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Abstract.
A polynomial optimizaton problem whose objective function is represented as a sum of
positive and even powers of polynomials, called a polynomial least squares problem, is con-
sidered. Methods to transform a polynomial least square problem to polynomial semidefi-
nite programs to reduce degrees of the polynomials are discussed. Computational efficiency
of solving the original polynomial least squares problem and the transformed polynomial
semidefinite programs is compared. Numerical results on selected polynomial least square
problems show better computational performance of a transformed polynomial semidefinite
program, especially when degrees of the polynomials are larger.

Key words.
Nonconvex optimization problems, polynomial least squares problems, polynomial semidef-
inite programs, polynomial second-order cone programs, sparsity.

1 Introduction
We consider solving a polynomial least squares problem

minimize $\sum_{i\in M}f_{i}(x)^{2pt}$
, (1)

where $f_{i}(x)(i\in M)$ are polynomials in $x\in R^{n},$ $p_{i}\in\{1,2, \ldots\}(i\in M)$ and $M=$
$\{1,2, \ldots, m\}$ . The problem (1) is a polynomial optimization problem (POP) with an objec-
tive function represented as a sum of positive and even powers of polynomials. In particular,
if $p_{i}=1(i\in M)$ , the problem (1) becomes a standard nonlinear least squares problem:

minimize $\sum_{i\in M}f_{i}(x)^{2}$
. (2)

The nonlinear least squares problem (2) has been studied extensively and many methods
have been proposed. Popular approaches for nonlinear least squares problems are the Gauss-
Newton and the Levenberg-Marquardt methods, which find a local (not global in general)
minimum of (2). See, for example, [24]. As opposed to finding a local minimum of (2)
in those existing methods, we propose global approaches for a more general form (1) of
polynomial least squares problems.

The number of variables, the degree of polynomials, and the sparsity of polynomials
of the problem (1) determine its solvability as a POP. Solving the least squares problem
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(1) using the semidefinite programming (SDP) relaxatlon proposed by Lasserre [19], which
is called the dense SDP relaxatlon in this paper, is so expensive that only small to some
medium-sized problems can be handled, despite the powerful convergence result in theory. A
sparse SDP relaxation for solving correlatively sparse POPs wae proposed in [29] to overcome
this computational dfflculty, and shown to be very effective in solving some large-scale
POPs. Unconstrained POPs with the correlative sparsity could be solved up to $n=1000$
by the sparse SDP relaxation in [29]. The convergence result of the sparse SDP relaxation
applied to correlatively sparse POPs in [20] supports the use of the sparse SDP relaxation.
We should mention that the sparse SDP relaxation provides lesv accurate solutions than the
dense SDP relaxation in general. Exploiting the sparsity of polynomials is, nevertheless,
essential when solving large-scale POPs. If the sparsity is not utilized, the size and the
degree of polynomial optimIzation problems that can be solved is limited to small and
medium-sized problems.

Most of computational challenges for solving POPs come $hom$ the fact that the size of
the resulting SDP relaxation problem is too large to htdle with SDP solvers such as CSDP
[2], SDPA [4], SDPT3 [27], $\bm{t}dSeDuMi[26]$ . Various techniques thus have been introduced
to increase the size of problems that can be solved. The sparsity of POPs was utilized to
reduce the size of the resulting SDP relaxation problems $[14, 29]$ . bansfomation of POPs
to easy-to-htdle formulations for acertaln class of prob.lems was also studied. For lnstance,
it is shown in [13] that second-order cone programming can be used efficiently for aclass of
convex POPs.

The problem (1) ct be transformed to apolynomial SDP, $i.e$ . aproblem of minimiz-
ing apolynomial objective function subject to polynomial matrix inequalities, to improve
computational efficiency. Although polynomial SDPs arise in many applications $\ln$ system
and control theory, their global optimization has not been dealt wlth extensively. Recently,
solving polynomial SDPs with the use of SDP relaxationv $ha8$ been studied in [7, 8, 15]. The
aim of this paper is to show how (1) is transformed to various polynomial SDPs $\bm{t}d$ to com-
pare the computatlonal performance of solvlng the transformed problems with solving the
problem (1) itself. We also present an efficient polynomial SDP formulation among them.
In both the original and transformed formulations, valld polynomial matrix inequalities are
added to construct apolynomial SDP of $increa\epsilon ed$ size and the resulting polynomial SDP
is linearized, which is then solved by aprimal-dual interior-polnt method. We discuss the
effects of the sparsity, the size of SDP blocks, and the size of the coefficient matrix of the
linearized SDP on the computational performance.

Solving the original problem is compared with solvlng atransformed polynomial SDP
numericaUy using SparsePOP [28]. Recent advtcement in the study of POPs has ac-
companied by software packages implementing solution methods for POPs. SOStools [25],
GloptiPoly [6], and SparsePOP are developed currently. SparsePOP Is acollection of matlab
modules utilizing the correlative sparsity structure of polynomlals. The size of SDP created
by SparsePOP is thus smaller than that of GloptiPoly, which makes it possible to solve
larger-sized problems. One of other features of SparsePOP is that it can handle semidef-
inite constraints directly without converting them into inequality or equality polynomial
constraints.

$Thi_{8}$ paper is orgtized as follows: After introducing symbols $\bm{t}d$ notation, we present
several ways of formulating the problem (1) as polynomlal SDPs in Section 2. In Srtion 3,
asparse SDP relaxation of apolynomial SDP formulatlon is described. Section 4includes
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comparison of various polynomial SDPs in terms of degrees of the polynomials, the sparsity,
the size of the resulting SDPs, and the relaxation orders used to solve the polynomial
SDPs. In Section 5, numerical experiments are shown. Concluding remarks are presented
in Section 6.

2 Various formulations of the polynomial least squares
. problems

2.1 A sparse POP formulation
Let $\mathbb{R}^{n},$ $\mathbb{Z}_{+}$ and $\mathbb{Z}_{+}^{n}$ denote the n-dimensional Euclidean space, the set of nonnegative integer
numbers and the set of n-dimensional nonnegative integer vectors, respectively. For every
$\alpha\in \mathbb{Z}_{+}^{n}$ and every $x=(x_{1}.x_{2}, \ldots,x_{n})\in \mathbb{R}^{n},$ $x^{\alpha}$ denotes a monomial $x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\cdots x_{n}^{\alpha_{n}}$ .
Let us denote $S^{r}$ and $S_{+}^{r}$ the space of $r\cross r$ symmetric matrices and the cone of $r\cross r$

positive semidefinite symmetric matrices, respectively. We use the notation $S\succeq O$ to mean
$S\in S_{+}^{r}$ . Let $N=\{1,2, \ldots , n\},$ $M=\{1,2, \ldots , m\}$ , and $C_{1}\subseteq N(i\in M)$ . The sparsity of
polynomials in the polynomial least squares problem (1) is represented using $C_{i}\subseteq N$ . Let
$x_{c_{:}}=$ $(x_{j} : j\in C_{1})(i\in M)$ the column vector variable of the elements $x_{j}$ , and $\mathbb{R}^{C}$ the
$\# C_{i}$-dimensional Euclidean space of the vector variable $x_{C_{l}}$ . We assume that each $f_{1}(x)$ is
a polynomial in variables $x_{j}(j\in C_{i})$ , and use the notation $f_{i}(x_{C_{l}})$ instead of $f_{i}(x)(i\in M)$ .
Then, (1) can be written as

minimize $\sum_{i\in M}f_{1}(x_{c_{:}})^{2p}$
. (3)

We call (3) a sparse POP formulation of the polynomial least squares problem (1).

