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Strong and Weak Convergence Theorems for Equilibrium
Problems and Nonlinear Mappings in Banach Spaces
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Tokyo Institute of Technology

Abstract. In this article, we prove strong and weak convergence theorems for finding a
common element of the set of solutions for an equilibrium problem and the set of fixed points of
a relatively nonexpansive mapping in a Banach space. Next, we prove two strong convergence
theorems for finding a common element of the zero point set of a maximal monotone operator
and the fixed point set of a relatively nonexpansive mapping in a Banach space by using
the normal hybrid method and a new hybrid method called the shrinking projection method.
Further, we obtain a necessary and sufficient condition for the existence of solutions of the
euquilibrium problem by using the metric resolvents. Finally, we prove a strong convergence
theorem for finding a solution of an equilibrium problem in a Banach space by using the
shrinking projection method.

1 Introduction

Let E be a real Banach space and let E* be a dual space of E. Let C be a closed convex
subset of E and let f be a bifunction from C x C to R, where R is the set of real numbers.
The equilibrium problem is formulated as follows: Find Z € C such that

f(&,y) 20 forallyeC.

In this case, such a point £ € C is called a solution of the problem. The set of such solutions
is denoted by EP(f). Many problems in physics, optimization, and economics reduce to find
a solution of the equilibrium problem. Blum and Oettli (5] widely discussed the existence of
solutions of such an equilibrium problem. Combettes-Hirstoaga [9], Tada and Takahashi [46],
and Takahashi and Takahashi [48] proposed some methods for approximation of solutions of
the equilibrium problem in a Hilbert space. However, the problem of approximating solutions
of the equilibrium problem in a Banach space is difficult. We also know the problem of finding
a point u € E satisfying
0 € Au,

" where A is a maximal monotone operator from E to E*. Such a problem contains numerous
problems in physics, optimization and economics. A well-known method to solve this problem
is called the proximal point algorithm: z; € E and

Tptl = Jr,‘xns n=1,2,...,



92

where {rp} C (0,00) and J,, are the resolvents of A. Many researchers have studied this
algorithm in a Hilbert space, see, for instance, [11, 18, 27, 42, 45] and in a Banach space, see,
for instance, [17, 19, 20, 33]. A mapping S of C into E is called nonexpansive if

Sz — Sy|| < |jz — yl|

for all z,y € C. We denote by F(.S) the set of fixed points of S. There are some methods for
approximation of fixed points of a nonexpansive mapping; see, for instance, [12, 26, 36, 43, 64].
In particular, in 2003 Nakajo-Takahashi [32] proved the following strong convergence theorem
by using the hybrid method:

Theorem 1.1 (Nakajo and Takahashi [32]). Let C be a nonempty closed conver subset of

a Hilbert space H and let T be a nonezpansive mapping of C into ztself such that F(T') # 0.
Suppose 1 = x € C and {z,} is given by

Yn = QpZTp + (1 — an)Tz,,
Crn={2€C:|yn—2| < llzn — 2|},
Qn={s€ 0 (zn— 20— 2n) 20},
Un+1 = Po,nQa.Z, MEN,

where Pc,nq, %8 the metric projection from C onto C, N Qn and {an} is chosen so that
0 < ap < a < 1. Then, {zn} converges strongly to Prr)x, where Pp(r) is the metric
projection from C onto F(T).

Let us call the hybrid method in Theorem 1.1 the normal hybrid method. Very recently,
‘Takahashi, Takeuchi and Kubota [61] proved the following theorem by using another hybrid
method called the shrinking projection method.

Theorem 1.2 (Takahashi, Takeuchi and Kubota [61]). Let H be a Hilbert space and let
C be a nonempty closed convex subset of H. Let T be a nonezpansive mapping of C into itself
such that F(T) # @ and let x9 € H. For Cy = C and u; = Pc,zo, define a sequence {un} of
C as follows:

Yn = Qnlp + (1 - an)Tum

Cni1={2 € Cpn : |lyn — 2|| < llun — 2|},

Unt1 = Pc,,,Zo, nEN,

where 0 < anp < a <1 foralln € N. Then, {un} converges strongly to zo = Pr(T)Zo.

