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1 Introduction

The purpose of the present paper is to establish translation formulae and to give
a new representation of solutions to the periodic linear differential equation of the
form

%m(t) = A(t)z(t) + f(t), 2(0)=weCP (1)

where A(t) is a continuous p X p matrix function with period 7 >0 and f: R — C?
a T-periodic continuous function.

In (1], [3] and [4], we gave representations of solutions to the linear difference
equation of the form

Tni1 = Bzn+b, zo=w € CP, (2)

Tny1 = e"A:z:n +b zo=wEe€E Cp, (3)

respectively, where A and B are complex p X p matricesand b€ C?. If B = e, T >
0, then, comparing two representations of solutions to the equations (2) and (3),
translation formulae between A — AE, X € o(A) and B — pE, u = €™ are naturally
derived. These are related to the binomial coefficients, the Bernoulli numbers and
the Stirling numbers.

Let u be a characteristic multiplier for homogeneous equation associated with
the equation (1). If 4 # 1, then representations of some component of solutions to
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the equation (1) were given in [4]. However, it is not yet solved this problem for the
case where y = 1.

In this paper, we present a representation of some component of solutions to
the equation (1) for the case where u = 1 by using translation formulae, Floque’s
representation and a result in [1].

2 Translation Formulae

Let E be the unit p x p matrix. For a complex p x p matrix H we denote by o(H)
the set of all eigenvalues of H, and by hg(n) the geometric multiplicity of n € o(H).
Let My(n) = N((H — nE)"#™) be the generalized eigenspace corresponding to
n € o(H). Let Q,(H) : CP — Mp(n) be the projection corresponding to the direct
sum decomposition CP = Speqr) Mu(n).

Throughout this section, we assume that two p X p matrices A and B are related
as B = ¢e™, Put

Py = Qa(4),h(N) = ha(3) (A € 0(4)), Qu = Qu(B), h(k) = ha() (u € o(B)).
By using a spectral mapping theorem, we get
o,(A):={ €c(A) : p=e?}#0
for every p € o(B). Moreover, the following relations hold true : A(u) = max{h()) :
A€ a#(A)}a
BP, = P\B, P\Q. =P\ (A€ 0,(A)),Q,= Z(A) P;.
A€oy

Let w=2n/7,e(2) = (e*—1)"},a(2) = (z—1)"1, and B;(: = 0,1, ) l_ae Bernoulli’s
numbers. For i € 0(B) and ) € o(A), vectors ay(w, b), Ba(w,d), y.(w, b) and &(w, b)
are defined as follows : - '

az(w,b) := ax(w, b; A) = Paw + X5 (A)Pab (A € iwZ),

Br(w, ) = Bx(w, b A) = 7(A — AE)Paw + Yy (A)Prb () € iw),

Yu(w, ) := Yu(w, b; B) = Quu + Zu(B)Qub (n # 1),
O(w,b) :=§(w,b; B) = (B— E)Qrw + @b (u=1),
where

h(A)=1 i h(f\);-l = ,
Xy(A)= 3 eO(rNF(A-AE), Yi(4)= ) Bimz(A-AE),

1=0 =0
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h(u)-1 a® (1) . h(u)-1 1
— L — k
ZIJ(B) = g 0: k! (B - ,U,E) = E : (1 ,_L)k+1 (B - ,U‘E) ’

Let £ € R and k € Ny := NU {0}. We define the well known factorial function
(2)x as

(2) = 1, (k=0),
z(z—-1)(z-2).- (:z:—-k+1), (k € N).
The Stirling numbers of the first kind { i ] and the Stirling numbers of the second

kind { f } are introduced as the coefficients of the transform of bases of poly-

nomials as follows (z); = >4 _, [ i ] z*k, gk = 3F { f }(a:)j for j,k € No.

Jj=0
Set

By = B - uE)* (€ o(B)), Awr=(A-AE) (/\ € g(4)).

k'u Pl k! (

Representations of solutions to the equations (2) and (3) are given as follows,
respectively.

Theorem 2.1 Let B =¢e™ and \ € 0,(A). Then the component Pxzn(w,b) of the
solution z,(w,b) of the equation (2) is expressed as follows :
1) Ifu=e™#1, then

Paza(w,b) = B*Pyy,(w,b) — Z,(B)Psb,

h(u)-1
=" > (B, uP,\'y”(w b) — Z,(B)P:b.
k=0
2) If u=e™ =1, then
h(1)-1 ,
Pyzn(w,b) = Z (n)k+1k By Pad(w,b) + Paw.
k=0 :

Theorem 2.2 [1),[2] Let A € o(A). The component Pa\z.(w,b) of the solution
Tn(w,b) of the equation (3) is given as follows :
1) If A € WZ, then