2.2 Polynomial SDP formulations of the polynomial least squares
problem

A different approach of solving (3) is formulating the problem as a polynomial SDP whose
degree is lower than (3). For description of a polynomial SDP, let $\mathcal{F}$ be a nonempty finite
subset of $\mathbb{Z}_{+}^{n’}$ for some $n’\geq n,$ $N’=\{1, \ldots, n’\}$ , and $F_{\alpha}\in S^{r}(\alpha\in \mathcal{F})$ . A polynomial
$F(y_{C},)$ of $y_{C},$ $=(y_{j} : j\in C’)$ , for some $C’\subseteq N’$ , with coefficients $p_{\alpha}\in S^{f}(\alpha\in S^{r})$ is
written as

$F(y_{C’})= \sum F_{\alpha}y_{C}^{\alpha},$ . (4)
$\alpha\in \mathcal{F}$

We call $F(y_{C},)$ a symmetric polynomial matm, and $\mathcal{F}$ a support of $F(y_{C},)$ if $F(y_{C},)$ is
represented as (4). Note that each element $F_{k\ell}(y_{C},)$ of $F(y_{C},)$ is a real-valued polynomial
in $y_{C}$, and that $F_{u}(y_{C},)=F_{\ell k}(y_{C},)(1\leq k<\ell\leq r)$ . When $7:=1,$ $F(y_{C},)$ coincides with
a real-valued polynomial in $y_{C},$ .

Let $K=\{1, \ldots, m’\}=K_{o}\cup K_{c}$ for some $m’\in \mathbb{Z}_{+},$ $C_{i}’\subseteq N’(i\in K)$ , and let $F_{i}(y_{C_{l}’})$ be a
symmetric polynomial matrix with $r_{i}\cross r_{i}$ coefficient matrices $(i\in K_{c})$ . Then, a polynomial
SDP can be described as

minimize
$\sum_{j\in K_{o}}g_{j}(y_{C_{j}’})$

subject to $F_{i}(y_{C’}.)\succeq O(i\in K_{c})$ , (5)
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We may regard the sparse POP formulation (3) of the polynomial least squares problem
as a special case of (5) where we take $n’=n,$ $m’=m,$ $N’=N,$ $K=K_{o}=M,$ $C_{i}’=C_{i}$

$(i\in K),$ $g_{j}(y_{C_{j}’})=f_{j}(x_{C_{j}})^{p_{j}}(j\in K_{0})$ and $K_{c}=\emptyset$ .
To derive polynomial SDPs which are equivalent to the polynomial least squares problem

(3), we utilize a special case of the so-called Schur complement relation:

$s_{1}s_{2}\geq w^{T}w,$ $s_{1}\geq 0$ and $s_{2}\geq 0$ if and only if $(\begin{array}{ll}s_{l}I ww^{T} s_{2}\end{array})\succeq O$ (6)

holds for every $s_{1}\in \mathbb{R},$ $s_{2}\in \mathbb{R}$ and $w\in \mathbb{R}^{k}$ , where $I$ denotes the $k\cross k$ identity matrix. By
letting $k=1,$ $s_{1}=1,$ $s_{2}=t_{i}$ and $w=f_{i}(x_{C_{l}})$ , it $f_{0}nows$ that

$t_{i}\geq f_{i}(x_{C_{1}})^{2}$ if and only if $(\begin{array}{ll}1 f_{i}(x_{C_{t}})f_{i}(x_{C}) t_{i}\end{array})\succeq O$

holds for every $i\in M$ . Using this equivalence, we can transform the polynomial least
squares problem (3) into the following equivalent polynomial SDP:

minimize
$\sum_{j\in M}P_{j}^{j}$

subject to ( $f_{\dot{\iota}}(x_{C_{j}})1$ $f_{i}(x_{C_{j}})t_{i})\succeq O(j\in M)$ .
(7)

The problem (7) can be represented in the form of (5) if we let $n’=n+m,$ $m’=m$,
$N’=\{1, \ldots,n’\},$ $K=K_{o}=K_{c}=M$ , $C\text{\’{i}}=C_{i}\cup\{n+i\}(i\in K),$ $g_{j}(y_{C_{j}’})=y_{n+j}^{PJ}(j\in K_{o})$

and
$F_{i}(y_{C_{t}’})=(\begin{array}{ll}1 f_{i}(x_{C})f_{i}(x_{C}..) t_{i}\end{array})(i\in K_{c})$.

The equivalence between (3) and the polynomial SDP (7) can be shown as Lemma 2.1.

Lemma 2.1. The POP (3) is equivalent to the polynomial SDP (7).

Proof: Suppose that $v= \sum_{i\in M}f_{i}(x_{C_{i}})^{2p:}$ . Let $t_{i}=f_{i}(x_{C_{t}})^{2}(i\in M)$ . Then $(x,t)\in$
$\mathbb{R}^{n+m}$ is a feasible solution of the polynomial SDP (7) which attains the objective value $v$ .
Conversely, suppose that $(x, t)\in \mathbb{R}^{n+m}$ is a feasible solution of the polynomial SDP (7)
with the objective value $v= \sum_{i\in M}t_{1}^{P:}$ . Then, it follows from $t_{i}\geq f_{i}(x_{C_{i}})^{2}(i\in M)$ that

$v= \sum_{i\in M}t_{i}^{p}\geq\sum_{i\in M}f_{i}(x_{C_{l}})^{2p}$
.

Therefore, we have shown the equivalence of (3) and the polynomial SDP (7). $\blacksquare$

Using the relation (6) in the same way, we obtain some other polynomial SDP formula-
tions:

$minimize_{O}$

$\sum_{j=1}^{m}t_{j}$

$f_{i}(x_{C_{1}})^{p_{i}})\succeq O(i\in M),$

$\}$ (8)
subject to $(f_{1}\cdot(x_{C}.)^{p}1.\cdot$

$t_{i}$

28



$subjecttominimize$

$(\begin{array}{lllllll}1 0 0 f_{1}(x_{C_{1}})^{p_{1}}f_{1}(x_{C_{2}})^{p2}0 1 \ddots 0 \vdots\vdots \vdots \ddots \vdots \vdots 0 0 \ddots 1 f_{m}(x_{C_{m}})^{p_{m}}f_{l}(x_{C_{1}})^{P1} f_{1}(x_{C_{2}})^{p_{2}} f_{m}(x_{C_{m}})^{Pm} t\end{array})t\succeq O$. $\}(9)$

As variations of (7), (8) and (9), we also obtain the polynomlal SDPs:

minimize
$subjecttoz$ $(\begin{array}{lll}j t_{i} f_{i}(x_{C_{i}}) f_{i}(x_{C}.) t_{i}\end{array})\sum_{=1}^{m}t_{j}^{2p_{j}}\succeq O,$

$t_{i}\geq 0(i\in M)$ ,
(10)

mlnimize $\sum_{j=1}^{m}t_{j}^{2}$

(11)
subject to $(\begin{array}{ll}t_{i} f_{i}(x_{C_{l}})^{Pl}f_{i}(x_{C})^{p}\cdot t_{|}\cdot\end{array})\succeq O,$ $t_{i}\geq 0(i\in M)$ ,