In this article, we prove strong and weak convergence theorems for finding a common element
of the set of solutions for an equilibrium problem and the set of fixed points of a relatively
nonexpansive mapping in a Banach space. Next, using the normal hybrid method and a
new hybrid method called the shrinking projection method, we study two strong convergence
theorems for finding a common element of the zero point set of a maximal monotone operator
and the fixed point set of a relatively nonexpansive mapping in a Banach space. Further, we
obtain a necessary and sufficient condition for the existence of solutions of the euquilibrium
problem by using the metric resolvents. Finally, we prove a strong convergence theorem
for finding a solution of an equilibrium problem in a Banach space by using the shrinking
projection method.
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2 Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. Let E be a Banach space and let E* be the topological dual of E. For all z € E

and z* € E*, we denote the value of z* at z by (z,z"). Then, the duality mapping J on E is
defined by

J(z) = {z" € E* : (z,2") = ||=|* = |l="||*}

for every z € E. By the Hahn-Banach theorem, J(z) is nonempty; see [51] for more details.
We denote the strong convergence and the weak convergence of a sequence {z,} to z in E
by z, — z and z, — =, respectwely We also denote the weak™ convergence of a sequence
{z3} to =* in E* by z* > z*. A Banach space E is said to be strictly convex if Jli:tldl <1
for z,y € E with ||z|| = ||y|| =1 and z # y. It is also said to be uniformly convex if for each
e € (0,2], there exists § > 0 such that ﬂfﬁﬂ <1-¢ for z,y € E with ||z|| = |ly|| = 1 and
llz — yll > €. The space E is said to be smooth if the limit

L+ tyll = o]
t—0 t

exists for all z,y € S(E) = {z € E : ||z]| = 1}. It is also said to be uniformly smooth if
the limit exists uniformly in z,y € S(E). We know that if E is smooth, strictly convex and
reflexive, then the duality mapping J is single-valued, one-to-one and onto; see [51, 52] for
more details.

Let E be a smooth Banach space and define the real valued function ¢ by
¢y, ) = llyl® ~ 2(y, Jz) + |jz||?
for all y,z € E. Then, we have that
¢(z,y) = ¢(z,2) + 6(2,9) — 2(z — 2, Tz — Jy)

for all z,y,z € E. Let E be a smooth, strictly convex and reflexive Banach space and let C
be a nonempty closed convex subset of E. Following Alber [1], the generalized projection Ilc
from FE onto C is defined by

He(z) = arg mig é(y, )

for all z € E. If E is a Hilbert space, then ¢(y,z) = ||y — z||? and II¢ is the metric projection
of H onto C. We know the following lemmas for generalized projections.

Lemma 2.1 (Alber [1], Kamimura and Takahashi [20]). Let C be a nonempty closed
convex subset of a smooth, strictly conver and reflexive Banach space E. Then

#(z,Icy) + ¢(Ilcy,y) < d(z,y) forallze Candy € E.

Lemma 2.2 (Alber [1], Kamimura and Takahashi [20]). Let C' be a nonempty closed

convex subset of a smooth, strictly convez, and reflexive Banach space, letz € E andlet z € C.

Then _ :
z=loz <= (y—2,Jz-Jz) <0 forallyeC.



94

Let E be a smooth, strictly convex and reflexive Banach space, and let A be a set-valued
mapping from E to E* with graph G(4) = {(z,z*) : z* € Az}, domain D(A) = {z € E :
Az # 0} and range R(A) = U{Az : z € D(A)}. We denote a set-valued operator A from F to
E*by AC E x E*. A is said to be monotone if

(x—y,z*—y*) >0

for all (z,z*), (y,¥*) € A. A monotone operator A C E x E* is said to be maximal monotone
if its graph is not properly contained in the graph of any other monotone operator. We know
that if A is a maximal monotone operator, then A~10 = {z € D(A) : 0 € Az} is closed and
convex; see [51, 52] for more details. The following theorem is well-known.