Paz,(w,b) = e"4ay(w,b) — X\(A)Prb
h(\)-1
=" )" n*Apaan(w,b) — XA(A)Pib.
k=0
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2) If A € iwZ, then

h(A)-1
1
_ k
P/\xn(wf b) - ; n +1k + 1Alc,,\ﬁ,\(wa b) + PAw-
Now, we will compare Theorem 2.1 with Theorem 2.2. If y = €™ # 1, then
B"P)(yﬂ(w, b) — Zu(B)P)\b = e’"'Aa,\(w, b) - X,\(A)P,\b, (4)
that is,
h(u)-1 h(A)—1
u* Y ()kBeuPavu(w,b) = Zu(B)Pab = €™ > n* Ay rax(w,b) — Xx(A)Pab.
Ifu=1, then
h(1)-1 h(\)-1
Z (N)k41 1 By 1 P\é(w,b) = Z nk+ A 2B (w, b). (5)
P k+1 poard k: +1°7" ’

Notice that the solution z, := z,(w, b) of the equation (2) is expressed by

n-1
Tn Bw+S(Bb Sn(B) =) _ B*.
k=0

Now, we consider the case w = 0 and the case b = 0 in the above representation.
A) B" = "4 (n € Np) if and only if for all u € o(B), A € 0,,(A4) the relation

h()=1 h(u)-1
> (MBruPra= Y n*AaPy (n€ No) (6)
k=0 k=0

holds. From definition of the Stirling number of the second kind, (6) is rewritten as

h(u)-1 h(p)-1 4
Y (BiuPr= > Z{ }(n kAj APy

k=0 j=0 k=0
h{p)—-1 h(u)-1 j
SIS DR FA VIS
k=0 j=k

Hence if 0 < k < h(u) — 1, then

" h(p)-1
B.,Pi= Y {

} Aj,,\P,\.
j=k

= o,
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Also, from definition of the Stirling number of the first kind it follows that, for

h(p)-1

ApPi= Y [ ’; ] BiuPs.

. o k=3
B) S.(B) = Sa(e™) (n € Ny) if and only if for all 4 € o(B), A € 0,(A) the
following relations hold :
(1) If p # 1, then
ZM(B)P,\ = X,\(A)P,\
(2) If u =1, then
h(1)-1 1 h(1)
A Y (A)P.
; (n) k+H17 g k:+1 kA YA(A) Py (7)
Indeed, if p s 1, then, taking w = 0 in (4), we have that
B"P\(Z,(B)P\b — X5\(A)P\b) = Z,(B)Pxb — Xx(A)Psb.

Put n =1 and v = Z,(B)Pab — XA(A)Pyb. Since Pyv = v, we have (B — E)v =
that is, v € N(B ~ E) Since p # 1, we get v = 0, and hence (7) holds. If p = 1
then, taking w = 0 in (5), we can obtain (7).

The relation (7) is translated as

h(1)-1 1 ORI S
Z (n) kLT klP,\ = Z —:_—12{ J k }(n)kAj,,\Y,\(A)P,\
k=0 - g=0 J k=0
h(1)-1 1 < j+1
= _— (n)k+14; ,\Y,\(A)P 1\
j;o j+1 g { k+1 } »
h(1)-1 h)-1 , .
+1 1
= (M) 42 { J } —_A;,YA\(A)P,.
g J=Zk k+1 j+1 J
Thus, if 0 < k < h(1) — 1, then
h)-1 , |
Jj+1 1 .
" 1Bk1PA > { 1 }H T AsaYa(A) P, 8)

j=k
Also, (8) is equivalent to the following relation for 0 < j < h(1) —1:

1 il
j+1A"'*Y*(A)P*= ; [J’+1 ] IchlB’“lDA

Summarizing these, we have translation formulae.
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Theorem 2.3 Let B=¢™,7 >0 and ) € 0,(A).
1) (Translation formula I) If0 < k < h(u) — 1, then

h(u -1 . .
Biu Pri= > { : }Aj,,\P,\,

ji=k
or equivalently, if 0 < j < h(u) — 1, then

h(u)-1 k
AjaPi= > [j]Bk,,,P,\.

k=j
2) (Translation formula II) If 4 # 1, then
Z,(B)P, = X,\(A)P,.

3) (Translation formula III) Let u = 1.
If0< k< h(l) -1, then

h(1)~1

1+ 1 1
k+1Bk 1Py = Z { ‘,1 1 }‘—"1' iaYa(A) Py,
i=k
or equivalently, if 0 < j < h(1) — 1, then
h(1)-1
1 : _ E+1
mAj,AK(A)PA = Z [j+1 } k+lBk 1P

=j

Using Translation formulae, we obtain relationships between o (w, b) and v, (w, b)
for A € 0,(A) and between §,(w, b) and é(w, b) for X € oy(A).

Theorem 2.4 Let A € 0,(A).

1) If u# 1, then
Py, (w, b) = ax(w, b).