$subjecttominimize$

$t\geq 0.(\begin{array}{lllll}t 0 \cdots 0 f_{1}(x_{C_{1}})^{p_{1}}f_{1}(x_{C_{2}})^{p_{2}}0 t \cdots 0 \vdots\vdots \vdots \vdots \vdots 0 0 \cdots t f_{m}(x_{C_{m}})^{p_{m}}f_{1}(x_{C_{1}})^{p_{1}} f_{1}(x_{C_{2}})^{p2} .\cdot f_{m}(x_{C_{m}})^{Pm} t\end{array})t^{2}\succeq O,$$\}(12)$

Intuitively the formulating the problem (3) as (10), (11) and (12) does not seem to have
advantages in comparison with (7), (8) and (9), respectively, because the degree of the
objective function is doubled and more auxiliary variables $t_{i}(i\in M)$ and $t$ are contained
in the diagonal of polynomial matrix inequality constraints. In Section 4, we show that the
size of the SDP relaxation of (10) is the same as the size of the SDP relaxation of (7), but
the number of nonzeros in the coefficient matrix is slightly larger and the accuracy attained
is worse than the one by the relaxation problem of (7) through numerical results.

We can rewrite the polynomial SDPs (10), (11) and (12) as the following polynomial
second order cone programs (SOCPs):

minimize $\sum_{j=1}^{m}t_{j}^{2p_{j}}$ subject to $(t_{i}, f_{i}(x_{C_{1}}))\in \mathcal{K}^{2}(i\in M)$. $\}$ (13)

minimize $\sum_{j=1}^{m}t_{j}^{2}$ subject to $(t_{i}, f_{i}(x_{C_{l}})^{p:})\in \mathcal{K}^{2}(i\in M)$ . $\}$ (14)

minimize $t^{2}$ subject to $(t, f_{1}(x_{C_{1}})^{p\iota},$
$\ldots,$

$f_{m}(x_{C_{m}})^{Pm}))\in \mathcal{K}^{1+m}$ . (15)

Here $\mathcal{K}^{2}$ and $\mathcal{K}^{1+m}$ denote 2- and $(m+1)$-diensional SOCP cones. We may replace the
objective function $t^{2}$ of the last SOCP (15) by $t$ .

minimize $t$ subject to $(t, f_{1}(x_{C_{1}})^{p_{1}},$
$\ldots,$

$f_{m}(x_{C_{m}})^{p_{m}}))\in \mathcal{K}^{1+m}$ . (16)
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When all polynomials $f_{i}(x_{C_{i}})(i\in M)$ are linear and $P\iota=1(i\in M)$ , the problem (16) is,
in fact, a linear SOCP that can be directly solved by a primal-dual interior-point method
without using any relaxation technique. In such a case, solving (16) is more efficient than
solving all the other formulations (7) $-(14)$ . Also for some special case of polynomial least
squares problems with all $f_{i}(x_{C_{*}}.)(i\in M)$ linear and each $p_{i}=2^{q}$ for some $q_{i}=0,1,$ $\ldots$ ,
they can be transformed to linear SOCPs. See [13] for more details.

In general cases where some of $f_{i}(x_{c_{:}})s$ are nonlinear polynomials, (13), (14) and (15)
become polynomial (but not linear) SOCPs. The sparse SDP relaxation method proposed
by Kojima et al. $[16, 17]$ can be applied to these SOCPs. A basis of the Euclidean space
where the underlying second-order cone lies is chosen in the method, and different choices
of basis induce different SDP relaxation problems. When the standard Euclidean basis
consisting of the unit coordinate vectors is chosen, the SDP relaxation problems induced
from the SOCPs (13), (14) and (15) can be shown to be equivalent to those induced from
(10), (11) and (12), respectively, by applying the SDP relaxation method [15] described in
Section 3. Therefore, we do not consider the polynomial SOCP formulations (13), (14) and
(15) in the subsequent discussion, and we focus on the polynomial SDP formulations (7) $-$

(12). We show in Section 4 that the polynomial SDP formulation (7) is more efficient than
all others.

3 A sparse SDP relaxation of the polynomial SDP
We briefly describe the sparse SDP relaxation $[15, 29]$ of the sparse POP formulation (3)
and all polynomial SDP formulations (7) $-(12)$ of the polynomial least squares problem (3).
Consider (5) to deal with them simultaneously. For example, (5) represents (3) if $n’=n$,
$m^{j}=m,$ $N’=N,$ $K=K_{o}=M,$ $C_{i}’=C_{i}(i\in K),$ $g_{j}(y_{C_{j}’})=f_{j}(x_{C_{j}})^{p_{j}}(j\in K_{o})$ and $K_{c}=\emptyset$ ,
and (7) lf $n’=n+m,$ $m’=m,$ $N’=\{1, \ldots , n’\},$ $K=K_{o}=K_{c}=M,$ $C_{i}’=C_{i}\cup\{n+i\}$

$(i\in K),$ $g_{j}(y_{C_{j}’})=y_{n+j}^{p_{j}}(j\in K_{o})$ and

$F_{i}(y_{C_{l}’})=(\begin{array}{ll}1 f_{i}(x_{c_{\iota}})f_{i}(x_{C_{l}}) t_{i}\end{array})(i\in K_{c})$ .

The sparsity of polynomIals in (5) is flrst considered with a graph $G(N’, E)$ representing
the sparsity structure of (5). More specifically, a graph $G(N’, E)$ is constructed such that
a pair $\{k, \ell\}$ with $k\neq\ell$ selected from the node set $N’$ is an edge or $\{k, \ell\}\in E$ if and
only if $k\in C_{i}’,$ $\ell\in C_{i}’$ for some $i\in K$ . We call the graph $G(N’, E)$ a cormelative sparsity
pattem $(csp)$ graph. Each $C_{i}’$ is a clique of $G(N’, E)(i\in K)$ . The next step is to generate a
chordal extension $G(N’, E’)$ of $G(N’, E)$ . (For the definition and basic properties of chordal
graphs, we refer to [1]). For simplicity of notation, we assume that C\’i, . . ., $C_{m}’$ form the set
of maximal cliques of a chordal extension $G(N’, E’)$ of the underlying csp graph $G(N’, E)$ of
the polynomial SDP (5); if this is not the case, we replace $C_{i}’$ by a maximal clique containing
C\’i. For more details, see [29].$\cdot$

