goooboooogn
0 1584 0 2008 O 25-47 25

Solving polynomial least square problems as polynomial
semidefinite programs

Sunyoung Kim! and Masakazu Kojima?

Abstract.

A polynomial optimizaton problem whose objective function is represented as a sum of
positive and even powers of polynomials, called a polynomial least squares problem, is con-
sidered. Methods to transform a polynomial least square problem to polynomial semidefi-
nite programs to reduce degrees of the polynomials are discussed. Computational efficiency
of solving the original polynomial least squares problem and the transformed polynomial
semidefinite programs is compared. Numerical results on selected polynomial least square
problems show better computational performance of a transformed polynomial semidefinite
program, especially when degrees of the polynomials are larger.

Key words.

Nonconvex optimization problems, polynomial least squares problems, polynomial semidef-
inite programs, polynomial second-order cone programs, sparsity.

1 Introduction

We consider solving a polynomial least squares problem

minimize E fi(x)®, | (1

ieM ,

where fi(x) (¢ € M) are polynomials in @ € R", p; € {1,2,... } i € M) and M =
{1,2,...,m}. The problem (1) is a polynomial optimization problem (POP) with an objec-
tive function represented as a sum of positive and even powers of polynomials. In particular,
if p; =1 (i € M), the problem (1) becomes a standard nonlinear least squares problem:

minimize Z fi(x)2. | 2

iEM

The nonlinear least squares problem (2) has been studied extensively and many methods
have been proposed. Popular approaches for nonlinear least squares problems are the Gauss-
Newton and the Levenberg-Marquardt methods, which find a local (not global in general)
minimum of (2). See, for example, [24]. As opposed to finding a local minimum of (2)
in those existing methods, we propose global approaches for a more general form (1) of
polynomial least squares problems.

The number of variables, the degree of polynomials, and the sparsity of polynomials
of the problem (1) determine its solvability as a POP. Solving the least squares problem

1Department of Mathematics, Ewha W. University, 11-1 Dahyun-dong, Sudaemoon-gu, Seoul 120-750
Korea. The research was supported by Kosef R01-2005-000-10271-0 and KRF-2006-312-C00062.

2Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-
Okayama, Meguro-ku, Tokyo 152-8552 Japan.

26

(1) using the semidefinite programming (SDP) relaxation proposed by Lasserre [19], which
is called the dense SDP relaxation in this paper, is so expensive that only small to some
medium-sized problems can be handled, despite the powerful convergence result in theory. A
sparse SDP relaxation for solving correlatively sparse POPs was proposed in [29] to overcome
this computational difficulty, and shown to be very effective in solving some large-scale
POPs. Unconstrained POPs with the correlative sparsity could be solved up to n = 1000
by the sparse SDP relaxation in [29]. The convergence result of the sparse SDP relaxation
applied to correlatively sparse POPs in [20] supports the use of the sparse SDP relaxation.
We should mention that the sparse SDP relaxation provides less accurate solutions than the -
dense SDP relaxation in general. Exploiting the sparsity of polynomials is, nevertheless,
essential when solving large-scale POPs. If the sparsity is not utilized, the size and the
degree of polynomial optimization problems that can be solved is limited to small and
medium-sized problems.

Most of computational challenges for solving POPs come from the fact that the size of
the resulting SDP relaxation problem is too large to handle with SDP solvers such as CSDP
[2], SDPA [4], SDPTS3 [27], and SeDuMi [26]. Various techniques thus have been introduced
to increase the size of problems that can be solved: The sparsity of POPs was utilized to
reduce the size of the resulting SDP relaxation problems [14, 29]. Transformation of POPs
to easy-to-handle formulations for a certain class of problems was also studied. For instance,
it is shown in [13] that second-order cone programming can be used efficiently for a class of
convex POPs.

The problem (1) can be transformed to a polynomial SDP, i.e. a problem of minimiz-
ing a polynomial objective function subject to polynomial matrix inequalities, to improve
computational efficiency. Although polynomial SDPs arise in many applications in system
and control theory, their global optimization has not been dealt with extensively. Recently,
solving polynomial SDPs with the use of SDP relaxations has been studied in [7, 8, 15]. The
aim of this paper is to show how (1) is transformed to various polynomial SDPs and to com-
pare the computational performance of solving the transformed problems with solving the
problem (1) itself. We also present an efficient polynomial SDP formulation among them.
In both the original and transformed formulations, valid polynomial matrix inequalities are
added to construct a polynomial SDP of increased size and the resulting polynomial SDP
is linearized, which is then solved by a primal-dual interior-point method. We discuss the
effects of the sparsity, the size of SDP blocks, and the size of the coefficient matrix of the
linearized SDP on the computational performance.

Solving the original problem is compared with solving a transformed polynomial SDP
numerically using SparsePOP [28]. Recent advancement in the study of POPs has ac-
companied by software packages implementing solution methods for POPs. SOStools [25],
GloptiPoly [6], and SparsePOP are developed currently. SparsePOP is a collection of matlab
modules utilizing the correlative sparsity structure of polynomials. The size of SDP created
by SparsePOP is thus. smaller than that of GloptiPoly, which makes it possible to solve
larger-sized problems. One of other features of SparsePOP is that it can handle semidef-
inite constraints directly without converting them into inequality or equality polynomial
constraints.

This paper is organized as follows: After introducing symbols and notation, we present
several ways of formulating the problem (1) as polynomial SDPs in Section 2. In Section 3,
a sparse SDP relaxation of a polynomial SDP formulation is described. Section 4 includes

27

comparison of various polynomial SDPs in terms of degrees of the polynomials, the sparsity,
the size of the resulting SDPs, and the relaxation orders used to solve the polynomial

SDPs. In Section 5, numerical experiments are shown. Concluding remarks are presented
in Section 6.

2 Various formulations of the polynomial least squares
_problems

2.1 A sparse POP formulation

Let R", Z, and Z7} denote the n-dimensional Euclidean space, the set of nonnegative integer
numbers and the set of n-dimensional nonnegative integer vectors, respectively. For every
a € Z7 and every * = (z;.23,...,Tn) € R*, % denotes a monomial z{'z5?: .- 22~
Let us denote 8" and &7, the space of r x r symmetric matrices and the cone of r x r
positive semidefinite symmetric matrices, respectively. We use the notation S > O to mean
SeS. Let N={1,2,...,n}, M={1,2,...,m}, and C; C N (i € M). The sparsity of
polynomials in the polynomial least squares problem (1) is represented using C; C N. Let
xc, = (z; : j € Ci) (i € M) the column vector variable of the elements z;, and R the
#C;-dimensional Euclidean space of the vector variable xc,. We assume that each fi(x) is
a polynomial in variables z; (j € C;), and use the notation f;(x¢,) instead of fi(x) (i € M).
Then, (1) can be written as

minimize Z fi(xc,)™. (3)

ieM

We call (3) a sparse POP formulation of the polynomial least squares problem (1).

