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1 Introduction

In thls paper, we propose a smoothing projected gradient method for solving the stochastic nonlmea.r
complementarity problem.
Let (2, F,P) be a probability space, where 2 is the set of random vector w, F is the set of

events, and P is the probability distribution satisfying P{Q2} = 1. The stochastic complementa.nty
problem SLCP(M(w), g(w)) is defined as

>0, Mw)z+q(w) >0, 2T (M(w)z +qw)) =0, weN. (1.1)

Here M(w) € R™*" and g(w) € R" are random matrix and random vector for w € Q, respectively.
Throughout the paper, we always assume M (w) and g(w) are measurable functions of w and satisfy

E(IM(w)II? + llg(w)I?] < oo. (1.2)

When 2 is a singleton, SLCP(M(w), g¢(w)) reduces to the well-known linear complementarity
problem LCP(M, q) with M(w) = M and g(w) = ¢. In general, a deterministic formulation for the
SLCP provides optimal solutions for the SLCP in some sense. The ERM formulation proposed in
(4] is a deterministic formulation for the SLCP, which is defined as

gg}ﬁ f(z) = E[||&(z,w)|] (1.3)
where E stands for the expectation, and
8(z,w) = (d((M(w)z + g(w))1,71), - . ., B((M(w)Z + g(w))ns Zn)),
and ¢ : R? — R is an NCP function, which has the property
#(a,b)=0 & a>0, 5>0, ab=0.

The objective function in the ERM formulation (1.3) is neither convex nor smooth. Among various
NCP functions, the “min” function

#(a,b) := min(a,b), for any (a,b) € R?, (1.4)
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has various nice properties for (1.3). It is shown in Lemma 2.2 [6] that the ERM formulation defined
by the “min” function always has a solution if Q = {w',w?,...,w"} is a finite set. However, the
ERM formulation defined by the Fischer-Burmister NCP function is not always solvable. In this
paper, we concentrate on the ERM formulation defined by the “min” function, which can be
expressed as

i f(z) = E[|| min(z, M (w)z + g())[I*]. (1.5)

This is a nonsmooth, nonconvex constrained minimization problem.

The expected residual minimization (ERM) formulation for the SLCP discussed in [4, 6, 8].
However, it is hard to find an efficient numerical methods to solve (1.5) when n is large. In this
paper, we propose a smoothing projected gradient (SPG) method, which combines the smoothing
techniques and the classical PG method to solve stochastic linear complementarity problem. The
SPG method is easy to implement. At each iteration, we approximate the objective function f by
a smooth function f with a fixed smoothing parameter, and employ the classical PG method to
obtain a new point. Then we update the smoothing parameter using the new point for the next
iteration.

The projected gradient (PG) method was originally proposed by Goldstein [9], and Levitin
and Polyak [11] in 1960s, for minimizing a continuously differentiable mapping f : R* — R on
a nonempty closed convex set X. Nonsmooth and nonconvex optimization occurs frequently in
practice. The projected subgradient method [13] extends the PG method to the case that f is
nonsmooth, but convex. Recently, Burke, Lewis and Overton [1] introduced a robust gradient
sampling algorithm for solving nonsmooth, nonconvex unconstrained minimization problem. Kiwiel
[10] slightly revised the gradient sampling algorithm in [1] and showed that any accumulation point
generated by the algorithm is a Clarke stationary point with probability one.

Throughout the paper, we use || - || to represent the Euclidean norm, and let R}, = {z € R" :
z > 0}. I'denotes the identity matrix. For a given matrix A = [a;;] € R"*", let A;. be the i-th row
of A.

2 ERM formulation for SLCP

In this section, we show that the SPG method can be applied to find a local minimizer of the ERM
formulation for SLCP. :
Let H,, : R — R" and 6, : R* — R be defined by

H,(z) = min(z, M)z +q)), 0u(a) = 3Hu(e) Hole) for weQ.
Thus the ERM formulation of SLCP(M (w), g(w)) can be expressed by

zrgiR% f(z) = 2E[0u(z)]. (2.1)
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For an arbitrary vector £ € R™ and an arbitrary w € Q, define the index sets

au(z) = {i : 2> (M(w)z + gw))}
Bu(z) = {i : z; = (M(w)z + gq(w))} (2.2)
Yol(Z) = {i : 2 < (M(w)z + gq(w))}.

Proposition 2.1 The function f is locally Lig).schz’tz continuous, and everywhere directionally dif-
ferentiable with

f'(z,d) = 2E[6,(z,d)] for all d. (2.3)
If the following condition holds at x € R™,
z;=0; or (M) =1L, foranyi€f,(z), weDa.e, (24)
then f is differentiable at z and
V#(z) = 2E[V8,(z)). | (2.5)
Moreover, f is differentiable ot € R% if and only if (2.4) holds.

Recall that a vector 0 % d € R™ is called a feasible direction of the nonnegative orthant R? at
a point z € RY, if there exists a constant § > 0 such that

z+tde R} forany te[0,4]
For problem (1.5), it is easy to show that z e R? is a stationary point if and only if
f’(xvd) 20, Vde F(z;R}), (2.6)

where F(z; R7) is the set of feasible directions d € R™.

In what follows, we provide an equivalent characterization of the stationary point, and discuss
its relation to the Clarke stationary point. Denote €' = IT fori = 1,...,n. For an arbitrary z € R%,
let us denote the index set S; = {i : x; > 0} = {81,83,...,85)}, and & = {1,2,...,8}\S; =
{i : z; = 0}, where t(z) is the number of elements in S,. Let

Dy={e, i=1,...,n}u{-e%, i=1,...,tz)}. (2.7)

Note that D is determined by z, and for any £ € R", the number of vectors in D, satisfies
n < |Dz| < 2n, and ||d|| =1 for any d € D;.

