ . Hence we suppose the formal solution $\Psi_{s}(x)$ of (1.6) such
that

$\Psi_{s}(x)=\sum_{n=2}^{\infty}a_{n(\epsilon)}x^{n},$ $(s=1,2)$ (2.16)

where $a_{2(1)}=g_{0}^{+}(c_{20}, d_{11}, d_{30}),$ $a_{2(2)}=g_{0}^{-}(c_{20}, d_{11}, d_{30})$ .
On the other hand putting $w_{1}(t)=- \frac{1}{A_{1}x(t)},$ $w_{2}(t)=- \frac{1}{A_{2}x(t)}$ , in (1.8), we have

$w_{s}(t+1)=- \frac{1}{A_{\epsilon}X(x(t),\Psi_{s}(x(t)))},$
$(s=1,2)$ , (2.17)

and

$- \frac{1}{A_{s}X(x,\Psi_{s}(x))}=w_{\epsilon}[1+\frac{a_{2(\epsilon)}+c_{20}}{A_{s}}w_{1}^{-1}+\sum_{k\geqq 2}\tilde{c}_{k(\epsilon)}(w_{\epsilon})^{-k}]$
, (2.18)

where $\tilde{c}_{k(s)}$ are deflned by $c_{ij}$ and $a_{k}(s)(i+j\geqq 2, i\geqq 1, k\geqq 2, s=1,2)$ . From (2.18)
and definition of $A_{s}$ , we have $a_{2(s)}+c_{20}=A_{s}$ . Therefore we can write (2.17) into the
following form (2.19),

$w_{s}(t+1)= \tilde{F}_{s}(w_{s}(t))=w_{s}(t)\{1+w_{s}(t)^{-1}+\sum_{k\geqq 2}\tilde{c}_{k(s)}(w_{\theta}(t))^{-k}\},$
$(s=1,2)$ . (2.19)

On the other hand, putting $\lambda=1$ and $m=1$ in (2.1), i.e. $\theta=0$ , then making use of
the Proposition 4, we have the following formal solutions (2.20) of (2.19),

$w_{\epsilon}(t)=t(1+ \sum_{j+k\geqq 1}\hat{q}_{jk(s)}t^{-j}(\frac{\log t}{t})^{k}),$ $(s=1,2)$ , (2.20)

where $\hat{q}_{jk(s)}$ are defined by $\tilde{F}_{s}$ in (2.19). IFYom (2.18), (2.19) and (1.6), $\tilde{F}_{s}$ is defined by
$X$ and $Y$ . Hence $\hat{q}_{jk(s)}$ are defined by $X$ and Y.

Since $x(t)=- \frac{1}{A.w.(t)}$ , From the relation of (1.2) and (1.8) with (1.6) in page 3, we
have formal solutions $x(t)$ of (1.2) such that

$x(t)=- \frac{1}{A_{s}t}$

ノ

$1+ \sum_{j+k\geqq 1}\hat{q}_{jk(\epsilon)}t^{-j}(\frac{\log t}{t})^{k}$

ノ

$-1(s=1,2)$ . (2.21)

Next we prove the existenoe of solutions $x^{+}(t)$ and $x^{-}(t)$ of (1.2). We suppose that
$R_{0}>R$ and $\kappa_{0}<\frac{\pi}{4}-\epsilon$ . Since $\theta=\arg[\lambda]=\arg[1]=0$ , we have

$D_{1}(\kappa_{0}, R_{0})\subset D(\epsilon, R)$ . (2.22)

For a $x\in D^{*}(\kappa, \delta)$ , making use of Theorem $C$ , we have a solution $\Psi(x)$ of (1.6) which
is holomorphic and can be expanded asymptotically in $D^{*}(\kappa, \delta)$ such that as in (2.14).
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From the assumption $R_{1}= \max(R_{0},2/(|A_{2}|\delta))$ in Theorem 1, making use of
Proposition 5, we have a solution $w_{s}(t)(s=1,2)$ of (2.19) which has an asymptotic
expansion