2.2 Polynomial SDP formulations of the polynomial least squares
problem

A different approach of solving (3) is formulating the problem as a polynomial SDP whose
degree is lower than (3). For description of a polynomial SDP, let F be a nonempty finite
subset of Z'j_’ for some n’ > n, N' = {1,...,n'}, and Fo € 8" (a € F). A polynomial
F(ye) of yor = (yj : j € C"), for some C' C N, with coefficients Fou € S™ (€ S7) is

written as
F(yo)= Y_ Fav$. (4)
aeF

We call F(yo) a symmetric polynomial matriz, and F a support of F(yc) if F(yc) is
represented as (4). Note that each element Fie(ycr) of F(yc) is a real-valued polynomial
in yo and that Fi(yo) = Fa(ye) (1 < k <€ < r). When r = 1, F(y) coincides with
a real-valued polynomial in yq.

Let K = {1,...,m'} = K,UK, for some m’ € Z,, C; € N' (i € K), and let Fi(yc;) be a
symmetric polynomial matrix with r; X r; coefficient matrices (¢ € K.). Then, a polynomial
SDP can be described as

minimize Z 9i(yc;) subject to Fi(yc) = O (i€ K.), (5)

JjEK,

28

We may regard the sparse POP formulation (3) of the polynomial least squares problem
as a special case of (5) where we take n’ =n, m'=m; N =N, K =K,= M, C| = C;
(i € K), 9i(Yoy) = fi(®c,)P (j € K,) and K. = 0.

To derive polynomial SDPs which are equivalent to the polynomial least squares problem

(3), we utilize a special case of the so-called Schur complement relation:

8182 > wlw, s; >0 and sy > 0 if and only if (:;ﬁ 1:) =0 (6)
_ 2

holds for every s; € R, s, € R and w € R*, where I denotes the k x k identity matrix. By
letting k = 1, s; = 1, 83 = t; and w = f;(x¢,), it follows that

t; > fi(xc,)? if and only if (fi(:’c‘) fz‘(;:C;)))

holds for every ¢ € M. Using this equivalence, we can transform the polynomial least
squares problem (3) into the following equivalent polynomial SDP:

minimize E t;”
eM

' subject to (fi(;cj) fi(ZCj)) =0 (j € M).

(7)

The problem (7) can be represented in the form of (5) if we let n’ = n+m, m' = m,
N'={L,...,0}, K = K= Ko= M, G} = G,U{n+i} (i € K), g;(uy) = 12y (j € Ko)
and '

()

The equivalence between (3) and the polynomial SDP (7) can be shown as Lemma 2.1.
Lemma 2.1. The POP (3) is equivalent to the polynomial SDP (7).

Proof: Suppose that v = Y, ,, fi(®c,). Let t; = fi(xc,)? (i € M). Then (z,t) €
R™™ is a feasible solution of the polynomial SDP (7) which attains the objective value v.
Conversely, suppose that (x,t) € R®™™ is a feasible solution of the polynomial SDP (7)
with the objective value v = 3., . Then, it follows from t; > fi(z¢,)? (i € M) that

v=Y t#2)" fi(xe,)™.
i€M ieM
Therefore, we have shown the equivalence of (3) and the polynomial SDP (7).

Using the relation (6) in the same way, we obtain some other polynomial SDP formula-
tions:

m
minimize Z t;
i=1 (8)

. 1 i s Pi X
subject to (f.-(wc.-)”" f(a;?)) >0 (i€ M),

29

minimize t ')
1 0 0 _ fl(mcl)pl
0 1 - 0 fi(zc,)P
subject to : : : : = O. ? (9)
0 0 . 1 fm(xc,,)Pm
fl (wCI)pl fl (mCZ)p2 tee fm (ow)Pm t J

As variations of (7), (8) and (9), we also obtain the polynomial SDPs:

m
minimize) ¢
j=1 (10)
subject to (f_(:téc) fi(‘:C’.-)) >0,t20(ieM),
1 i 1
m
minimize Z t?
Jj=1 » (11)
. (] .
subject to (f(af;)m fi(a;?)) >0, t;,>0 (2- € M),
1 I3 1
minimize ¢)
t 0 Tt 0 fl (a’C;)p1
0 t e 0 fl (wc,2)pﬂ
subject to : : : o =0, X12)
0 0 e t fm(zcn,)P
fl (3301)Pl fl (mCZ)p2 te fm(mCm)pm t
t>0. ‘ /

Intuitively the formulating the problem (3) as (10), (11) and (12) does not seem to have
advantages in comparison with (7), (8) and (9), respectively, because the degree of the
objective function is doubled and more auxiliary variables ¢; (¢ € M) and ¢ are contained
in the diagonal of polynomial matrix inequality constraints. In Section 4, we show that the
size of the SDP relaxation of (10) is the same as the size of the SDP relaxation of (7), but -
the number of nonzeros in the coefficient matrix is slightly larger and the accuracy attained
is worse than the one by the relaxation problem of (7) through numerical results.

We can rewrite the polynomial SDPs (10), (11) and (12) as the following polynomial
second order cone programs (SOCPs):

minimize Et?p 7 subject to (t;, fi(zc,)) € K? (i € M). } (13)
j=1)
m

minimize Zt? subject to (t;, fi(xzc,)?) € K? (i € M). } (14)
=1

minimize > subject to (¢, fi(xc,)™, . ., fm(Tc,)P™)) € K™ (15)

Here K? and K'*™ denote 2- and (m + 1)-diensional SOCP cones. We may replace the
objective function 2 of the last SOCP (15) by ¢.

minimize . ¢ subject to (¢, fi(zc,)™, ..., fm(®c,)P)) € K™ (16)

30

When all polynomials fi(zc,) (¢ € M) are linear and p; = 1 (i € M), the problem (16) is,
in fact, a linear SOCP that can be directly solved by a primal-dual interior-point method
without using any relaxation technique. In such a case, solving (16) is more efficient than
solving all the other formulations (7) — (14). Also for some special case of polynomial least
squares problems with all f;(z¢,) (¢ € M) linear and each p; = 2% for some ¢; = 0, 1,...,
they can be transformed to linear SOCPs. See [13] for more details.

In general cases where some of f;(x(,)s are nonlinear polynomials, (13), (14) and (15)
become polynomial (but not linear) SOCPs. The sparse SDP relaxation method proposed
by Kojima et al. [16, 17] can be applied to these SOCPs. A basis of the Euclidean space
where the underlying second-order cone lies is chosen in the method, and different choices
of basis induce different SDP relaxation problems. When the standard Euclidean basis
consisting of the unit coordinate vectors is chosen, the SDP relaxation problems induced
from the SOCPs (13), (14) and (15) can be shown to be equivalent to those induced from
(10), (11) and (12), respectively, by applying the SDP relaxation method [15] described in
Section 3. Therefore, we do not consider the polynomial SOCP formulations (13), (14) and
(15) in the subsequent discussion, and we focus on the polynomial SDP formulations (7) -
(12). We show in Section 4 that the polynomial SDP formulation (7) is more efficient than
all others.

3 A sparse SDP relaxation of the polynomial SDP

We briefly describe the sparse SDP relaxation [15, 29] of the sparse POP formulation (3)

and all polynomial SDP formulations (7) - (12) of the polynomial least squares problem (3).