Theorem 2.3 (Rockafellar [41]). Let E be a smooth, strictly convex and reflexive Banach

space and let A C E x E* be a monotone operator. Then A is mazimal if and only if R(J +
rA) = E* for allr > 0.

Let E be a smooth, strictly convex and refiexive Banach space, let C be a nonempty closed
convex subset of E and let A C E x E* be a monotone operator satisfying

D(A) c C C J7H (Nr>oR(J +TA)).
Then we can define the resolvent J, : C — D(A) of A by
Jrz ={z€ D(A):Jz € Jz +rAz}

for all z € C. We know that J,.z consists of one point. For all r > 0, the Yosida approximation
A, :C — E* is defined by A,z = 42=2J=2 for all z € C. We also know the following lemma;
see, for instance, [24].

Lemma 2.4. Let E be a smooth, strictly conver and reflerive Banach space, let C be a
nonempty closed conver subset of E and let A C E x E* be a monotone operator satisfying

D(4) c C c J 1 (NrsoR(J +14)).

Let r > 0 and let J,. and A, be the resolvent and the Yosida apprbz*imatz'on of A, respectively.
Then, the following hold:

(1) ¢(u, Jrz) + ¢(Jrz,z) < $(u,z) for all z € C and u € A720;
(2) (Joz,Az) € A for aliz € C;
(8) F(J,) = A-0.

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E, let T' be a mapping from C into itself. We denoted by F(T') the set of fixed points of
T. A point p € C is said to be an asymptotic fixed point of T' if there exists {z,} in C which
converges weakly to p and lim, o ||Zn — Tz,|| = 0. We denote the set of all asymptotic fixed
points of T by EF(T). Following Matsushita and Takahashi [29], a mapping T : C — C is said
to be relatively nonexpansive if the following conditions are satisfied:

(1) F(T) is nonempty;
(2) ¢(u,Tz) < ¢(u,z) forallu € F(T) and z € C;
(3) F(T) = F(T).

The following lemma is due to Matsushita and Takahashi [28].
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Lemma 2.5 (Matsushita and Takahashi [28]). Let C be a nonempty closed convex subset
of a smooth, strictly convez, and reflexive Banach space E, and let T be a relatively nonez-
pansive mapping from C into itself. Then F(T) is closed and convex.

We also know the following lemma.

Lemma 2.6 (Kamimura and Takahashi [20]). Let E be a smooth and uniformly convex
Banach space and let {z,} and {y,} be sequences in E such that either {Tn} or {yn} is
_bounded. If limy, ¢(Tn,yn) = 0, then lim, ||z, — yn|| = 0.

3 Equilibrium Problems and Relatively Nonexpansive Mappings

In this section, we prove strong and weak convergence theorems for finding a common
element of the set of solutions for an equilibrium problem and the set of fixed points of a
relatively nonexpansive mapping in a Banach space.

Let E be a Banach space and let C be a nonempty closed convex subset of E. A function
f :C xC — R is said to be maximal monotone with respect to C if, for every z € C and
z* € E*, ' :

flz,y)+y—=z,2%) 20
for all y € C, whenever (z — z,z*) > f(z,z) for all z € C.
In this article, we assume that a bifunction f satisfies the following conditions:
(Al) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,z) <0 for all z,y € C;
(A3) for all z € C, f(z,-) is convex and lower semicontinuous;
(A4) limsupyq f(tz + (1 — H)z,y) < f(z,y) for all 3,9,z € C.

Assume that f satisfies (A1)-(A4). Then, f is maximal monotone. In fact, for every z € C
and z* € E*, suppose that
: (z—=z,2*) > f(z,2)

for all z € C. Putting 2; = (1 — t)z + ty with y € C and ¢ € (0,1), we have
0 =f(zta zt)
S(l - t)f(zt; 13) + tf(ztv y)
5(1"— t)<zt -z, .'C*) + tf(ztvy)
<t(1 - t)(y — z,z") + tf(2t,9)-
Hence, we have 0 < (1 —t){y — z,z*) + f(2¢,¥). Since f is upper hemicontinuous, we have
0<(y— :z:,:r.*) + f(z7y)'

Hence, f is maximal monotone. The following result is in Blum and Oettlli [5]. See [2] for the
proof.