For every $C\subset N’$ and $\psi\in \mathbb{Z}+$

’ we define

$\mathcal{A}_{\psi}^{C}$ $=$ $\{\alpha\in \mathbb{Z}_{+}^{n}:$ $\alpha_{j}=0$ if $j\not\in C,$ $\sum_{i\in C}\alpha_{i}\leq\psi\}$ .
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Depending on how a column vector of the monomials $y^{\alpha}$ is chosen, the sparse relaxation
[29] or the dense relaxation [19] is derived. The dense relaxation is obtained using a column
vector $u(y, \mathcal{A}_{\psi}^{N’})$ that contains all the possible monomials $y^{\alpha}$ of degree up to $\psi$ . Selecting
a column vector $u(y, \mathcal{A}_{\psi}^{C})$ of the monomials $y^{\alpha}(\alpha\in \mathcal{A}_{\psi}^{C})$ where elements $y^{\alpha}(\alpha\in \mathcal{A}_{\psi}^{C})$

are arranged in lexicographically increasing order of $\alpha’ s$ leads to the sparse SDP relaxation
if we take $C\subset N’$ with a small cardinality or the dense SDP relaxation if we take $C=N’$.
The first element of the column vector $u(y, \mathcal{A}_{\psi}^{C})$ is always $y^{0}=1$ since $0\in \mathcal{A}_{\psi}^{C}$ . The size

of $u(y, \mathcal{A}_{\psi}^{N’})$ of the dense relaxation is $(\begin{array}{l}n’+\psi\psi\end{array})$ , and the size of $u(y,\mathcal{A}_{\psi}^{C})$ of the sparse

relaxation is $(\begin{array}{l}\# C+\psi\psi\end{array})$ . As a result, the size of $u(y, \mathcal{A}_{\psi}^{N’})$ of the dense relaxation is

always larger than that of $u(y,\mathcal{A}_{\psi}^{C})$ of the sparse relaxation unless $C=N’$.
Let $\omega_{0}=\lceil\deg(\sum_{j\in M}g_{j}(y_{C_{j}’}))/2\rceil,$ $\omega_{i}=\lceil\deg(F_{i}(y_{C’}))/2\rceil$ for every $i\in K_{c}$ , and

$\omega_{\max}=\max\{w_{i} : i\in\{0\}\cup K_{c}\}$ . (17)

Then the polynomial SDP (5) is transformed into an equivalent polynomial SDP

minimize $\sum_{j\in K_{o}}g_{j}(y_{C_{j}’})$

subject to $u(y,\mathcal{A}_{\omega-w}^{C_{i}’}:)u(y, \mathcal{A}_{w-w:}^{C’})^{T}\otimes F_{i}(y_{C_{l}’})\succeq O(i\in K_{c})$, (18)
$u(y,A_{4}^{C_{j}’})u(y, A_{w}^{C_{j}’})^{T}\succeq O(j\in K)$

with some relaxation order $\omega\geq\omega_{\max},$ $where\otimes denotes$ the Kronecker product of the two
matrices $u(y, \mathcal{A}_{w-\omega_{l}}^{C’})u(y, A_{w-w}^{C’}:)^{T}$ and $F_{i}(y_{C_{\ell}},)$ .

The matrices $u(y,\mathcal{A}_{\omega-\omega_{l}}^{C_{i}’})u(y, \mathcal{A}_{\omega-\omega_{l}}^{C_{1}’})^{T}(i\in K_{c})$ and $u(y, A_{\omega}^{C_{f}’})u(y,A_{\omega}^{C_{j}’})^{T}(j\in K)$ are
positive semidefinite symmetric $matrice8$ of rank one for any $y$ , and the element in the
upper-left corner of the matrices is 1. The equivalence between the polynomial SDP (5)
and the polynomial SDP (18) is therefore shown.

Since the objective function of the polynomial SDP (18) is a real-valued polynomial and
the left hand side of the matrix inequality constraints of the polynomial SDP (18) are real
symmetric polynomial matrices, we can rewrite the polynomial SDP (18) as

minimize $\sum_{-}\tilde{c}_{0}(\alpha)y^{\alpha}$

$\alpha\epsilon \mathcal{F}$

subject to $L_{i}(0, \omega)-\sum_{-}L_{i}(\alpha,\omega)y^{\alpha}\succeq O(i\in K_{c})$ ,
$\alpha\in \mathcal{F}$

$M_{j}(0, \omega)-\sum_{\alpha\epsilon\overline{\mathcal{F}}}M_{j}(\alpha,\omega)y^{\alpha}\succeq O(j\in K)$
.

for some $\tilde{\mathcal{F}}\subset \mathbb{Z}_{+}^{n}\backslash \{0\},\tilde{c}_{0}(\alpha)\in \mathbb{R}(\alpha\in\tilde{\mathcal{F}})$ and real symmetric matrices $L_{i}(\alpha,w),$ $M_{j}(\alpha,w)$

$(\alpha\in\tilde{\mathcal{F}}\cup\{0\}, i\in K_{c}, j\in K)$ . Note that the size of the matrices $L_{i}(\alpha,\omega),$ $M_{j}(\alpha,\omega)$

$(\alpha\in\tilde{\mathcal{F}}\cup\{0\}, i\in K_{c}, j\in K)$ and the number of monomials $y_{\alpha}(\alpha\in\tilde{F})$ are determined by
the relaxation order $w$ . Each monomial $y^{\alpha}$ is replaced by a single real variable $z_{\alpha}$ , and we
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have an SDP relaxation problem of the polynomial SDP (5), called sparse SDP relaxation:

mlnlmlze
$\sum_{\alpha\in\overline{\mathcal{F}}}\tilde{c}_{0}(\alpha)z_{\alpha}$

subject to $L_{i}(0, \omega)-\sum L_{i}(\alpha,w)z_{\alpha}\succeq O(i\in K_{c})$, (19)
$\alpha\in\overline{\mathcal{F}}$

$M_{j}(0,w)- \sum_{\alpha\epsilon\overline{\mathcal{F}}}M_{j}(\alpha,\omega)z_{\alpha}\succeq O(j\in K)$
.

Here $y^{0}=z_{0}=1$ . We mention that the dense SDP relaxation is obtained if we take
$C_{1}^{j}=N’(i\in K)$ in (18).

We call each $\sum_{\alpha\in\overline{\mathcal{F}}}L_{i}(\alpha,w)z_{\alpha}$ a localizing matrix , and each $\sum_{\alpha\in\overline{\mathcal{F}}}M_{j}(\alpha,\omega)z_{\alpha}a$

moment matnx in (19). If $F_{i}(y_{C_{i}’})$ is $r_{i}\cross r_{i}$ , then the size ($=the$ number of rows $=the$

number of columns) of the localizing matrix $\sum_{\alpha\in\overline{\mathcal{F}}}L_{i}(\alpha,w)z_{\alpha}$ is

$(\begin{array}{l}\# C_{i}’+\omega-\omega_{i}\omega-\omega_{i}\end{array})r_{i}$

$(i\in K_{c})$ . Similarly, the size of the moment matrix $\sum_{\alpha\in\overline{\mathcal{F}}}M_{j}(\alpha,w)z_{\alpha}$ is

$(\# C_{j\omega}’+w)$

$(j\in K)$ . Since the sizes of the localizing and moment matrices affect very much compu-
tational performance, their sizes of the various formulations in Section 2 are compared in
Section 4.

The SDP relaxation problem (19) is solved by SeDuMi in our numerical experiment
whose results are reported in Section 5. The problem is formulated as the dual standard
form

$maximizeb^{T}\epsilon$ subject to $c-A^{T}\epsilon\succeq 0$ . (20)

Here each column index of $A^{T}$ (hence each row index of $A$) corresponds to an $\alpha\in\tilde{\mathcal{F}},$
$s$

the column vector of $z_{\alpha}(\alpha\in\tilde{\mathcal{F}})$ and $b$ the column vector of $\tilde{c}_{0}(\alpha)(\alpha\in\tilde{\mathcal{F}})$ . Note that
the coefficient matrices $L(\alpha, w),$ $M(\alpha,\omega)(\alpha\in\tilde{\mathcal{F}}\cup\{0\})$ , which is called SDP blocks in
the numerical results in Section 5, are reshaped into column vectors and arranged in $c$ and
$A^{T}$ . Computational performance of solving (20) with SeDuMi depends on the size of SDP
blocks, the number of variables, and the sparsity of the coefficient matrix $A$ . The most
time-consuming part in primal-dual interior-point methods is solving the Schur comple-
ment matrix that is constructed from $A$ . For details on the relationship between the Schur
complement matrix and $A$ , we refer to [12]. Whether formulating polynomial SDPs with a
small number of large-sized SDP constraints is a better approach than formulating polyno-
mial SDPs with a large number of small-sized SDP constraints should be decided based on
the size of SDP block, the number of variables, and the sparsity of the Schur complement
matrix. This will be discussed in the next Section.
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4 Comparison of various formulations
There exist several advantages of formulating the problems (3) as polynomial SDPs. We
compare the maximum degree of polynomials, the minimum relaxation oder defined by
(17), the ability to exploit the sparsity, the size of the moment matrices, and the size of the
localizing matrices of the various formulation presented in Secion 2.