Consider (5) to deal with them simultaneously. For example, (5) represents (3) if n’ = n,

m' = m, N = N, K= Ko = M, C.: = Ci (z € K), gJ(yC;) = fj(mcj)”f (J € Ko) and Kc = @, :
and (7) if n' =n+m, m' =m, N'={1,...,n'}, K=K, =K, =M, C, = C;U{n +1i}

(i € K)a gj(y0§) = n{l-j (.7 € Ko) and

The sparsity of polynomials in (5) is first considered with a graph G(N', E) representing
the sparsity structure of (5). More specifically, a graph G(N’, E) is constructed such that _
a pair {k, £} with k # £ selected from the node set N’ is an edge or {k, ¢} € E if and
only if k € Cj, £ € C for some i € K. We call the graph G(N', E) a correlative sparsity
pattern (csp) graph. Each C{ is a clique of G(N', E) (i € K). The next step is to generate a
chordal extension G(N', E’) of G(N', E). (For the definition and basic properties of chordal
graphs, we refer to [1]). For simplicity of notation, we assume that C},...,C", form the set
of maximal cliques of a chordal extension G(N’, E) of the underlying csp graph G(N', E) of
the polynomial SDP (5); if this is not the case, we replace C} by a maximal clique containing
C;. For more details, see [29).

For every C C N’ and ¢ € Z,, we define

Ag = {an’l:a,-=0ifj¢C, Za,—ﬁd)}.

ieC

31

Depending on how a column vector of the monomials y© is chosen, the sparse relaxation
[29] or the dense relaxation [19] is derived. The dense relaxatlon is obtained using a column
vector u(y, AN) that contains all the possible monomials y&* of degree up to 1. Selecting
a column vector u(y, AJ) of the monomials y&* (a € AS) where elements y@ (a € A)
are arranged in lexicographically increasing order of a’s leads to the sparse SDP relaxation
if we take C C N’ with a small cardinality or the dense SDP relaxation if we take C = N'.
The first element of the column vector u(y, Ag) is always yO = 1 since 0 € Aﬁ . The size

/
of u(y, Ay ") of the dense relaxation is (w9y), and the size of u(y, A$) of the sparse

¥
relaxation is (#C 1/)+ v) As a result, the size of u(y, A}') of the dense relaxation is

always larger than that of u(y, Ag) of the sparse relaxation unless C = N'.
Let wo = [deg(X_;enr gj(ycj))/2], w; = [deg(Fi(ycy))/2] for every i € K., and

Wmax = max{w; : 1 € {0} U K,}. (17)
Then the polynomial SDP (5) is transformed into an equivalent polynomial SDP

minimize Yoy QJ(ZIC')
subject to u(y,Aw_w')u(y Aw—u.)T ® Fi(yc) = O (i € Ko), (18)

w(y, A)u(y, A7)T = O (j € K)

with some relazation order w > wyax, where ® denotes the Kronecker product of the two
. (04 C!
matrices u(y, AL,)u(y, A.L,,)" and Fi(ye).

The matrices u(y,Aw_w‘)u(y, AS_'w‘) (¢ € K.) and u(y, Ag’)u(y,Ag")T (€ K) are
positive semidefinite symmetric matrices of rank one for any y, and the element in the
upper-left corner of the matrices is 1. The equivalence between the polynomial SDP (5)
and the polynomial SDP (18) is therefore shown.

Since the objective function of the polynomial SDP (18) is a real-valued polynomial and
the left hand side of the matrix inequality constraints of the polynomial SDP (18) are real
symmetric polynomial matrices, we can rewrite the polynomial SDP (18) as

minimize E éo(ax)y™)
acF .
subject to L;(0,w) — Z L(a,w)y* = O (i € K,), \
aeF
M;(0,w) - Y Mj(a,w)y™ = O (j € K).
QG? /

for some F C Z" "\{0}, é(a) € R (a € F) and real symmetric matrices L;(c,w), M;(a,w)
(@ € FU{0}, i € K., j € K). Note that the size of the matrices Lia,w), Mj(a,w)

(@ € FU{0}, i € K., j € K) and the number of monomials Yo, (0 € F) are determined by
- the relaxation order w. Each monomial ¢y is replaced by a single real variable z,, and we

32

have an SDP relaxation problem of the polynomial SDP (5), called sparse SDP relazation:

minimize E ()2)
aeF
subject to L;(0,w) — Z Li(a,w)ze = O (i € K,), > (19)
acF
M;(0,w) - D Mj(a,w)za = O (j € K).
acF)
Here yo = 29 = 1. We mention that the dense SDP relaxation is obtained if we take

Ci=N' (i € K) in (18).

We call each zae? Li(at,w)zq a localizing matriz , and each Za _'j:"M jla,w)zq a
moment matriz in (19). If Fi(yc;) is vy X i, then the size (= the number of rows = the
number of columns) of the localizing matrix Zae? Li(a,w)zq is

(#C’{+w—wi)Ti

W — wj

(¢ € K,). Similarly, the size of the moment matrix Eae? M;(a,w)z, is

(#C’}+w)
w

(j € K). Since the sizes of the localizing and moment matrices affect very much compu-
tational performance, their sizes of the various formulations in Section 2 are compared in
Section 4.

The SDP relaxation problem (19) is solved by SeDuMi in our numerical experiment

whose results are reported in Section 5. The problem is formulated as the dual standard
form -

maximize bTs subject to c¢— ATs > 0. (20)

Here each column index of AT _(hence each row index of A) corresponds to an a € F, s
the column vector of 2o (¢ € F) and b the column vector of é&(ax) (o € F). Note that
the coefficient matrices L(a,w), M{a,w) (e € F U {0}), which is called SDP blocks in
the numerical results in Section 5, are reshaped into column vectors and arranged in ¢ and
AT, Computational performance of solving (20) with SeDuMi depends on the size of SDP
blocks, the number of variables, and the sparsity of the coefficient matrix A. The most
time-consuming part in primal-dual interior-point methods is solving the Schur comple-
ment matrix that is constructed from A. For details on the relationship between the Schur
complement matrix and A, we refer to [12]. Whether formulating polynomial SDPs with a
small number of large-sized SDP constraints is a better approach than formulating polyno-
mial SDPs with a large number of small-sized SDP constraints should be decided based on
the size of SDP block, the number of variables, and the sparsity of the Schur complement
matrix. This will be discussed in the next Section.

33

4 Comparison of various formulations

There exist several advantages of formulating the problems (3) as polynomial SDPs. We
compare the maximum degree of polynomials, the minimum relaxation oder defined by
(17), the ability to exploit the sparsity, the size of the moment matrices, and the size of the
localizing matrices of the various formulation presented in Secion 2.