$w_{s}(t)=t(1+b_{s}(t,$ $\frac{\log t}{t}))$ .

in $t\in D_{1}(\kappa_{0}, R_{1})$ , where $b_{s}(t,$ $\underline{1}_{O}st\underline{t})\sim t(1+\sum_{j+k\geqq 1}\hat{q}_{jk(s)}t^{-j}(^{\underline{lo}g\underline{t}}t)^{k}),$ $(s=1,2)$ ,

respectively. Thus we have solutions $x(t)$ of (1.2) which has the following asymptotic
expansions

$x(t)=- \frac{1}{A_{\epsilon}t}(1+b_{s}(t,$ $\frac{\log t}{t}))^{-1},$ $(8=1,2)$ ,

there. At first we take a small $\delta>0$ . For sufficiently large $R$ , since $R_{1}\geqq R_{0}>R$ , we
can have

$| \frac{1}{A_{1}t}||1+b_{1}(t,$ $\frac{\log t}{t})|^{-1},$ $| \frac{1}{A_{2}t}||1+b_{2}(t,$ $\frac{\log t}{t})|^{-1}<\delta$ . (2.23)

for $t\in D_{1}(\kappa_{0}, R_{1})$ . Since $A_{1}\leqq A_{2}<0$ and $\kappa=2\kappa_{0}$ , for sufficiently large $R_{1}$ , we have

$| \arg[-\frac{1}{A_{s}t}(1+b_{s}(t,$ $\frac{\log t}{t}))^{-1}]|<\kappa\leqq\frac{\pi}{2}$ for $t\in D_{1}(\kappa_{0}, R_{1}),$ $(s=1,2)$ . (2.24)

From (2.23) and (2.24), we have that

$x_{1}(t)=- \frac{1}{A_{1}t}(1+b_{1}(t,$ $\frac{\log t}{t}))^{-1},$ $x_{2}(t)=- \frac{1}{A_{2}t}(1+b_{1}(t,$ $\frac{\log t}{t}))^{-1}$

such that $x_{s}(t)\in D^{*}(\kappa, \delta)$ for a some $\kappa,$ $(0< \kappa\leqq\frac{\pi}{2})$ . Henc$e$ we have $\Psi_{\iota}(x(t))$

$(s=1,2)$ which satisfies the equation (1.6).

Therefore from existence of a solution $\Psi$ of (1.6), and making use of Proposition 5,
we have a holomorphic solution $w(t)$ of first order difference equation (2.19) for
$t\in D_{1}(\kappa_{0}, R_{1})$ , i.e., we have a solution $x(t)$ of (1.2) for $t$ at there, in which satisfying
following conditions:
(i) $x_{s}(t)$ are holomorphic in $D_{1}(\kappa_{0}, R_{1})$ and $x_{s}(t)\in D^{*}(\kappa, \delta)$ for $t\in D_{1}(\kappa_{0}, R_{1})$ ,
$(s=1,2)$ ,
(ii) $x_{s}(t)$ are expressible in the form

$x_{\epsilon}(t)=- \frac{1}{A_{\epsilon}t}(1+b_{\epsilon}(t,$ $\frac{\log t}{t}))^{-1}$ , (2.25)

where $b_{s}$ ( $t$ , log $t/t$ ) is asymptotically expanded in $D_{1}(\kappa_{0}, R_{1})$ as

$b_{s}(t,$
$\frac{\log t}{t})\sim\sum_{j+k\geqq 1}\hat{q}_{jk(s)}t^{-j}(\frac{\log t}{t})^{k}$ ,
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as $tarrow\infty$ through $D_{1}(\kappa_{0}, R_{1}),$ $s=1,2$ . $\square$

Finally, we have a solution $(u(t), v(t))$ of (1.1) by the transformation

$(\begin{array}{l}u(t)v(t)\end{array})=P(\begin{array}{l}x_{l}(t)\Psi(x_{1}(t))\end{array}),$ $P(_{\Psi(x_{2}(t))}x_{2}(t))$ .
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