As seen in Section 3, the maximum of the degree of the objective function and the
degrees of polynomial SDP constraints, determine the minImum relaxation order which is
denoted as $w_{\max}$ in (17). We usually choose the value $w_{\max}$ for the relaxation order $\omega$ when an
SDP relaxation problem (19) of the given polynomial SDP (or POP) (5) is constructed. The
chosen value $\omega_{\max}$ may not be large enough to get an accurate optimal solution in some cases.
If $a$ -solution of desired accuracy is not obtained after the application of SparsePOP, then $\omega$

is increasesd by 1 and solve the SDP relaxation problem with the updated relaxatIon order
$\omega$ again. This does not guarantee attaining an optimal solution in theory, but a solution of
better accuracy is usually obtained in practice. In view of computational efficiency, however,
taking a smaller value for the relaxation order $\omega$ works more efficiently than a large value
because the size of the SDP relaxation problem grows very rapidly as we take a increasingly
large value for the relaxation order $\omega$ . It is thus important to have a smaller minimum
relaxation order $w_{\max}$ that leads to a smaller size of the starting SDP relaxation problem.
In Table 1, the maximum degree of polynomials and the minimum relaxation order for the
formulations (3) and (7) $-(12)$ are summarized. The following notation is used.

$\overline{\delta}=\max\{p_{i}\deg(f_{i}(x_{C_{i}}))(i\in M)\}$ ,
$\hat{\delta}=\max\{\deg(f_{i}(x_{C_{1}}))(i\in M), p_{i}(i\in M)\}$.

Table 1: Comparison of the maximum degree of polynomials and the relaxation order of
the various formulations.

In Table 1, the sparse POP formulation (3) has the largest maximum degree of $polyn\infty$

mials among the formulations, and the sparse polynomial SDP formulations (7) and (10)
have the smallest maximum degree. In particular, the maximum degree $2\overline{\delta}$ in (3) is at least
twice larger than the other formulations. Since the smallest relaxation order that can be
taken is roughly the half of the maximum degree of polynomials, we see that the relaxation
order for the sparse polynomials SDP formulations (7) and (10) is the smallest. This is the
main advantage of (7) and (10) in comparison with (3).

Table 2 shows how the relaxation order $w$ , the degree of polynomials $f_{i}(x_{C:}),$ $p_{i}(i\in M)$

and the size of maximal cliques $C_{i}(i\in M)$ determine the maximum size of moment matrices
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and the size of localizing matrices. We use the following notation:

$\gamma_{\max}=\max\{\# C_{j}(j\in K)\}$ ,
$\hat{\eta}_{i}=$ $\lceil\deg(f_{i}(x_{c_{:}}))/2\rceil(i\in M)$ ,
$\overline{\eta}_{i}=$ $\lceil p_{1}\cdot\deg(f_{i}(x_{C_{1}}))/2\rceil(i\in M)$ ,

$\overline{\eta}=$ $\lceil\overline{\delta}/2\rceil=\max\{\overline{\eta}_{i}(i\in M)\}$.
In addition, $w^{(3)},\omega^{(7)},w^{(8)},w^{(9)}$ indicate the relaxation order used for (3), (7)&(10), (8)&
(11) and (9)&(12), respectively.

Table 2: Comparison of various formulations. $N/A$ : not applicable.

Recall that the relaxation order $w^{(3)},w^{(7)},w^{(8)},w^{(9)}$ must satisfy

$\omega^{(k)}\geq\omega_{\max}^{(k)}(k=3,7,8,9)$ ,

and that

$w_{\max}^{(7)}\leq\omega_{\max}^{(8)}=w_{\max}^{(9)}<w_{\max}^{(3)}$ .

Hence, if we take $\omega^{(k)}=\omega_{\max}^{(k)}(k=3,7,8,9)$ for the starting SDP relaxation for the for-
mulations, the largest size of moment matrices of (7) and (10) is the smallest among the
largest size of moment matrices produced $hom$ the formulations, and the largest size of
moment matrices of (3) is the largest although (3) does not involve any localizing matrices.
We confirm again that the sparse SDP formulations (7) and (10) have an clear advantage
over the sparse POP formulation (3) and the other sparse SDP formulations (8)&(11).

Let us now compare (7)&(10) and (8)&(11) further. When $p_{i}=1(i\in M)$ , there is
no difference in these two pairs of formulations; (7) $\equiv(8)$ and (10) $\equiv(11)$ . Suppose that
$p_{i}=2(i\in M)$ . Then, $2\hat{\delta}=\overline{\delta}$. It follows that $2w_{\max}^{(7)}-1\leq\omega_{\max}^{(8)}$ . Consequently, the size
of the starting SDP relaxation In the sparse polynomial SDP formulations (7) and (10) is
smaller than that in the sparse polynomial SDP formulations (8) and (11).

The sparsity of polynomials in the formulations (9) and (12) can not be exploited, thus,
the maximum size of moment matrix and the size of the localizing matrices are expected to
become larger than (7), (10), (8) and (11) unless $\gamma_{\max}=n$ .

The pairs of polynomial SDP formulations (7)&(10), (8)&(11), (9)&(12) are equiva-
lent in the maximum degree, the maximum size of moment matrices, and the size of localizing

34



matricev as indicated in Table 2. Their computational accuracy is, however, different. In
fact, (7), (8), and (9) provide higher accuracy than their counterpart. As an example, the
comparison of numerical accuracy for the Broyden tridiagonal fumction between (7) and (10)
is shown in Table 3. We see that (7) results in smaller relative errors. Notice that the size
of $A$ for (7) is equivalent to that for (10).

Table 3: Numerical results of the Broyden tridiagonal function. $x_{1}\geq 0$ is added. $n$ : the
number of variables, $\omega$ : the relaxation order, sizeA: the size of the coefficient matrix $\lambda$ ,
$\#nzA$ : the number of nonzero elements of $A$ , sdpBl: the max (average) size of SDP blockv,
rel.err: relative error.

As observed with the size of the moment and localizing matrices in Table 2, computa-
tional accuracy in Table 3, the relaxation order in Table 1, we use (7) to compare with (3)
numerically in Section 5.

5 Numerical results
We compare numerical results of the spare POP formulation (3) and the sparse polynomial
SDP formulation (7) (PSDP) of several polynomial least squares problems from [3, 5, 9, 18,
22, 23, ?]. Problems for the numerical tests are randomly generated problems, the Broyden
tridiagonal function, the generalized Rosenbrock function, the chained Wood function, the
Broyden banded function, the Watson function, the partition problem described in [9]. All
the problems were solved by Matlab codes using SparsePOP [28] and SeDuMi [26] on the
hardware Power Mac G5 of 2.5 GHz with 2GB memory. The notation in Table 4 is used
for the description of numerical experiments.