Lermnma 3.1 (Blum and Oettli [5]). Let C be a closed convez subset of a smooth, strictly
convez, and reflerive Banach space E, let f be a bifunction from C x C to R satisfying (Al )-
(A4), and let 7 > 0 and = € E. Then, there exists z € C such that

flz,y) + -}(y-—z,Jz——' Jz) >0 forallyeC.
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Motivated by Combettes and Hirstoaga [9] in a Hilbert space, we obtain the following lemma.

Lemma 3.2. Let C be a closed convex subset of a uniformly smooth, strictly convez, and
reflezive Banach space E, and let f be a bifunction from C x C to R satisfying (A1)-(A4).
Forr >0 and ¢ € E, define a mapping T, : E — C as follows:

T (z) = {ze C':f(z,y)-i—;l;(y—-z,.]z—.]a:) >0 for allyeC}

for all z € E. Then, the following hold:

(1) T, is single-valued; v
(2) T, is o firmly nonezpansive-type mapping [24], i.e., for all z,y € E,

(Trz — Try, JTrz — JTpy) < (Trx — Ty, Jo — Jy);

(3) F(I;) = EP(f);
(4) EP(f) is closed and convez.

We claim that T is single-valued. Indeed, for z € C and r > 0, let 21, 22 € T,z. Then,
1
flar,22) + ~(z2 — 21, /21 = Jz) 20

and i
f(z2,21) + ;(zl — 2z3,Jz3 — Jz) > 0.

Adding two inequalities, we have

1
f(z1,22) + f(z2,21) + ;(Zz —z1,Jz — Jz) 2 0.
From (A2) and r > 0, we have
(zz —21,J2y — Jz3) 2 0.

Since FE is strictly convex, we have z; = z;.

Next, we claim that T, is a firmly nonexpansive-type mapping. Indeed, for z,y € C, we
have

f(Trz, Try) + ;rl-(T.,.y - Tpz, JT,z — Jz) 2 0,

and
1
f(Ty, Trx) + ;(Trw - Ty, JTry — Jy) 2 0.

Adding two inequalities, we have
£(Tr, Toy) + S (T, To) + = (Toy = Trt, T = IToy = Jz + J) 2 0.
From (A2) and r > 0, we have
| (Tyy — Toz, JToz — JTyy — Jo+ Jy) 2 0.
Therefore, we have
(Trz — Try, JTox — JToy) < (Trz — Ty, Jz — Jy).

We call such T, the relative resolvent of f for r > 0. Using Lemma 3.2, we have the following
result.



97

Lemma 38.3. Let C be a closed convex subset of a smooth, strictly convez, and reflezive

Banach space E, let f be a bifunction from C x C to R satisfying (A1)-(A4), and let r > 0.
Then, for z € E and q € F(T,), '

#(g, Trz) + ¢(Trz, z) < ¢(q, 7).
Proof. From Lemma 3.2 (2), we have, for all z,y € E,

. ¢(Tr-'3, Try) + ¢(Try, Trz) < ¢(T,.x,'y) + ¢(Tryr :L‘) - ¢’(T‘l‘x: z) - ¢(Trya y)'
Letting y = q € F(T}), we have

&g, Trz) + ¢(Trz, z) < $(q,Z)-
This completes the proof. O

Now, we prove a strong convergence theorem for finding a common element of the set of
solutions for an equilibrium problem and the set of fixed points of a relatively nonexpansive
mapping in a Banach space. ‘

Theorem 3.4 (Takahashi and Zembayashi [63]). Let E be a uniformly smooth and uni-
formly convez Banach space, and let C be a nonempty closed convez subset of E. Let f be
a bifunction from C x C to R satisfying (A1)-(A4) and let S be a relatively nonezpansive
mapping from C into itself such that F(S)NEP(f) # 0. Let {z,} be a sequence generated by

