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Abstract

For nonlinear difference equations, it is difficult to have analytic solutions of
it. Especially, when all the absolute values of the equation are equal to 1, it is
quite difficult to have an analytic solution of it.

We consider a second order nonlinear difference equation which can be trans-
formed into the following simultaneous system of nonlinear difference equations,

{w(t +1) = X(z(t), y(t)),
y(t+ 1) = Y(z(t),y(?)),

where X(z,y) =z +y + X, > cisz'yd, Y(z,0) =y + Lirj2edija'y’ and we
assume some conditions. For these equations, we will obtain analytic solutions.
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1 Introduction

At first we consider the following second order nonlinear difference equation,

u(t +1) = U(u(t), u(t)), a1
v(t +1) = V(u(t), v(t)), '

where U(u,v) and V(u,v) are entire functions for v and v. We suppose that the
: : I : .oy (U (U, v*)
equation (1.1) admits an equilibrium point (u*,v*) : (v‘ = V(u*,v*))' We can

assume, without losing generality, that (u*,v*) = (0,0). Furthermore we suppose that
U and V are written in the following form

(613) = (&) + (REEE)
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where U;(u,v) and Vi(u,v) are higher order terms of u and v. Let A;, A2 be char-
acteristic values of matrix M. For some regular matrix P which decided by M, put

(Z) =P (Z) , then we can transform the system (1.1) into the following simultaneous

system of first order difference equations (1.2):
z(t + 1) = X((t), ¥(1)),
y(t +1) =Y (z(t), y(t)),

where X (z,y) and Y (z,y) are supposed to be holomorphic and expanded in a neigh-
borhood of (0,0) in the following form,

(1.2)

X(@y)=hz+ Y @'y =z + Xi(z,y),

i+j22

. (1.3)
Y(z,0) =y + Y, dyz'y’ = oy + Yi(z,9),
i+j22
or
X(z,y) =X z+y+ Z Ty = Az + Xi(z,v),
i+j2

, z+,7,=2. . , (1.4)
Y(z,y) =M+ Y dig'y =+ Y(z,0), A=x=X)

i+j22 .

In this paper we consider analytic solutions of difference system (1.2) in which X, Y
are defined by (1.4). In [7] and [8], we have obtained general analytic solutions of (1.2)
in the case [A\1]| # 1 or |A2| # 1. But in the case |M\| = |Ag| = 1, it is difficult to prove
an existence of analytic solution or seek an analytic solution of the equation. For a long
time we have not be able to derive a solution of the equation (1.2) under the condition.

For analytic solutions of a nonlinear first order difference equations, Kimura [2]
has studied the cases in which eigenvalue equal to 1, furthermore Yanagihara [10] has
studied the cases in which the absolute value of the eigenvalue equal to 1. Then we
will study for analytic solutions of nonlinear second order difference equation in which
the absolute value of the eigenvalues of the matrix M equal to 1.

In this present paper, making use of theorems in [2], [5], and {9] we will seek an
analytic solution of (1.2), in which X, Y are defined by (1.4) and A = 1 such that
Xi(z,y) # 0 or Yi(z,y) # 0, i.e., we suppose that

X(@y) =z+y+ Y oy =z+X(z,y),
' i+j22

Y(z,p)=y+ D dyz'y’ =y +Yi(s,v).

i+522

(1.5)

Further we assume dgg = 0.
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Next we consider a functional equation
V(X(z,¥(z))) = Y(z, ¥(z)), (1.6)

where X (z,y) and Y(z,y) are holomorphic functions in |z| < di, |y| < ;. We assume
that X (z,y) and Y (z,y) are expanded there as in (1.5).

Consider the simultaneous system of difference equations (1.2). Suppose (1.2) ad-
mits a solution (z(t),y(t)). If € 3 0, then we can write t = (z) with a function % in
a neighborhood of zp = z(ty), and we can write

y=y(t) = y(¥(z)) = ¥(z), (1.7)

as far as 92 # 0. Then the function ¥ satisfies the equation (1.6).
Conversely we assume that a function V¥ is a solution of the functional equation
(1.6). If the first order difference equation

z(t+1) = X(z(t), ¥(z(?))), (1.8)

has a solution z(t), we put y(t) = ¥(z(t)). Then the (z(t),y(t)) is a solution of (1.2).
Hence if there is a solution ¥ of (1.6), then we can reduce the system (1.2) to a single
equation (1.8).