As seen in Section 3, the maximum of the degree of the objective function and the
degrees of polynomial SDP constraints, determine the minimum relaxation order which is
denoted as wpax in (17). We usually choose the value wpqy for the relaxation order w when an
SDP relaxation problem (19) of the given polynomial SDP (or POP) (5) is constructed. The
chosen value wnax may not be large enough to get an accurate optimal solution in some cases.
If a solution of desired accuracy is not obtained after the application of SparsePOP, then w
is increasesd by 1 and solve the SDP relaxation problem with the updated relaxation order
w again. This does not guarantee attaining an optimal solution in theory, but a solution of
better accuracy is usually obtained in practice. In view of computational efficiency, however,
taking a smaller value for the relaxation order w works more efficiently than a large value
because the size of the SDP relaxation problem grows very rapidly as we take a increasingly
large value for the relaxation order w. It is thus important to have a smaller minimum
relaxation order wmey that leads to a smaller size of the starting SDP relaxation problem.
In Table 1, the maximum degree of polynomials and the minimum relaxation order for the
formulations (3) and (7) — (12) are summarized. The following notation is used.

= max{pideg(fi(zc,)) (i € M)},
= max{deg(fi(zc,)) (i € M), p; (i € M)}.

S Ol

formulation | max. | the min. relaxation
degree | order wpax in (17)
(3) 25 Wi =8

(7) & (10) 5 wide = [8/2]
B8)&(11) | 3§ Wik = [5/2]
) Wik =[6/2]

(9) & (12)

Table 1: Comparison of the maximum degree of polynomials and the relaxation order of
the various formulations.

In Table 1, the sparse POP formulation (3) has the largest maximum degree of polyno-
mials among the formulations, and the sparse polynomial SDP formulations (7) and (10)
have the smallest maximum degree. In particular, the maximum degree 26 in (3) is at least
twice larger than the other formulations. Since the smallest relaxation order that can be
taken is roughly the half of the maximum degree of polynomials, we see that the relaxation
order for the sparse polynomials SDP formulations (7) and (10) is the smallest. This is the
main advantage of (7) and (10) in comparison with (3).

Table 2 shows how the relaxation order w, the degree of polynomials f;(z¢,), p;i (i € M)
and the size of maximal cliques C; (i € M) determine the maximum size of moment matrices

34

and the size of localizing matrices. We use the following notation:

Ymax = max{# C; (j € K)},
i [deg(fi(zc,))/2] (i € M),
M = [pideg(fi(zc,))/2] (i € M),
i = [8/2] = max{7; (i € M)}.

In addition, w®,w™, w®, w® indicate the relaxation order used for (3), (7) & (10), (8) &
(11) and (9) & (12), respectively.

formulation | exploiting | the max. size of the size of
sparsity moment matrices localizing matrices
(3) O (7mnz) ?;)w(s)) N/A
e | o | (it (Frproon)
@ean | O |(Tt)| (R)k
©) & (12) y (n+:}(.:)w(9)) ("+:}g)‘i(9;_ﬁ)x(m+l)

Table 2: Comparison of various formulations. N/A: not applicable.

Recall that the relaxation order w®, w(w® (9 must satisfy
w® > u® (k= 3,7,8,9),
and that

wd, < w,(:;x = w®, <wd,.
Hence, if we take w® = w®), (k = 3,7,8,9) for the starting SDP relaxation for the for-
mulations, the largest size of moment matrices of (7) and (10) is the smallest among the
largest size of moment matrices produced from the formulations, and the largest size of
moment matrices of (3) is the largest although (3) does not involve any localizing matrices.
We confirm again that the sparse SDP formulations (7) and (10) have an clear advantage
over the sparse POP formulation (3) and the other sparse SDP formulations (8) & (11).

Let us now compare (7) & (10) and (8) & (11) further. When p; = 1 (i € M), there is
no difference in these two pairs of formulations; (7) = (8) and (10) = (11). Suppose that
pi = 2 (i € M). Then, 28 = §. It follows that 24‘),(,[2,x -1< w,(,?zx. Consequently, the size
of the starting SDP relaxation in the sparse polynomial SDP formulations (7) and (10) is
smaller than that in the sparse polynomial SDP formulations (8) and (11).

The sparsity of polynomials in the formulations (9) and (12) can not be exploited, thus,
the maximum size of moment matrix and the size of the localizing matrices are expected to
become larger than (7), (10), (8) and (11) unless Ymax = n.

The pairs of polynomial SDP formulations (7) & (10), (8) & (11), (9) & (12) are equiva-
lent in the maximum degree, the maximum size of moment matrices, and the size of localizing

35

matrices as indicated in Table 2. Their computational accuracy is, however, different. In
fact, (7), (8), and (9) provide higher accuracy than their counterpart. As an example, the
comparison of numerical accuracy for the Broyden tridiagonal function between (7) and (10)
is shown in Table 3. We see that (7) results in smaller relative errors. Notice that the size
of A for (7) is equivalent to that for (10).

Polynomial SDP formulation (7)

n || w sizeA #nzA sdpBl rel.err cpu
100 || 2 4158 x 26877 46269 12(8.9) 4.6e-10 19.2
150 || 2 6258 x 40427 69619 12(9.0) 1.0e-10 23.3
200 || 2 8358 x 53977 92969 12(9.0) 2.4e9 34.2

Polynomial SDP formulation (10)

n il w sizeA #nzA sdpBl relerr cpu
100 | 2 4158 x 26877 48751 12(8.9) 1.4e-8 16.8
150 | 2 6258 x 40427 73351 12(9.0) 2.1e-8 23.3
200 || 2 8358 x 53977 97951 12(9.0) 2.0e-8 31.8

Table 3: Numerical results of the Broyden tridiagonal function. z; > 0 is added. n: the
number of variables, w: the relaxation order, sizeA: the size of the coefficient matrix A,
#nzA: the number of nonzero elements of A, sdpBl: the max (average) size of SDP blocks,
rel.err: relative error.

As observed with the size of the moment and localizing matrices in Table 2, computa-
tional accuracy in Table 3, the relaxation order in Table 1, we use (7) to compare with (3)
numerically in Section 5. -

5 Numerical results

We compare numerical results of the spare POP formulation (3) and the sparse polynomial
SDP formulation (7) (PSDP) of several polynomial least squares problems from [3, 5, 9, 18,
- 22, 23, ?]. Problems for the numerical tests are randomly generated problems, the Broyden
tridiagonal function, the generalized Rosenbrock function, the chained Wood function, the
Broyden banded function, the Watson function, the partition problem described in [9]. All
the problems were solved by Matlab codes using SparsePOP [28] and SeDuMi [26] on the
hardware Power Mac G5 of 2.5 GHz with 2GB memory. The notation in Table 4 is used
for the description of numerical experiments.

A smaller value of the starting relaxation order w = wmax given by (17) for the sparse
PSDP formulation (7) than the sparse POP formulation (3), as shown in Section 4, does
not always mean better performance of (7). Also the relaxation order w = wmax may not
be large enough to get optimal solutions with high accuracy. In such a case, increasing the
relaxation order, which gives an impact on numerical performance, and solving the problem
again is necessary. Note that no theoretical result on the speed of the convergence is known,

although the convergence of the SDP relaxation of increasing size to the optimal value of
the POP was proved by [19].

36

n the number of variables
sizeA | the size of the coefficient matrix A of the SDP
relaxation problem in the SeDuMi input format (20)
w the relaxation order
#nz | the number of nonzeros in the coefficient matrix A of the
SDP relaxation problem in SeDuMi input format (20)
sdpBl | the maximum size (average size) of SDP blocks in the
coefficient matrix A
rel.err | the relative error of SDP and POP/PSDP objective values
cpu | the cpu time to solve SDP by SeDuMi in seconds

Table 4: Notation.