2) If u=1, then

.h(l)—l( 1)k
>~ 5 (B - B)P(w,b) = Ba(w,b).

k=0

Theorem 2.5 Let A\ € 01(A). Then the following relation hold true :

h(1)-1 L h(A)—=1
k 1
Z (t)k+1k By, 1Pro(w, b) = Z et

k=0

Ak.AﬁA(w’ b) (t€R).
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3 Representations of Solutions to Equation (1)

Let U(t,s), (t,s € R) be solution operators to the equation z'(t) = A(t)z. Define
the periodic map V(t),t € R by V() = U(t,t — 1) = U(t + 7,t), and set Q,(t) =
Q.(V(t)) (1 € o(V(t))). The representation by Floquet is given as U(t,0) = P(t)e!4.
Clearly, V(t) = P(t)e™P~*(t) and V(0) = e"4. By the transformation = = P(t)y,
the equation (1) is reduced to the following equation

d
416 = 4y(0) + h(0), ¥(0) =, (©)
where h(t) = P~1(t) f(t). It is obvious that P~1(t) and h(t) are r-periodic.
Put

T T
an= | €"4n(s)ds, by = | U(r,s)f(s)ds.
0 d 0
Then we have aj, = by. Set

ax(w, ap) = an(w, an;A), Br(w,ar) = Br(w, an; A),

’)’“(’w bf) 7ﬂ(w bf, V(O))7 (wv bf) = (5(21), bf; V(O))
First, we give the representation of solutions of the equation (1) which is based

on characteristic exponent. By using a solution y(t) of the equation (9), the solution
z(t) of the equation (1) is expressed as

z(t)= Y P(t)Pw(t)= Y PE)PP(t)z(t).
A€a(A) A€o(A)
Then
Q)= Y PORP().
A€oy, (A) .

Set :
zA(t) = PQ)PPHt)2(t), fi(t) = PO)RPTI(1)f(E).
Combining the representation (cf. [1], [2]) of solutions to the equation (9) and

Floque’s representation, a rcpresentation of solution z,(t) to the equation (1) is
easily derived as follows.

Theorem 3.1 Each component z,(t) of the solution :v(t) of the equatzon (1) is

expressed as follows:
1) If A € iwZ, then

.’.L')‘(t) = U(t, 0)cx,\(w bf) -+ U,\(t,f)
h(A)-1

= P 3 L (A-AB e w,b) +uat ),
k=0
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where
u,\(t f) (t O)X,\(A P,\bf +/ U t,s f,\(s)ds

18 a T-periodic continuous function.
2) If A\ ewZ,

h(3)-1 P\ g '
T (t) = eMP(t) Z (?) Ap2Br(w, by) + X P(t) Paw + vy (t, f),

pare k+1
where
At h(A)-1 sh+1
WbS) = =P 3 Gy A= ABTAR, + [ v ones
k=0

18 a T-periodic continuous function.

Next, we give a representation of solutions to equation (1), which is based on
characteristic multipliers. Our approach is to translate the representation of solu-
tions in Theorem 3.1 into the representation based on characteristic multlphers by
using Translation formulae.

Note that

Qutz@®) = DY o), QuOFt)= > i)

A€o, (A) A€oy (A)
Lemma 3.1 Let A € 0,(A). Then
P(t)e*P, = U(t,0)e"*¥® p,

and
. h(u)-1 ¢
e?W(M)P,\ = kZ:O (;)k V(O)k,“P,\,

where
h(pu)-1

h(p)-1
W= > [I;]V(O)k,uz > (1) k = DIV(0)k .

k=1 k=1
Proof Since P(t) = U(t,0)e"*4, we have
P(t)eP, = U(t,0)e~"4-2B) p,
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Using Translation formula I, we can easily prove the first relation. Moreover, we
have that

h(p)-1 £\
=) (—) APy
.

k=0
h(u)—-1

-3 (;)k V(0) .P.

k=0

This completes the proof. _ O

Theorem 3.2 Let u € o(V(0)). The component Q,(t)z(t) of solutions z(t) of the
equation (1) satisfying the initial condition z(0) = w is expressed as follows :
1) If u#1, then

Qu(t)z(t) = U(t, 0)vu(w, bs) + hu(t, f), (¢ €R),

where
e, ) = U0 Z(VO)QUOby + [ Ut,Qu(6) (0

is a T-periodic continuous function.
2) If u=1, then
. h(1)-1 " 1
Qu()z(t) = U(t,0)e™ W W ; (;) TV Omswby)
+U(£,0)e=*WDQ,(0)w + hy(t, f) (t €R).

where

h(1)-1
hat, £) = ~U(t,0)e4%® 3 (3) v (0)e1@: ()b

e\ k1 b+ 1
t

+/ U(t,s)@1(s)f(s)ds
0

is a T-periodic continuous function.

Outline of Proof Since the proof of 1) is given in [5], we prove 2). The proof
follows from the representation of solutions in Theorem 3.1 and Translation formulae.
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Since V(0) = €™, it follows from Theorem 2.5 that, for any t € R,

A(A)-1 h(1)~1

N1 . !
Z (;) k+ lAk,A,BA(U), bf) = Z (—) ) mV(O)k‘lPAd(w, bf)- (]_O)
+1 .

T
k=0 k=0

Combining the above relation (10) and Lemma 3.1, we obtain

h(A)—1

*p(t) (t>k+1 © Ay fa(w, by)
e - w, 0f
s T k+ kM

h(1)-1

= Uft, 0)6_$W(1) (i> V(0),1 Pd(w, bs).
k"o T

Since Q,(0) = _ A€a1(4) Py and Q1(8)z(t) = 350, (4) ZA(E), We have the representa-
tion of Q1(t)z(t) in the theorem. ‘ o
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