We have proved the existence of solutions ¥ of (1.6) in (3] ([4]), [5] and [8], and we
have proved the existence of solutions in the case which X and Y are defined by (1.5)
in [7] and (8]. in other conditions. Hereafter we consider ¢ to be a complex variable,
and concentrate on the difference system (1.2). We define domain D;(ko, Ry) by

D1 (Ko, Ro) = {t : [t| > Ro, | arg(t]| < so}, (1.9)

where ko is any constant such that 0 < kg < 7 and Ry is sufficiently large number

which may depend on X and Y. Further we define domain D*(k, §) by
D*(k,8) = {z; |arg[z]| < &, 0 < |z| < 6}, (1.10)

where § is a small constant and x is a constant such that k = 2kg, i.e., 0 < 6 £ 3.
Further we defined g3 as following for the cofficients of X (z,y and Y (z,y)

—(2¢0n — —ad.)2

g (ca0, du1, dso) = (2c20 — dny) + \/‘(12020 di1)? + 8d30, (1.11)
- —d) — Y ,

95 (¢20, da1, dzo) = (2c20 = du1) \/‘(12020 - dyn)? + 8d30, (1.12)

respectively.
Our aim in this paper is to show the following Theorem 1.

Theorem 1 Suppose X(z,y) and Y (z,y) are expanded in the forms (1.5). We defined
Az = g5 (20, d11, d30) + 20, Ay = gg (C20, d11, dso) + c20. We suppose

dyw =0, A2 <0, (1.13)
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and we assume the following conditions,

(¢ (c20, d11,d30) + c20)n # €20 — d11 — gg (€20, dh1, d30) (1.14)
(go_ (c20, d11, d3o) + C20)n # o0 — d11 — 96_(020a d11, d3o) (1.15)

foralln € N, (n 2 4). Then we have formal solutions z(t) of (1.2) the following form

-1 -1
1 : s —j (108
___Alzt (1+ E djkt_](_oft)k) , ‘Z%E(H' Z Qjkt J(lotgt)k) » (116)

J+k21 J+k21

where §;x are constants defined by X and Y.

Further suppose Ry = max(Ry,2/(|Az2|0))), then there are two solutions z1(t) and
z2(t) of (1.2) such that

(i) z(t) are holomorphic and z,(t) € D*(k,0) for t € Di(ko, R1), 8 = 1,2,

(1) z,(t) are ezpressible in the following form

-1 -1
1 logt 1 logt
z1(t) = "71_1?(1 +b (t, —tg—))  alt) = = (1 +b2(t, %)) . .17)

where by(t,logt/t), bi(t,logt/t) are asymptotically expanded in D(ko, R1) as

logt . _.rlogt\k logt . _.rlogt\k

b1(t, 28’ )N i)t ](__g ) ,ng(t, =8r )~ E dik2)t ’(——-g ) ,

t _ t t t
j+k21 j+k21

as t — 0o through D1(ko, R1). -

2 Proof of Theorem 1

In [2], Kimura considered the following first order difference equation

w(t+ A) = F(w(t)), (D1)
where F is represented in a neighborhood of co by a Laurent series
F(2) = 2(1+ 3 bjz), bn = A #0. (2.1)
j=m

He defined the following domains

D(e,R) = {t : |t| > R, |arglt] — 6] < g — ¢, or Im(e"®-94) > R,
or Im(e'®+9¢) < —R}, (2.2)
e or Im(e~"®+™=9¢) > R

or Im(e~*®+™+9¢) < —R}, (2.3)

s

D(e,R) = {t : |t| > R, |arg[t] — 0 — 7| < 5
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where € is an arbitrarily small positive number and R is a sufficiently large number
which may depend on € and F, § = arg ), (in this present paper, we consider the case
A =11in (D1)). He proved the following Theorem A and B.

Theorem A. Equation (D1) admits a formal solution of the form
. rlogt\*
540 (=22
t(1+ > dut ( t ) ) (2.4)
J+k21 :

containing an arbitrary constant, where §;r are constants defined by F.

Theorem B. Given a formal solution of the form (2.4) of (D1), there exists a
unique solution w(t) satisfying the following conditions:

(1) w(t) is holomorphic in D(e, R),

(1) w(t) is expressible in the form

w(t) = t(l + b(t, E'f-t-)) , (2.5)

where the domain D(e, R) is defined by (2.2) and b(t,n) is holomorphic fort € D(e, R),
In| < 1/R, and in the ezpansion

b(t,m) ~ Y bi(t)nF,
k=1

bi(t) is asymptotically develop-able into

be(t) ~ Y Gt

j+k21

as t — oo through D(e, R), where §; are constants which are defined by F'.
. Also there ezists a unique solution W which is holomorphic in D(e, R) and satisfies
a condition analogous to (ii), where the domain D(e, R) is defined by (2.3).