We show the effects of the size of the coefficient matrix A of the SDP relaxation problem
in the SeDuMi input format (20) (sizeA), the number of nonzero elements of A (#nz), and
the size of SDP blocks of A (sdpBl) on numerical performance. In the numerical experiments
comparing the sparse POP formulation (3) and the sparse polynomial SDP formulation (7),
we observe that the formulation that leads to larger sizeA, #nz and sdpBl takes longer
cpu time to find an optimal solution except the generalized Rosenbrock function. Among
the three factors, sizeA and #nz affect the computational efficiency more than sdpBl as
will be seen in Table 12. It should be mentioned that the three factors may not determine
computational efficiency completely particularly when cpu time is very small, for instance,
less than 5 seconds, for small-sized problems. SeDuMi usually takes a fixed amount of cpu
time regardless of the size of SDP, and finding an approximate solution of lower accuracy
may take shorter than obtaining an approximate solutions of higher accuracy. This will be
observed in some of the numerical tests on the generalized Rosenbrock function and a few
tests on the partition problem using transformation. ‘

For numerical experiments with randomly generated polynomials, unconstrained prob-
lems with artificial correlative sparsity are generated randomly to observe the effects of
varying the degree and the correlative sparsity of polynomials. As described in Section 3,
the correlative sparsity of polynomials affects sizeA, #nzA and sdpBl. With a given clique
size 2 < ¢ < n, the sparsity pattern matrix R is generated. More precisely, for every row
of R, ¢ X ¢ matrix of nonzero elements along the diagonal is constructed. Each row of
R serves as cliques, {C},...,Cpct1} With2 < |G| < c (i =1,...,n —c+1). We then
generate a vector g; (i = 1,2,...,n) using random number generator in the interval (-1, 1)
for coefficients. Let

fz(m) = g?u(wa Ad:) (z =1,... ,E),
where d; denotes the degree of f;(x). Then, we consider

n+c n
minimize Z fi(xe)? + E 2. ' (21)
. i=1 i=1
where fi(z;) (¢ =1,...,n +c), instead of (i = 1,...,n), are added with }_.; z? in order
to avoid multiple number of optimal solutions.
Tables 5 and 6 show numerical results for varying the degree of (21), the degree of f;(xc,),
n, and the size of maximum cliques. For all tested cases, sizeA, #nzA, and sdpBl of the

37

sparse PSDP formulation (7) are smaller than the sparse POP formulation (3), providing
optimal solutions faster. In Table 6, w = 1 is used for (7) while w = 4 is used for (3), which
provided big differences in sizeA, #nzA, and sdpBl. As a result, cpu time for (7) is much

smaller than that of (3).

The sparse POP formulation (3)

p; d; degree nijw sizeA #nzA sdpBl relerr cpu ¢
1 2 4 30| 2 574 x 4848 5270 10(5.9) 5.1e-9 24 3
1 2 4 501 2 974 x 8248 8950 10(5.9) 4.0e-9 31 3
1 2 4 100} 2 1974 x 16748 18150 10(6.0) 9.2¢-9 55 3
1 2 4 200 2 3974 x 33748 36550 10(6.0) 9.2¢-9 81 3
1 3 6 50 3 6005 x 91985 103138 35(21.4) 3.2¢-8 352 5
1 3 6 100 | 3 12305 x 188235 210538 35(21.5) 4.7¢-9 73.7 5
1 3 6 200 | 3 49601 x 889858 977662 56(32.5) 9.3e-9 7646 5

The sparse PSDP formulation (7) -

p; d; degree n|w sizeA #nzA sdpBl relerr cpu ¢
1 2 4 301 175 x 1150 1482 4(2.5) 5.5¢9 04 3
1 2 4 50| 1 295 x 1950 2522 4(2.5) 7.5e-9 0.7 3
1 2 4 1001} 1 595 x 3950 5122 4(2.5) 4.4e-5 15 3
1 2 4 200 1 1195 x 7950 10322 4(2.5) 2.1e-5 28 3
1 3 6 50| 2 2011 x 13042 18395 6(4.1) 2.7e-8 58 5
1 3 6 100 || 2 4111 x 26592 37595 6(4.1) 1.2¢-8 13.1 5
1 3 6 200 2 8311 x 53692 75995 6(4.1) 3.6e-8 206 5

Table 5: Numerical experiments with randomly generated problems of degree 4 and 6.

The sparse POP formulation (3)

p; d; degree n || w sizeA #nzA sdpBl relerr cpu c
2 2 8 30| 4 3404 x 65048 76990 35(24.8) 3.3e-8 26.1 3
2 2 8 50| 4 5804 x 110308 130210 35(24.9) 1.3e-7 45.7 3
2 2 8 100 | 4 11804 x 223458 263260 35(24.9) 1.2e-7 926 3

- The sparse PSDP formulation (7)

p; d; degree n || w sizeA #nzA sdpBl rel.err cpu c
2 2 8 301 347 x 1896 2228 5(3.0) 1.5e-8 0.6 3
2 2 8 50 1 587 x 3216 3788 5(3.0) 1.2e-8 1.2 3
2 2 8 100 1 1187 x 6516 7688 5(3.0) 1.6e8 22 3

Table 6: Numerical experiments with randomly generated problems of degree 8.

The Broyden tridiagonal function [22] is

n-1
fl@) = (8—2z1)21 — 202+ 1)+) _ (3 = 2z)as — iy — 2iyr +1)°
=2

+ (8 = 2Zp)Tn — Tp_1 + 1)2.

38

The numerical results of the Broyden tridiagonal function are shown in Table 7. The sparse
PSDP formulation (7) requires the relaxation order 2 to get accurate optimal solutions.
The sizeA, #nzA and sdpBl for the sparse PSDP formulation (7) with w = 2 are larger
than those for the sparse POP formulation (3), taking longer to get an optimal solution.
An inequality constraint z; > 0 is added to avoid numerical difficulty arising from multiple
number of solutions.

The sparse POP formulation (3)
nil w sizeA #nzA sdpBl relerr cpu
200 | 2 3974 x 19819 19621 10(10.0) 8.9¢-8 8.4
500 | 2 9974 x 49819 49321 10(10.0) 1.5e-6 11.7
1000 || 2 19974 x 99819 98821 10(10.0) 1.5e-6 22.5
The sparse PSDP formulation (7)

n il w sizeA #nzA sdpBl rel.err cpu
200 | 1 997 x 4188 4984 4(3.0) 1.0e+0 0.8
500 1 2497 x 10488 12484 4(3.0) 1.0e+0 3.1

1000 || 1 4997 x 20988 24984 4(3.0) 1.0e+0 5.9
200 |f 2 8358 x 53977 92969 12(9.0) 2.4e-9 34.2
500 || 2 20958 x 135277 233069 12(9.0) 3.7e-7 67.4

1000 || 2 41958 x 270777 466569 12(9.0) 2.4e-7 165.2

Table 7: Numerical results of the Broyden tridiagonal function.