A smaller value of the starting relaxation order $\omega=w_{\max}$ given by (17) for the sparse
PSDP formulation (7) than the sparse POP formulation (3), as shown in Section 4, does
not always mean better performance of (7). Also the relaxation order $\omega=\omega_{\max}$ may not
be large enough to get optimal solutions with high accuracy. In such a case, increasing the
relaxation order, which gives an impact on numerical performance, and solving the problem
again is necessary. Note that no theoretical result on the speed of the convergence is known,
although the convergence of the SDP relaxation of increasing size to the optimal vaJue of
the POP was proved by [19].
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$n$ the number of variables
sizeA the size of the coefficient matrix $A$ of the SDP

relaxation problem in the SeDuMi input format (20)
$w$ the relaxation order
#nz the number of nonzeros in the coefficient matrix $A$ of the

SDP relaxation problem in SeDuMi input format (20)
sdpBl the maximum size (average size) of SDP blocks in the

coefficient matrix $A$

rel.err the relative error of SDP and $POP/PSDP$ objective values
cpu the cpu time to solve SDP by SeDuMi in seconds

Table 4: Notation.

We show the effects of the size of the coefficient matrix $A$ of the SDP relaxation problem
in the SeDuMi input format (20) (sizeA), the number of nonzero elements of $A$ (#nz), and
the size of SDP blocks of $A$ (sdpBl) on numerical performance. In the numerical experiments
comparing the sparse POP formulation (3) and the sparse polynomial SDP formulation (7),
we observe that the formulation that leads to larger sizeA, #nz and sdpBl takes longer
cpu time to find an optimal solution except the generalized Rosenbrock function. Among
the three factors, sizeA and #nz affect the computational efficiency more than sdpBl as
will be seen in Table 12. It should be mentioned that the three factors may not determine
computational efficiency completely particularly when cpu time is very small, for instance,
less than 5 seconds, for small-sized problems. SeDuMi usually takes a fixed amount of cpu
time regardless of the size of SDP, and finding an approximate solution of lower accuracy
may take shorter than obtaining an approximate solutions of higher accuracy. This will be
observed in some of the numerical tests on the generalized Rosenbrock function and a few
tests on the partition problem using transformation.

For numerical experiments with randomly generated polynomials, unconstrained prob-
lems with artificial correlative sparsity are generated randomly to observe the effects of
varying the degree and the correlative sparsity of polynomials. As described in Section 3,
the correlative sparsity of polynomials affects sizeA, $\#nzA$ and sdpBl. With a given clique
size $2\leq c\leq n$ , the sparsity pattern matrix $R$ is generated. More precisely, for every row
of $R,$ $c\cross c$ matrix of nonzero elements along the diagonal is constructed. Each row of
$R$ serves as cliques, $\{C_{1}, \ldots, C_{n-c+1}\}$ with $2\leq|C_{i}|\leq c(i=1, \ldots, n-c+1)$ . We then
generate a vector $g_{i}(i=1,2, \ldots, n)$ using random number generator in the interval $(- 1,1)$

for coefficients. Let
$f_{i}(x)=g_{i}^{T}u(x, \mathcal{A}_{d_{i}}^{c_{:}})(i=1, \ldots,\ell)$ ,

where $d_{i}$ denotes the degree of $f_{i}(x)$ . Then, we consider

minimize $\sum_{i=1}^{n+c}f_{1}(x_{C_{1}})^{2p_{l}}+\sum_{i=1}^{n}x_{i}^{2}$. (21)

where $f_{i}(x_{c_{i}})(i=1, \ldots, n+c)$ , instead of $(i=1, \ldots,n)$ , are added with $\sum_{i=1}^{\mathfrak{n}}x_{i}^{2}$ in order
to avoid multiple number of optimal solutions.

Tables 5 and 6 show numerical results for varying the degree of (21), the degree of $f_{i}(x_{c_{:}})$ ,
$n$ , and the size of maximum cliques. For all tested cases, sizeA, $\#nzA$ , and sdpBl of the
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sparse PSDP formulation (7) are smaller than the sparse POP formulation (3), providing
optimal solutions faster. In Table 6, $\omega=1$ is used for (7) while $\omega=4$ is used for (3), which
provided big differences in sizeA, $\#nzA$ , and sdpBl. As a result, cpu time for (7) is much
smaller than that of (3).

Table 5: Numerical experiments with randomly generated problems of degree 4 and 6.

The sparse POP formulation (3)
$p_{i}$ $d_{i}$ degree $n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu $c$

$2$ 2 8 30 4 $3404\cross 65048$ 76990 3524.8) 3.3e-8 26.1 3
2 2 8 50 4 $5804\cross 110308$ 130210 35(24.9) 1.3e-7 45.7 3
2 2 8 100 4 11804 $\cross 223458$ 263260 35(24.9) 1.2e-7 92.6 3

The sparse PSDP formulation (7)
$p_{i}$ $d_{i}$ degree $n$ $w$ sizeA $\#nzA$ sdpBl rel.err cpu $c$

$2$ 2 8 30 1 $347\cross 1896$ 2228 5(3.0) 1.5e-8 0.6 3
2 2 8 50 1 $587\cross 3216$ 3788 5(3.0) 1.2e-8 1.2 3
2 2 8 100 1 $1187\cross 6516$ 7688 5(3.0) 1.6e-8 2.2 3

Table 6: Numerical experiments with randomly generated problems of degree 8.

The Broyden tridiagonal function [22] is

$f(x)$ $=$ $((3-2x_{1})x_{1}-2x_{2}+1)^{2}+ \sum_{:=2}^{n-1}((3-2x_{i})x_{i}-x_{i-1}-2x_{i+1}+1)^{2}$

$+((3-2x_{n})x_{\mathfrak{n}}-x_{n-1}+1)^{2}$ .
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The numerical results of the Broyden tridiagonal function are shown in Table 7. The sparse
PSDP formulation (7) requires the relaxation order 2 to get accurate optimal solutions.
The sizeA, $\#nzA$ and sdpBl for the sparse PSDP formulation (7) with $w=2$ are larger
than those for the sparse POP formulation (3), taking longer to get an optimal solution.
An inequality constraint $x_{1}\geq 0$ is added to avoid numerical difficulty arising from multiple
number of solutions.

Table 7: Numerical results of the Broyden tridiagonal function.

The generalized Rosenbrock function [23] is written as

$f(x)=1+ \sum_{i=2}^{n}\{100(x_{i}-x_{i-1}^{2})^{2}+(1-x_{i})^{2}\}$ .

In Table 8, we notice that sizeA, $\#nzA$ , sdpBl of (7) are smaller than those of (3). Although
(7) took longer cpu time, the accuracy shown in the column of rel.err is better than (3).
The difference in cpu time, however, is small. An inequality constraint $x_{1}\geq 0$ is added as
for the Broyden tridiagonal function.