In Theorem A and B, he defined the function F as in (2.1). In our method, we can
not have a Laurent series of the function F. Hence we derive following Propositions.

In the following, A; and A; denote the constants A; = gg (20, d11,ds0) + €20 < 0,
A; = g5 (co0,d11,d30) + €20 < 0, in Theorem 1, where ¢y is the coefficient in (1.5), and
g3 (cg0, d11, d3o) are defined by the coefficients in (1.5) as in (1.11) and (1.12).

Proposition 2. Suppose F(t) is formally ezpanded such that

F(t)=t (1 + i bjt—j) . bi=A#0. | (2.6)

J=1
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Then the equation 3
Y(F ) =)+ A (2.7)

has a formal solution

()-—t(1+Zq, -J+q1°tgt) (2.8)

j=1

where q. can be arbitrarily prescribed while other coefficients ¢; (j 2 2) and q are
um’quely determined by b;, (j = 1,2,--), independently of qi.

Proposition 3. Suppose F(t) is holomorphic and expanded asymptotically in {t
—1/(Ast) € D*(k,6), A2 < 0} as

F(t)~t (1+Zb,-t"j), by =A#£0,

=1

where D*(k,8) is defined in (1.10). Then the equation (2.7) has a solution w = ¥(t),
which is holomorphic in {t; —1/(Aat) € D*(x/2,6/2), A2 < 0} and has an asymptotic

_expansion
logt
~ =
P(t) t(1+§ git™ +q— t)

J=1

there.

These Propositions are proved as in [2] pp.212-222. Since A; £ A2 < 0 and
Ko = K/2, we see that t € D1(ko,2/(|Az2|0)) equivalent to z € D*(xp,5/2).

We define a function ¢ to be the inverse of 9 such that w = ¥~1(t) = ¢(¢). Then we
have ¢ o ¥(w) = w, 9 o ¢(t) = t, furthermore ¢ is a solution of the following difference
equation _ ’ ,

w(t+ A) = F(w(?)), (D)

where F is defined as in Propositions 2 and 3 (see pp.236 in [2]). Hereafter, we put
A = 1, since § = 0, then we have the following Propositions 4 and 5 similarly to
Theorem A and B.

Proposition 4. Suppose F(t) is formally ezpanded as in (2.6). Then the equation
(D) has a formal solution

k .
= 6(t) =t(1+ 3 gt (litg—t) ) 2.9)
j+k21

where §;, are constants which are defined by F as in Theorem A.
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Proposition 5. Suppose a function ¢ is the inverse of ¢ such that w = ¢~1(t) =
¢(t). Given a formal solution of the form (2.9) of (D) where F(t) is defined as in
Propositions 3, there ezists a unique solution w(t) = ¢(t) which is holomorphic and
asymptotically expanded in {t; t € Di(ko,2/(|A2]6))} as

w=$(t) = t(l + b(t, 1—"tg—t)) | (2.10)

where

1 . k
o(5 ) ~ 3w ()

j+k21
This function ¢(t) is a solution of difference equation of (D).
In [9], we have proved the following Theorem C.
Theorem C. Suppose X(z,y) and Y (z,y) are defined in (1.5). Suppose dap =0,

2c30 + diy % v/(2c00 — dy1)? + 8d3o 2c90 + dy1 + v/(2¢20 — d11)? + 8d3g

1 €ER 7 <0,
(2.11)
and we assume the following conditions,
(95 (c20, dr1, d3o) + c20)n # c20 — d11 — g3 (C20, d11, d3o) (2.12)
(go" (020, dy, d3o) + Czo)n 7& cg0 — d11 — 96(0201 d, d30) (2'13)
foralin €N, (n 2 4), where
—(2¢20 — d11) + v/ (2¢20 — d11)? + 8d
95 (c20,d11,d30) = (2020 — dy) \/i 20 — du1) =,
_ —(2¢co0 — d11) — /(2¢20 — d11)? + 8d
9o (c20,d11,ds0) = (2020 — du1) \/i 2 =~ du) 2,
respectively, then we have a formal solution ¥(z) = fgz anz™ of (1.6). Further, for

any K, 0 < k £ %, there are a § > 0 and a solution U(z) of (1.6), which is holomorphic
and can be ezpanded asymptotically as ‘

¥(z) ~ ianz", | 1 (2.14)

n=2

in the domain D*(k,d) which is defined in (1.10).