The generalized Rosenbrock function [23] is written as

fl®)=1+ Zn: {100 (zi — :t:,-2_1)2 +(1- :ci)"’} .

i=2

In Table 8, we notice that sizeA, #nzA, sdpBl of (7) are smaller than those of (3). Although
(7) took longer cpu time, the accuracy shown in the column of rel.err is better than (3).
The difference in cpu time, however, is small. An inequality constraint z,; > 0 is added as
for the Broyden tridiagonal function.

The chained Wood function [3] is

fl@) = 1+ Z (100(zi+1 — 21) + (1 = 2:)? + 90(Ti43 — T32)* + (1 — Tiya)®
ieJ
+10(141 + Tigs — 2)% + 0.1(Tix1 — Tiy3)?)
where J = {1,3,5,...,n — 3} and n is a multiple of 4. In Table 9, the sparse PSDP
formulation (7) takes longer to converge, and results in less accurate solutions for the tested

n’s except n = 1000. We notice that sizeA, #nzA, sdpBlI are larger in (7) than those of (3)
The Broyden banded function [22] is written as

n : 2

i=1 jedi

The sparse POP formulation (3) ,
w sizeA #nzA sdpBl relerr cpu
200 || 2 1988 x 7156 6957 6(6.0) 5.le-5 1.9
500 | 2 4988 x 17956 17457 6(6.0) 1.6e-4 4.1
2
2

1000 9988 x 35956 34957 6(6.0) 2.1e-4 8.0
1500 14988 x 53956 52457 6(6.0) 1.7e-2 21.7
The sparse PSDP formulation (7)
niw sizeA #nzA sdpBl relerr cpu
200)| 1 995 x 4570 4175 3(2.2) 5.3e-5 2.1
500 | 1 2495 x 11470 10475 3(2.2) b5.3e-7 4.8
1
1

1000 4995 x 22970 20975 3(2.2) 1l.le6 9.9
1500 7495 x 34470 31475 3(2.2) 9.4e-5 27.2

Table 8: Numerical results of the generalized Rosenbrock function.

The sparse POP formulation (3)

niflw sizeA #nzA sdpBl relerr cpu
100 || 2 449 x 1241 1142 4(3.5) 8.le6 1.3
200 || 2 899 x 2491 2292 4(3.5) 5.3e-6 0.8
400 | 2 1799 x 4991 4592 4(3.5) 1.2¢-5 1.4
1000 | 2 4499 x 12491 11492 4(3.5) 3.4e-5 3.8

The sparse PSDP formulation (7)

n|w sizeA #nzA sdpBl relerr cpu
100 || 1 248 x 2891 1470 7(5.0) 6.5¢-5 0.8
200 1 498 x 5841 2970 7(5.0) 1.8e-4 1.2
400 || 1 998 x 11741 5970 7(5.0) 3.9e-4 2.2
1000 | 1 4494 x 22954 21956 7(5.0) 1.8¢-6 10.2

Table 9: Numerical results of the chained Wood function

40

where J; = {j | j # ¢,max(1,i — 5) < j < min(n,¢ + 1)}. Note that the number of terms in
2 _
(:c,-(2 +527) + 13, (1+ x,-)xj) can be varied by changing J;. We let

2
fi(z) = (:r,-(2 +5z2) +1 - Z(l + :vj):cj) ,
JeJ; ,

and vary the number of variables in f;(x) to investigate the performance of the sparse POP
formulation (3) and the sparse PSDP formulation (7). The numerical results of the Broyden
banded function are shown in Table 10. We used the relaxation order 3 for (7) because the
relaxation order 2 did not provide accurate optimal solutions. The sparse PSDP formulation
(7) provides accurate values indicated in the column of rel.err and performs better in terms
of cpu time. - The numbers shown in the columns of sizeA, #nzA, and sdpBl of (7) are
smaller than those of (3).

The sparse POP formulation (3)
Ek n|w sizeA #nzA sdpBl' rel.err cpu
5 T 3 1715x 14400 14399 120(120.0) 6.0e-9 71.8
5 10| 3 4091 x 57600 57596 120(120.0) 8.3e-8 351.2
5 15| 3 8546 x 128025 128017 165(125.6) 2.9e-7 1158.5
The sparse PSDP formulation (7)
k njw sizeA #nzA sdpBl rel.err cpu
5 713 2029 x13702 20998 45(22.7) 2.3e-9 20.6
5 10 3 4130 x 28362 42858 45(27.3) 1.1e-8 46.8
5 15| 3 8158 x 58099 85034 66(31.8) 1.5e-8 174.5

Table 10: Numerical experiments with Broyden banded functions

We now change J; to observe the effects of the number of variables in each f(x) upon
sdpBIl and sparsity of A, and the performance of the two formulations. Because the number
of indices in J; determines the number of variables that appear in f;(x), we use varying
kin J; = {j | j #4,max(1,7— k) < j < min(n,i + 1)} to change the number of variables
in fi(x). Table 11 shows the numerical results for k = 3. Notice that the sparse PSDP
formulation (7) gives optimal solutions faster than the sparse POP formulation (3). We see
smaller differences in sdpBl and the cpu time in Table 11 than in Table 10; sdpBl of (7)
is about half of that of (3). We notice that sizeA and #nzA of (7) are smaller than those
of (3).

With k = 1, as shown in Table 12, the sparse POP formulation (3) gives faster results
than the sparse PSDP formulation (7), however, the accuracy of optimal solutions by (7)
is higher than (3). Note that sizeA and #nzA of (3) are smaller than those of (7) though
sdpBl of (3) is bigger than that of (7). This indicates that cpu time is more affected by
sizeA and #nzA than sdpBl.

The Watson function [18] is described as

filw) = S G-zl - Ozl -1 -1 (i=1,..29)
Jj=1 .

j=1
fio(@) = z1, f(®)n=22—22—1.

The sparse POP formulation (3)

k nillw sizeA #nzA sdpBl relerr cpu
3 7 3 965 x 9408 9405 56(56.0) 8.9e-9 5.4
3 10 3 1931 x 19600 19595 84(61.6) 4.8e-8 21.1
3 30| 3 6761 x 81536 81510 56(56.0) 1.7e-7 46.8
3 100 | 3 24401 x 301056 300960 56(56.0) 5.5e-7 200.5
The sparse PSDP formulation (7)
E nfw sizeA #nzA sdpBl relerr cpu
3 73 1387 x 8924 13624 28(19.1) 3.2e-9 7.9
3 10 3 2412 x 16096 24023 36(21.2) 1.8e-9 18.2
3 30| 3 7761 x 48850 75790 28(22.2) 6.8e-9 44.9
3 100 3 27431 x 172610 267870 28(23.0) 1.1e-7 1429
Table 11: Broyden banded functions with k = 3
The sparse POP formulation (3)
E n|w sizeA #nzA sdpBl relerr cpu
1 30 3 1595x 11200 11172 20(20.0) 6.9e-8 1.9
1 1001 3 5515 % 39200 39102 20(20.0) 1.3e-7 6.7
The sparse PSDP formulation (7)
k njjw sizeA #nzA sdpBl rel.err cpu
1 30| 3 2778 x 16048 24584 15(13.1) 2.3¢-9 114
1 100 3 9498 x 54828 84084 15(13.3) 9.9¢-9 30.5