'20 =€ C,

Yn = J HanJzn + (1 — an)JSz4),

U, € C such that f(un,y) + ;lj(y — Uy, Jun — Jyn) 2 0, Vy € C,
H, ={zeC:¢(z,un) < é(z, Tn)}s

Wy ={z€C:(xy—z,Jz—Jzs) > 0},

 Tn+1 = H, W,

for every n € N U {0}, where J is the duality mapping on E, {an} C [0,1] satisfies
lim infp 00 @n (1 — @) > 0 and {r,} C [a,o0) for some a > 0. Then, {zn} converges strongly
to lp(s)nEP(s)Z, where Ilp(s)nEp(s) 18 the generalized projection of E onto F(S)NEP( f)._

Further, we prove a weak convergence theorem for finding a common element of the set of
solutions for an equilibrium problem and the set of fixed points of a relatively nonexpansive
mapping in a Banach space. Before proving the theorem, we need the following proposition.

Proposition 3.5. Let E be a uniformly smooth and uniformly convezx Banach space, and let
C be a nonempty closed convex subset of E. Let f be a bifunction from C x C to R satisfying
(A1)-(A4) and let S be a relatively nonezpansive mapping from C into itself such that F(S)N
EP(f) # 0. Let {z,} be a sequence generated by ui € E,

z,, € C such that f(zn,y) + &y — Tn, JTn — Jun) 20, VY € C,
Upsr = J Y anJzn + (1 — an)JSzn)

for everyn € N, where J is the duality mapping on E, {am} C [0,1] satisfies lim infp 00 0t (1—
0n) > 0 and {r,} C [0,00). Then, {Ilp(s)nEp(s)Tn} converges sirongly to z € F(S)NEP(f),
where Il p(g)nEP(s) 18 the generalized projection of E onto F(S) N EP(f). ‘
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Using Proposition 3.5, we can prove the following theorem.

Theorem 3.6 (Takahashi and Zembayashi [63]). Let E be a uniformly smooth and uni-
formly convexr Banach space, and let C be a nonempty closed convex subset of E. Let f be
a bifunction from C x C to R satisfying (A1)~(A4) and let S be a relatively nonezpansive

mapping from C into itself such that F(S) N EP(f) # 0. Let {z,} be a sequences generated
byu, € E,

Tn € C such that f(Tn,y) + 7= (y — Tn, JTn — Jun) 20, Vy € C,

for everyn € N, where J is the duality mapping on E, {ap} C [0,1] satisfies iminf,_, o an(l—
an) > 0 and {r,} C [a,00) for some a > 0. If J is weakly sequentially continuous, then {z,}
converges weakly to z € F(S) N EP(f), where 2 = lilp—oo Hp(s)nEP(f)Tn-

4 Maximal Monotone Operators and Relatively Nonexpansive
Mappings

In this section, we prove a strong convergence theorem for finding & common element of
the zero point set of a maximal monotone operator and the fixed point set of a relatively
nonexpansive mapping in a Banach space by using the normal hybrid method.

Theorem 4.1 (Inoue, Takahashi and Zembayashi [25]). Let E be a uniformly smooth
and uniformly convex Banach space, and let C be a nonempty closed convex subset of E. Let
A C E x E* be a mazimal monotone operator satisfying

D(A) c C c J7 1 (N;>oR(J +T4))

and let J, = (J +7A)"1J for allT > 0. Let S be a relatively nonezpansive mapping from C
into itself such that F(S)N A0 # 0. Let {zn} be a sequence generated by zo = z € C and

up = J"HanJZn + (1 — an)J STy, 20),
H, ={z€C:¢(z,un) < ¢(2,2.)},
W, ={z€C:{(zn - 2zJz—Jz,) >0},
Znt+1 = Mg, rw, =
for every n € N U {0}, where J.is the duality mapping on E, {an,} C [0,1) satisfies

lim inf,—oo(l — @n) > 0 and {r,} C [a,0) for some a > 0. Then, {x,} converges strongly to
I pg)na-10Z, where Hp(s)na-10 s the generalized projection of E onto F(S)nA~0.