Theorem 2.1 z € R} is a stationary point of the problem (1.5) if and only if f'(z,d*) > 0 for
any d € D;. '
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Corollary 2.1 IfQ = {wl,wz,...,w”’}, then x € R? is a local minimizer of the problem (1.5) if
and only if f'(z,d") > 0 for any &' € D;.

Remark 2.1 Ifz* is a Clarke stationary point of (1.5) and f is differentiable at =*, then (V f(z*), z*~
2) < 0 for all z € R}. Hence for any d € F(z; R}), there erists a constant § > 0 such that
z+6d € R} and

7@ d) = VI Td = ~3(Vf(a"),a" ~ (" +6d)) 2 0.
Thus by (2.6), z* is a stationary point of (1.5). If, in addition, Q = {w!,w?,...,w"} is a finite

set, x* is a local minimizer according to Corollary 2.1.

Some mild conditions on initial data M(w) for w € Q can guarantee that f is differentiable at
any local minimizer.

Theorem 2.2 If P{w : (M(w)) # L, My(w) =1} = 0 for each i € {1,2,...,n}, then f is
differentiable at any local minimizer z € RY}.

3 Smoothing projected gradient method
Let P[] denote the orthogonal projection from R™ into X ¢ R", |
P[z] = argmin{||z - z|| : z€ X}.

Definition 3.1 Let f : X C R®™ — R be a locally Lipschitz continuous function. We call f :
X x R4+ — R a smoothing function of f, if f is continuously differentiable in X x Ry, and there
exists a function ¢ : R — Ry such that p(t) — oo implies |t| — oo, and

|f(z, ) = f@)| < [p(f@)]p for allz € X. _ (3.1)

Let f be a smoothing function of f, and the smoothing gradient projection method is defined as
follows. '

Algorithm 8.1 (Smoothing projected gradient algorithm)
Let v1, v2 and 4 be positive constants, and o1, 03 and o be constants in (0,1), where o1 < o3.
Choose z° € X and pg € Ry. Fork > 0:

- 1. If | Pla* — Vo f(z*, ux)] — 25| = 0, let 2! = z* and go to step 4. Otherwise, go to step 2.
2. Let
xk(a) = P[zk - avzf(zk, #k)]s

and z*+! = z*(0;) where ay is chosen so that,

CFEMY ) < F(2F, k) + 01 (Vo F(ak, ), 25 - z) (3.2)
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and
ak 271, or ag2vadk >0, (3.3)
" such that ZF+t1 = (&) satisfies
FE*, ) > F(2*, p) + 02(Va f(a*, i), 21 - 2¥). (34)

—gk . ,
S. If ﬂf:%'in > Ypg, set pry1 = px. Otherwise, go to step 4.
4. Choose 41 < opy.

The smoothing projected gradient algorithm is well-defined. Note that
IPle* — Vo f(z*, pe)] — =¥ =0
if and only if z* is a stationary point of
min{f(z,m) : = € X}, (3:5)
that is, z* satisfies
(Vaf(z*, i), 2¥ —2) <0 forany ze€ X.

I z* is not a stationary point of (3.5), then from the differentiability of f(-, ux) and analysis in [2],
we can show that there exists ox > 0 such that (3.2) and (3.3) hold.

3.1 Smoothing function for ERM

Now we show that smoothing functlons f derived from the Chen-Mangasarian smoothmg function
[3] satisfy Definition 3.1. Let p : R — [0, 00) be a piecewise continuous density function satisfying

p(8) =p(-8) and k:= /w |s|p(8)ds < oo. (3.6)

The Chen-Mangasarian family of smoothing approximation for the “min” function
min(a, b) = a — max(0,a — b)
is built as

#(a,b,pu) =a— = max(0,a — b — us)p(s)ds. (3.7

-0

Employing (3.7) to f, we obtain the smoothing function f

f(z, p) = 2E[b,,(z, ), (3.8)



where 6, : R* x Ry, — R is defined by

- 1=- T 5

9‘,,(:1:, /-") = EHw(Ia /“') Hw(xaﬂ')’
and H, : R* x R, — R™ is given by

' ¢(zlv (M(w)x + Q(w))l’ “)
H,(z,p) = _ v
$(Zn, (M (w)z + g(W))n, 1)

Let 8cH,, be the C-generalized Jacobian of H, defined by

OcH,(z) = 0(H,(x))1 x 8(H,(x))2 % -+ x O(Hy(T))n,

where 8(H,,(z)); is the Clarke generalized Jacobian [7] of (H,(z)); for i =1,2,...,n.

Lemma 8.1 [5] Foranyw € Q,z € R® and u € R4,
() 1Bz, 1) ~ Ho(@)] < vaa.
(i) ﬁﬁldi&t((V,Hw(z, [_L))T,BC'H‘,(Z)) = 0.
M.

Let us denote & : R* — R by h(z) = 27, then we have f = E[h o H,)].
Proposition 3.1 For any z € R%, and any sequence {z*} C R} and {ux} C R4+,
| lim  dist((Vaf(z*, m))T, E[Vh o 8cH,(z)]) = 0.
zh—z, uglo
Moreover, if f is differentiable at z € R%}, then

{Vf(z)} = E[Vh o 8cH,(z)).

Proposition 8.2 The sequence {f(z*)} generated by Algorithm 2.1 is bounded.
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Theorem 3.1 Let {z*i} be an infinite subsequence generated by Algorithm 2.1 with px, > pk,,,
for any j. Then for any accumulation point =* of {z*i}, there is V € E[Vho8cH,, (z*)] such that

(V,z* —2) <0 forallz€ R}.

If f is differentiable at z*, then z* is a stationary point of problem (1.5).
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