Proof of Theorem 1. At first we will have formal solutions. From Theorem C, we
have a formal solution ¥(z) of (1.6) which can be formally expanded such that

V(z) = i an2?. (2.15)

n=2
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where ag = g5 (ca0, d11, d3o). Hence we suppose the formal solution ¥,(z) of (1.6) such
that

U,(z) = i ans)z", (s=1,2) (2.16)

n=2

where az(1) = g (c20, d11, d30), 2(2) = g (€20, d11, ds0)-
On the other hand putting w;(t) = —m, woy(t) = —2?;7?5’ in (1.8), we have

1
s == ! = 1’ 2 ) .
wy(t + 1) X(x(t), \Il,(x(t))) (s ) (2.17)
and
1 Gz(s) +C20 _ . —k
- = W 1 i s 8 ’ 2.18
A,X(:c, ‘I’s(x)) w [ vt Wt gck( )(ws) ] (2.18)

where Cy(s) are defined by c;; and ax(s) (i+522,12 1, k 2 2, s = 1,2). From (2.18)
and definition of A,, we have ay(s) + c20 = As. Therefore we can write (2.17) into the
following form (2.19),

w,(t+1) = Fy(w,(t) = ws@) {1+ 0@ + 2 dua @@}, (6=1,2). (2.19)
k22

On the other hand, putting A =1 and m =1 in (2.1), i.e. § =0, then making use of
the Proposition 4, we have the following formal solutions (2.20) of (2.19),

Cw,(t) —t(1+ 3 q,k(,)t"(lot 1t) ) (s=1,2), (2.20)

Jj+k21

where §jk(s) are defined by F, in (2.19). From (2.18), (2.19) and (1.6), F, is defined by
X and Y. Hence § Gii(a) are defined by X and Y.

Since z(t) = m, From the relation of (1.2) and (1.8) with (1.6) in page 3, we
have formal solutions z(t) of (1.2) such that

.A]:,t (1 + Z qjk(")t_](lotgt) ) ) (3 = 1a2) | (221)

j+k21

z(t) = —

Next we prove the existence of solutions z*(¢) and z~(t) of (1.2). We suppose that
Ro > R and kg < § — €. Since § = arg[)\] = arg[1] = 0, we have

D (xo, Ro) C D(¢, R). (2.22)

For a z € D*(k,d), making use of Theorem C, we have a solution ¥(z) of (1.6) which
is holomorphic and can be expanded asymptotically in D*(«,d) such that as in (2.14).
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From the assumption R; = max(Ry, 2/(|A2|6)) in Theorem 1, making use of
Proposition 5, we have a solution w,(t) (s = 1,2) of (2.19) which has an asymptotic

expansion
logt

, k
in t € Dy(kqg, Ry), where bs(t, 1%53) ~tl 1+ Zj+kg1 Gik(s)t™’ (li’-fi) ), (s =1,2),

respectively. Thus we have solutions z(t) of (1.2) which has the following asymptotic

expansions "
1 logt
A,,t(“'b (&, T)) (s=1,2),

there. At first we take a small § > 0. For sufficiently large R, since R; 2 Ry > R, we
can have

Allt Zl;'i 1+ bz( lotgt)

for t € Dy(ko, R1). Since A; £ A; < 0 and k = 2k, for sufficiently large R, we have

arg [- Ai,t(l + b,(t, E"—tg—t)) _1}

From (2.23) and (2.24), we have that

-1 -1
zl(t)=—,—451;( bt loft)> 2alt) = - Alt(1+b1( loft))

such that z,(t) € D*(k, ) for a some k, (0 < k £ §). Hence we have W,(z(t))
(s = 1,2) which satisfies the equation (1.6).

1+bi(t, l°gt) <6 (2.23)

t

<kS g for t € Dy(ko, R1), (8=1,2). (2.24)

Therefore from existence of a solution ¥ of (1.6), and making use of Proposition 5,
we have a holomorphic solution w(t) of first order difference equation (2.19) for
t € D1(xo, R1), i.e., we have a solution z(t) of (1.2) for ¢ at there, in which satisfying
following condltlons
(i) z,(t) are holomorphic in D;(ko, R1) and z,(t) € D*(k,6) for t € Dl(no, Ry),
(s =1,2),
(ii) z,4(t) are expressible in the form

-1
1 logt
At (1 +(t T)) ’ (2.25)

where b,(t, logt/t) is asymptotically expanded in D, (ko, R;) as

( logt) Z Gint (logt)

J+k21
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as t — oo through D(ko, R1), s =1,2. 0

Finally, we have a solution (u(t), v(¢)) of (1.1) by the transformation
u(t)) _ z1(t) za(t)
() =7 (wtaity)  # (wincn)
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