Table 12: Broyden banded functions with k =1

41

42

The numerical results of the Watson function are shown in Table 13. Note that the difference
in cpu time between the sparse POP formulation (3) with m = 7 and w = 2 and the sparse
PSDP formulation (7) with m = 7 and w = 1 is small, and the rel.err of (3) is smaller than
(7). For n =7 and w = 2, (7) obtains more accurate optimal solution than (3) with m =7
and w = 2 while taking more cpu time. We see that smaller sizeA and #nzA of (3) result in
shorter cpu time. In the case of n = 10, (7) resulted in a smaller relative error with w = 2
than (3) with w = 2 and 3. In the case of w = 4 of (3), the size of A of the sparse POP
formulation (3) was too large to handle, stopping in out of memory

The sparse POP formulation (3)
w sizeA #nzA sdpBl rel.err cpu
2 329 x 2836 3276 36(9.9) 9.7e-4 4.1
TH 3 791 x 21008 30072 36(36.0) 6.6e-5 32.7
10 || 2 1000 x 8756 9955 66(13.6) 3.4e-2 43.1
3
4

m
7

10 3002 x 97460 141009 66(66.0) 1.le-1 1049.9
10 - out of memory -
The sparse PSDP formulation (7)

m || w sizeA #nzA sdpBl rel.err cpu
71 66 x 2156 5011 8(4.8) 1.2e-1 3.1
T 2 4850 x 82744 328364 44(16.2) 7.6e-6 405.3

10| 1 96 x 3829 8934 11(6.2) 1.0e+0 2.4

10 | 2 10862 x 217743 975265 77(23.8) 1l.le-5 3104.5

Table 13: Watson function

A difficult unconstrained optimization problem known as NP-complete is partitioning an
integer sequence a = (a;, @y, . . ., ay). That is, if there exists @ € {£1}" such that a’z = 0,
then the sequence can be partitioned. It can be formulated as

min f(x) = (aTx)? + i(z? -1)24 (22)

i=1

Numerical results for several sequences of a are shown in [9]. We tested the sequences of a of
large dimension among the problems included in [9]. Tables 14 and 15 show the numerical
results for the sequences of dimension 10 and 11, respectively in [9]. The sparse PSDP
formulation (7) in Tables 14 and 15 finds approximate solutions faster than the sparse POP
formulation (3). Smaller values are displayed for sizeA and #nzA of (7) than those of (3).
The solutions obtained by (7) for both sequence a’s resulted in higher accuracy than the
solutions in [9]. ' ' .

For additional test problems of partitioning sequences, we generated integer sequences
randomly as follows. Let u and v be positive integers, and let r be a random number in

(0,1). Then, we create a; = [r-u] for ¢ = 1,...,v and compute s = Y ;_ a;. Next,
Qy+1s- - -, 0m are generated such that > . +1@i = 8. More precisely, a,41,...,am-1 are
computed by a; = [r - u], and a,, = 8 — Z‘__.;id a;. Note that u decides the magnitude of

a; and v the number of elements in the sequence. Table 16 displays the numerical results
for a randomly generated integer sequence. In this case, increasing relaxation order did not

43

The sparse POP formulation (3)
n||w sizeA #nzA sdpBl rel.err cpu
10 || 2 1000 x 8756 9955 66(13.6) 1.2e+0 37.8
10 || 3 3002 x 97460 141009 66(66.0) 1.2e+0 936.7
solution || (1.0000 -0.9996 1.0000 0.9991 0.9991 0.9991 -0.9997 0.9991 0.9991 -0.6099)
10} 3 - _out of memory
The sparse PSDP formulatlon (7)
m || w sizeA #nzA sdpBl rel.err cpu
10 [1 76 % 357 371 11(2.4) 9.5e1 0.3
10| 2 1158 x 8597 11934 67(5.4) 8.3e-2 65.5
solution | (1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -0.8442)
10) 3 - out of memory -
Table 14: Numerical results for the problem of partitioning integer sequence a =

(1,2,3,20,5,6,7,10,11,77)

The sparse POP formulation (3)
nlw sizeA #nzA sdpBl rel.err cpu
111 2 1364 x 11958 13530 78(14.9) 1.0e+0 95.5
11 | 3 4367 x 148644 215556 78(78.0) 1.0e+0 3490.3
solution || (1.0000 -0.9999 1.0000 -0.9998 -0.9998 -0.9998 -1.0000 -0.9998 -0. 9998 0. 7792 -1. 0000)
The sparse PSDP formulation (7)
m il w sizeA #nzA sdpBl rel.err cpu
|1 80 x 414 430 12(2.4) 1.0e+0 0.3
11| 2 1543 x 11362 15594 79(5.5) 4.8e-2 169.4
solution (1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -0.8832 1.0000)
Table 15: Numerical results for the problem of partitioning integer sequence a =

(1,2,3,20,5,6,7,10,11, 77, 3)

44

result in higher accuracy in both of the sparse POP formulation (3) and the sparse PSDP
formulation (7). Errors involved in the transformation may have caused the large relative
error. We note, however, the signs of solution values are correct. The rel.err and cup time
of (7) are smaller than (3). In Table 17, we see a big difference in cpu time between (3) and
(7). The accuracy of the sparse POP formulation is slightly better.

The sparse POP formulation (3)
m || w sizeA #nzA sdpBl rel.err cpu
13 || 2 124 x 888 980 6(3.9) 2.1e+l 0.9
(-1.3190 -1.3151 1.2849 1.2988 1.4303 1.4421 -1.1039
1.3206 -1.0170 1.6722 -1.3672 -2.0442 1.0000)
The sparse PSDP formulation (7)
m || w sizeA #nzA sdpBl relerr cpu
13 1 52x276 346 3(24) 7.6el 0.5
solution || (-0.9951 -0.9989 0.7459 0.9940 0.9986 0.9987 -0.9951
0.5032 -0.9900 0.9985 -0.9987 -0.9994 0.9999)

Table 16: Numerical results for the problem of partitioning randomly generated integer
sequencea=(3121111332134), u=3, v =8 using the transformation.

The sparse POP formulation (3)
m | w sizeA #nzA sdpBl rel.err cpu
15| 2 3875x 33896 37720 136(19.9) 2.1e-2 2869.6
(1.0000 -1.0000 1.0000-1.0000 1.0000 0.9998 -1.0000 -0.9999
-1.0000 0.9999 -1.0000 -1.0000 1.0000 0.9999 -0.9999)
The sparse PSDP formulation (7)
m (| w sizeA #nzA sdpBl rel.err cpu
15 1 151 x 682 706 16(2.4) 7.9e-1 1.0
solution || (1.0000 -0.9998 0.9999 0.9996 0.9997 -0.9984 -0.9999 -0.3342
-0.9998 0.9998 -0.9999 -0.9998 0.9999 0.9997 -0.9995)

Table 17: Numerical results for the problem of partitioning randomly generated integer
sequencea=(312111133213334), u=3, k=9.