The chained Wood function [3] is

$f(x)$ $=$
$1+ \sum_{:\in J}(100(x_{i+1}-x_{i}^{2})^{2}+(1-x_{i})^{2}+90(x_{i+3}-x_{i+2}^{2})^{2}+(1-x_{i+2})^{2}$

$+10(x_{i+1}+x_{i+3}-2)^{2}+0.1(x_{t+1}-x_{i+3})^{2})$ ,

where $J=\{1,3,5, \ldots, n-3\}$ and $n$ is a multiple of 4. In Table 9, the sparse PSDP
formulation (7) takes longer to converge, and results in less accurate solutions for the tested
$n’ s$ except $n=1000$. We notice that sizeA, $\#nzA$ , sdpBl are larger in (7) than those of (3).

The Broyden banded function [22] is written as

$f(x)= \sum_{i=1}^{n}(x_{i}(2+5x_{i}^{2})+1-\sum_{j\in J_{*}}(1+x_{j})x_{j})^{2}$
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The sparse POP formulation (3)
$n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu

200 2 $1988\cross 7156$ 6957 6(6.0) 5.1e-5 1.9
500 2 $4988\cross 17956$ 17457 6(6.0) 1.6e-4 4.1

1000 2 $9988\cross 35956$ 34957 6(6.0) 2.1e-4 8.0
1500 2 14988 $\cross 53956$ 52457 6(6.0) 1.7e-2 21.7

The sparse PSDP formulation (7)
$n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu

200 1 $995\cross 4570$ 4175 3(2.2) 5.3e-5 2.1
500 1 $2495\cross$ 11470 10475 3(2.2) 5.3e-7 4.8

1000 1 4995x22970 20975 3(2.2) l.le-6 9.9
1500 1 $7495\cross 34470$ 31475 3(2.2) 9.4e-5 27.2

Table 8: Numerical results of the generalized Rosenbrock function.

Table 9: Numerical results of the chained Wood function

39



where $J_{1}= \{j|j\neq i, \max(1, i-5)\leq j\leq\min(n, i+1)\}$ . Note that the number of terms in
$(x_{i}(2+5x_{i}^{2})+1- \sum_{j\in J}.(1+x_{j})x_{j})^{2}$ can be varied by changing $J_{i}$ . We let

$f_{i}(x) \equiv(x_{i}(2+5x_{i}^{2})+1-\sum_{j\in J_{i}}(1+x_{j})x_{j})^{2}$ ,

and vary the number of variables in $f_{i}(x)$ to investigate the performance of the sparse POP
formulation (3) and the sparse PSDP formulation (7). The numerical results of the Broyden
banded function are shown in Table 10. We used the relaxation order 3 for (7) because the
relaxation order 2 did not provide accurate optimal solutions. The sparse PSDP formulation
(7) provides accurate values indicated in the column of rel.err and performs better in terms
of cpu time. The numbers shown in the columns of sizeA, $\#nzA$ , and sdpBl of (7) are
smaller than those of (3).

The sparse POP formulatIon (3)
$k$ $n$ $w$ sizeA $\#nzA$ sdpBl rel.err cpu
5 7 3 $1715\cross 14400$ 14399 120(120.0) 6.0e-9 71.8
5 10 3 4091 $\cross 57600$ 57596 120(120.0) 8.3e-8 351.2
5 15 3 $8546\cross 128025$ 128017 165(125.6) 2.9e-7 1158.5

The sparse PSDP formulation (7)
$k$ $n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
5 7 3 $2029\cross 13702$ 20998 45(22.7) 2.3e-9 20.6
5 10 3 $4130\cross 28362$ 42858 45(27.3) l.le-8 46.8
5 15 3 $8158\cross 58099$ 85034 66(31.8) 1.5e-8 174.5

Table 10: Numerical experiments with Broyden banded functions

We now change $J_{i}$ to observe the effects of the number of variables in each $f_{i}(x)$ upon
sdpBl and sparsity of $A$ , and the performance of the two formulations. Because the number
of indices in $J_{i}$ determines the number of variables that appear in $f_{i}(x)$ , we use varying
$k$ in $J_{i}= \{j|j\neq i, \max(1, i-k)\leq j\leq\min(n, i+1)\}$ to change the number of variables
in $f_{i}(x)$ . Table 11 shows the numerical results for $k=3$ . Notice that the sparse PSDP
formulation (7) gives optimal solutions faster than the sparse POP formulation (3). We see
smaller differences in sdpBl and the cpu time in Table 11 than in Table 10; sdpBl of (7)
is about half of that of (3). We notice that sizeA and $\#nzA$ of (7) are smaller than those
of (3).

With $k=1$ , as shown in Table 12, the sparse POP formulation (3) gives faster results
than the sparse PSDP formulation (7), however, the accuracy of optimal solutions by (7)
is higher than (3). Note that sizeA and $\#nzA$ of (3) are smaller than those of (7) though
sdpBl of (3) is bigger than that of (7). This indicates that cpu time is more affected by
sizeA and $\#nzA$ than sdpBl.

The Watson function [18] is described as

$f_{i}(x)$ $=$ $\sum_{j=1}^{m}(j-1)x_{j}\dot{\oint}_{i}^{-2}-(\sum_{j=1}^{m}x_{j}\dot{\phi}_{i^{-1}})^{2}-1)^{2}-1(i=1, \ldots 29)$

$f_{30}(x)$ $=x_{1}$ , $f(x)_{31}=x_{2}-x_{1}^{2}-1$ .
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$1^{\cdot}he$ sparse PUP $Iormulat\overline{l}on(s)$

$k$ $n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
3 7 3 $965\cross 9408$ 9405 56(56.0) 8.9e-9 5.4
3 10 3 1931 $\cross 19600$ 19595 84(61.6) 4.8e-8 21.1
3 30 3 $6761\cross 81536$ 81510 56(56.0) 1.7e-7 46.8
3 100 3 24401 $\cross$ 301056 300960 56(56.0) 5.5e-7 200.5

The sparse PSDP formulation (7)
$k$ $n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
373 $1387\cross 8924$ 13624 28(19.1) 3.2e-9 7.9
3 10 3 $2412\cross 16096$ 24023 36(21.2) 1.8e-9 18.2
3 30 3 7761 $\cross 48850$ 75790 28(22.2) 6.8e-9 44.9
3 100 3 27431 $\cross 172610$ 267870 28(23.0) l.le-7 142.9

Table 11: Broyden banded functions with $k=3$

The sparse POP formulation (3)
$k$ $n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
1 30 3 $1595\cross 11200$ 11172 20(20.0) $6.9\triangleright 8$ 1.9
1 100 3 $5515\cross 39200$ 39102 20(20.0) 1.3e-7 6.7

The sparse PSDP formulation (7)
$k$ $n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
1 30 3 $2778\cross 16048$ 24584 15(13.1) 2.3e-9 11.4
1 100 3 $9498\cross 54828$ 84084 15(13.3) 9.9e-9 30.5

Table 12: Broyden banded functions with $k=1$
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The numerical results of the Watson function are shown in Table 13. Note that the difference
in cpu time between the sparse POP formulation (3) with $m=7$ and $\omega=2$ and the sparse
PSDP formulation (7) with $m=7$ and $\omega=1$ is small, and the rel.err of (3) is smaller than
(7). For $n=7$ and $\omega=2,$ (7) obtains more accurate optimal solution than (3) with $m=7$
and $\omega=2$ while taking more cpu time. We see that smaller sizeA and $\#nzA$ of (3) result in
shorter cpu time. In the case of $n=10,$ (7) resulted in a smaller relative error with $\omega=2$

than (3) with $\omega=2$ and 3. In the case of $\omega=4$ of (3), the size of $A$ of the sparse POP
formulation (3) was too large to handle, stopping in out of memory

The sparse POP formulation (3)
$m$ $w$ sizeA $\#nzA$ sdpBl rel.err cpu
7 2 $329\cross 2836$ 3276 36(9.9) 9.7e-4 4.1
7 3 791 $\cross 21008$ 30072 36(36.0) $6.6\triangleright 5$ 32.7

10 2 $1000\cross 8756$ 9955 66(13.6) 3.4e-2 43.1
10 3 $3002\cross 97460$ 141009 66(66.0) l.le-l 1049.9
10 4 - out of memory

The sparse PSDP formulation (7)
$m$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
7 1 $66\cross 2156$ 5011 8(4.8) 1.2e-l 3.1
7 2 $4850\cross 82744$ 328364 44(16.2) 7.6e-6 405.3

10 1 $96\cross 3829$ 8934 11(6.2) $1.0e+0$ 2.4
10 2 10862 $\cross 217743$ 975265 77(23.8) l.le-5 3104.5

Table 13: Watson function

A difficult unconstrained optimization problem known as NP-complete is partitioning an
integer sequence $a=$ $(a_{1)}a_{2}, \ldots , a_{n})$ . That is, if there exists $x\in\{\pm 1\}^{n}$ such that $a^{T}x=0$ ,
then the sequence can be partitioned. It can be formulated as

min $f(x).=(a^{T}x)^{2}+ \sum_{i=1}^{n}(x_{i}^{2}-1)^{2}$ . (22)

Numerical results for several sequences of $a$ are shown in [9]. We tested the sequences of $a$ of
large dimension among the problems included in [9]. Tables 14 and 15 show the numerical
results for the sequences of dimension 10 and 11, respectively in [9]. The sparse PSDP
formulation (7) in Tables 14 and 15 finds approximate solutions faster than the sparse POP
formulation (3). Smaller values are displayed for sizeA and $\#nzA$ of (7) than those of (3).
The solutions obtained by (7) for both sequence $a’ s$ resulted in higher accuracy than the
solutions in [9].

For additional test problems of partitioning sequences, we generated integer sequences
randomly as follows. Let $u$ and $\nu$ be positive integers, and let $r$ be a random number in
$(0,1)$ . Then, we create $a_{i}=\lceil r\cdot u\rceil$ for $i=1,$ $\ldots,$

$\nu$ and compute $s= \sum_{i=1}^{\nu}a_{i}$ . Next,
$a_{\nu+1},$ $\ldots$ , $a_{m}$ are generated such that $\sum_{i=\nu+1}^{m}a_{i}=s$ . More precisely, $a_{\nu+1},$ $\ldots,$ $a_{m-1}$ are
computed by $a_{i}=\lceil r\cdot u\rceil$ , and $a_{m}=s- \sum_{1=\nu+1}^{m-1}a_{i}$ . Note that $u$ decides the magnitude of
$a_{i}$ and $\nu$ the number of elements in the sequence. Table 16 displays the numerical results
for a randomly generated integer sequence. In this case, increasing relaxation order did not
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The sparse POP formulation (3)
$n$ $w$ sizeA $\#nzA$ sdpBl rel.err cpu

10 2 $1000\cross 8756$ 9955 66(13.6) $1.2e+0$ 37.8
10 3 $3002\cross 97460$ 141009 66(66.0) $1.2e+0$ 936.7

solution (1.0000-0.99961.00000.99910.99910.9991-0.99970.99910.9991-0.6099)
10 3 - out of memory

The sparse PSDP formulation 7
$m$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
10 1 $76\cross 357$ 371 11(2.4) 9.5e-l 0.3
10 2 $1158\cross 8597$ 11934 67(5.4) 8.3e-2 65.5

solution (1.00001.00001.00001.00001.00001.00001.00001.00001.0000-0.8442)
10 3- out of memory

Table 14: Numerical results for the problem of partitioning integer sequenoe $a=$
$(1,2,3,20,5,6,7,10,11,77)$

The sparse POP formulation (3)
$n$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu

11 2 $1364\cross 11958$ 13530 78(14.9) $1.0e+0$ 95.5
11 3 $4367\cross 148644$ 215556 78(78.0) $1.0e+0$ 3490.3

solution (1.0000-0.99991.0000-0.9998-0.9998-0.9998-1.0000-0.9998-0.99980.7792-1.0000)
The sparse PSDP formulation (7)

$m$ $w$ sizeA $\#nzA$ sdpBl rel.err cpu
11 1 $89\cross 414$ 430 12(2.4) $1.0e+0$ 0.3
11 2 $1543\cross 11362$ 15594 79(5.5) 4.8e-2 169.4

solution $(1.00001.00001.00001.00001.00001.00001.00001.m001.0000- 0.88321.0000)$

Table 15: Numerical results for the problem of partitioning integer sequence $a=$
$(1,2,3,20,5,6,7,10,11,77,3)$

43



result in higher accuracy in both of the sparse POP formulation (3) and the sparse PSDP
formulation (7). Errors involved in the transformation may have caused the large relative
error. We note, however, the signs of solution values are correct. The rel.err and cup time
of (7) are smaller than (3). In Table 17, we see a big difference in cpu time between (3) and
(7). The accuracy of the sparse POP formulation is slightly better.

The sparse PUP formulation (3)
$m$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
13 2 $124\cross 888$ 980 6(3.9) $2.1e+1$ 0.9

( $- 1.3190- 1.3151$ 1.28491.29881.43031.4421-1.1039
1.3206-1.01701.6722-1.3672-2.04421.0000)

The sparse PSDP formulation (7)
$m$ $\omega$ sizeA $\#nzA$ sdpBl rel.err cpu
13 1 $52\cross 276$ 346 3(2.4) 7.6e-l 0.5

solution ($- 0.9951- 0.9989$ 0.74590.99400.99860.9987-0.9951
0.5032-0.99000.9985-0.9987-0.99940.9999)

Table 16: Numerical results for the problem of partitioning randomly generated integer
sequence $a=(3121111332134),$ $u=3$ , $\nu=8$ using the transformation.

Table 17: Numerical results for the problem of partitioning randomly generated integer
sequence $a=(312111133213334),$ $u=3$, $k=9$ .

6 Concluding remarks
We have discussed various ways of formulating polynomial least problems as polynomial
SDPs, and presented an efficient polynomial SDP formulation after comparing the degree
of polynomials, and the sizes of the moment and the localizing matrices. Solving the poly-
nomial SDP is expected to provide the computational efficiency over solving the given form
of polynomial least squares problem because the degree of polynomials in the former for-
mulation is smaller than the $de\Psi^{ee}$ of polynomials in the latter.
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Numerical tests performed on various test problems show that the sIze of the coefficient
matrix $A$ , the number of nonzero elements of $A$ and the size of SDP blocks of $A$ are
important factors on computational efficiency. Overall performance of the polynomial SDP
formulation is shown to be better than the POP formulation except a few cases.

We finally note that our discussion on formulating polynomial least squares problem (1)
as a polynomial SDP can be extended to a constrained problem of the form:

minimize $\sum_{i\in M}f_{i}(x)^{2p:}$

(23)
subject to $g_{j}(x)\geq 0(j=1, \ldots,\hat{m})$ ,

where $f_{1}(x)$ and $g_{j}(x)$ are polynomials in $x\in \mathbb{R}^{n}$ .
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