6 Concluding remarks

We have discussed various ways of formulating polynomial least problems as polynomial
SDPs, and presented an efficient polynomial SDP formulation after comparing the degree
of polynomials, and the sizes of the moment and the localizing matrices. Solving the poly-
nomial SDP is expected to provide the computational efficiency over solving the given form
of polynomial least squares problem because the degree of polynomials in the former for-
mulation is smaller than the degree of polynomials in the latter.

45

Numerical tests performed on various test problems show that the size of the coefficient
matrix A, the number of nonzero elements of A and the size of SDP blocks of A are
important factors on computational efficiency. Overall performance of the polynomial SDP
formulation is shown to be better than the POP formulation except a few cases.

We finally note that our discussion on formulating polynomial least squares problem (1)
as a polynomial SDP can be extended to a constrained problem of the form:

minimize Z fi(x)
ieM
subject to g;(x) >0 (j =1,...,m),

(23)
where fi(x) and g;(x) are polynomials in ¢ € R™.

References

[1] J. R. S. Blair and B. Peyton, “An introduction to chordal graphs and clique trees”, in
Graph Theory and Sparse Matriz Computation, A. George, J. R. Gilbert and J. W. H.
Liu, eds., Springer-Verlag, New York, 1993, pp. 1-29.

[2] B. Borchers, “SDPLIB 1.2, a library of semidefinite programming test problems”,
Optimization Methods and Software, 11 & 12 (1999) 683-690.

[3] A. R. Conn, N. I. M. Gould and P. L. Toint, “Testing a class of methods for solving
minimization problems with simple bounds on the variables”, Math. Comp., 50 (1988)
399-430

[4] K. Fujisawa, M. Kojima, K. Nakata (1995) SDPA (SemiDefinite Programming Al-
gorithm) user’s manual, Version 5.0, Research Report B-308, Dept. of Mathematical
and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo
152-8552, Japan. ' '

[5] N. I M. Gould, D. Orban and Ph. L. Toint, (2003) “Cuter, a Constrained and Uncon-
strained Testing Environment, revisited”, TOMS, 29 373-394.

[6] D. Henrion and J. B. Lasserre, “GloptiPoly: Global optimization over polynomials with
Matlab and SeDuMi”, Laboratoire d’Analyse et d’Architecture des Syst‘emes, Centre -
National de la Recherche Scientifique, 7 Avenue du Colonel Roche, 31 077 Toulouse,
cedex 4, France, February 2002.

(7] D. Henrion and J. B. Lasserre, Convergent relaxations of polynomial matrix inequalities
and static output feedback, IEEE Trans. Automat. Cont. 51 (2), 192-202 (2006).

[8] C. W.. Hol, C. W. Scherer, Sums of squares relaxations for polynomial semi-definite
programming, In: B. De Moor, B. Motmans (eds), Proceedings of the 16th International
Symposium on Mathematical Theory of Networks and Systems, Leuven,, Belgium, 5-9
July, 1-10 (2004).

[9] D. Jibetean and M. Laurent, “Semidefinite approximation for global unconstrained
polynomial optimization,” SIAM J. Optim,, 16, 2 (2005) 490-514.

46

[10] S. Kim, M. Kojima and H.Waki, “Generalized Lagrangian duals and sums of squares
relaxations of sparse polynomial optimization problems”, SIAM J. Optim., 15 (2005)
697-719 .

[11] S. Kim, M. Kojima and Ph.L. Toint, “Recognizing underlying sparsity,” esearch Report
B-428, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology,
Oh-Okayama, Meguro, Tokyo 152-8552, Japan.

[12] K. Kobayashi, S. Kim, and M. Kojima (2006) “Correlative sparsity in primal-dual

- interior point methods for LP, SOCP and SDP”, Research Report B-434, Dept. of
Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh—Okaya.ma,
Meguro, Tokyo 152-8552, Japan.

[13] K. Kobayashi, S. Kim, and M. Kojima (2007) “Sparse second order cone program-
ming approaches for convex opimitization problems”, Research Report B-440, Dept. of
Mathematical and Computing Sciences, Tokyo Instltute of Technology, Oh-Okayama,
Meguro, Tokyo 152-8552, Japan.

[14] M. Kojima, S. Kim and H. Waki, “Sparsity in sums of squares of polynomials”, Math.
Program., 103 (2005) 45-62.

[15] M. Kojima, Sums of squares relaxations of polynomial semidefinite programs, Research
Report B-397, Dept. of Mathematical and Computing Sciences, Tokyo Institute of
Technology, Oh-Okayama, Meguro, Tokyo 152-8552, Japan (2003).

[16] M. Kojima and M. Muramatsu, An extension of sums of squares relaxations to polyno-
mial optimization problems over symmetric cones, Mathematical Programming, 110,
(2007) 315-326.

[17] M. Kojima and M. Muramatsu, A note on sparse SOS and SDP relaxations for poly-
nomial optimization problems over yymmetric cones, Computational Optimization and
Applications to appear.

[18] J. S. Kowalik and M. R. Osborne, Methods for unconstrained optimization problems,
Elseview North-Halland, New York, (1968).

[19] J. B. Lasserre, “Global optimization with polynomials and the problems of moments”,
SIAM Journal on Optimization, 11 (2001) 796-817. :

[20] J. B. Lasserre: Convergent SDP-relaxations in polynomial optimization with sparsity,
SIAM Journal on Optimization, 17, 3 (2006) 822-843.

[21] T. Y. Li, “HOMA4PS in Fortran”, http://www.mth.msu.edu/ li/

[22] J. J. More, B. S. Garbow and K. E. Hillstrom, “Testing Unconstrained Optimization
Software”, ACM Trans. Math. Soft., 7, (1981) 17-41

[23] S. G. Nash, “Newton-Type Minimization via the Lanczos method”, SIAM J.Numer.
Anal.,21 (1984) 770-788.

[24] J. Nocedal and S. J. Wright (2006) Numerical Optimization, Springer.

47

[25] S. Prajna, A. Papachristodoulou and P. A. Parrilo, “SOSTOOLS: Sum of Squares
Optimization Toolbox for MATLAB - User’s Guide”, Control and Dynamical Systems,
California Institute of Technology, Pasadena, CA 91125 USA, 2002.

[26] F. J. Sturm (1999) “ Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones”, Optimization Methods and Software 11-12, 625-653.

[27] K. Toh, M. J. Todd, R. H. Tiitiintii (1998) SDPT3 — a MATLAB software package for
semidefinite programming, Dept. of Mathematics, National University of Singapore,
Singapore.

(28] H. Waki, S. Kim, M. Kojima and M. Muramatsu, ” SparsePOP : a Sparse Semidefinite
Programming Relaxation of Polynomial Optimization Problems”, Research report B-
414, Dept. of Math. & Computing Sciences, Tokyo Institute of Technology, March
2005.

[29] H. Waki, S. Kim, M. Kojima and M. Muramatsu, (2006) “Sums of squares and semidef-
inite programming relaxations for polynomial optimization problems with structured
sparsity”, SIAM Journal on Optimization 17 (1) 218-242.