As direct consequences of Theorem 4.1, we can obtain the following corollaries.

Corollary 4.2. Let E be a uniformly smooth and uniformly convez Banach space, let A C
E x E* be a mazimal monotone operator with A~10 # @ and let J, = (J + rA)~1J for all
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r > 0. Let {z,} be a sequence generated by zo =z € C and

Up = Jp, Tn,

H, = {z €EE: ¢(z1un) < ¢(z1$n)}1
W,={z€ E: (zp —2z,Jz — Jz,) > 0},
Tnt1 = lg.nw,z "

for every n € NU{0}, where J is the duality mapping on E and {rn} C [a,00) for somea > 0.
Thin, {zn} converges strongly to Il y-19z, where Il 41 is the generalized projection of E onto
A~h0.

Proof. Putting S =1, C = E and a,, = 0 in Theorem 4.1, we obtain Corollary 4.2. O

Corollary 4.3 (Matsushita and Takahashi [29]). Let E be a uniformly smooth and uni-
formly convex Banach space, let C be a nonempty closed convex subset of E, and let S be a
relatively nonezpansive mapping from C into itself such that F(S) # 0. Let {z,} be a sequence
generated by o =z € C and

Up = J" N anJzy + (1 — an)JSTy),

H, ={z€C:¢(z,un) < ¢(z,2n)},
Wn={2€C : (z, —2,Jz ~ Jz,) 2 0},
Zot1 =y, nw,z

for every n € N U {0}, where J is the duality mapping on E, {an} C [0,1) satisfies
liminfpeo(l — @n) > 0. Then, {z,} converges strongly to llp(s)z, where Ip(g) is the
generalized projection of E onto F(S).

Proof. Set A = Oic in Theorem 4.1, where i¢c is the indicator function of C and 8ic is
the subdifferential of ic. Then, we have that A is a maximal monotone operator and J, =

Ilc, where J,. is the resolvent of A = 8i¢ for r > 0. So, from Theorem 4.1, we obtain
Corollary 4.3. ' a

Using an idea of [61], we prove a strong convergence theorem for finding a common element
of the zero point set of a maximal monotone operator and the fixed point set of a relatively
nonexpansive mapping in a Banach space by using the shrinking projection method.

Theorem 4.4 (Inoue, Takahashi and Zembayashi [25]). Let E be a uniformly smooth
and uniformly convez Banach space, and let C be a nonempty closed convex subset of E. Let
A C E x E* be a mazimal monotone operator satisfying

D(A) € C c J7 Y (Nr>oR(J +TA4))

and let J, = (J + rA)~YJ for all r > 0. Let S be a relatively nonezpansive mapping from
C into itself such that F(S)N A™'0 # 0. Let {z,} be a sequence generated by xo = € C,
Hy=C and : ,

Un = J " HanJTn + (1 — an)JSJr, Zn),

Hop1 = {z €H,: ¢(zaun) < ¢(Z, xn)}’

) Tn4l = an +,a:
for every n € N U {0}, where J is the duality mapping on E, {a.} C [0,1) satisfies

lim infy 00 (1 — an) > 0 and {r,} C [a,00) for some a > 0. Then, {zn} converges sirongly to
I r(s)na-10%, where Ilp(s)na-10 i the generalized projection of E onto F(S)N A~10.
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As direct consequences of Theorem 4.4, we can obtain the following corollaries.

Corollary 4.5. Let E be a uniformly smooth and uniformly convex Banach space. Let A C
E x E* be a mazimal monotone operator with A~10 # @ and let J, = (J + rA)"1J for all
> 0. Let {z,} be a sequence generated by zo =z € E, Hy = E and

Un = Jr.,.mn,
Hn+1 = {z € Hn : ¢»(z,un) < ¢(Z, wn)}’
$ﬂ+1 = HHn+1(E '

for everyn € NU{0}, where J is the duality mapping on E and {r,} C [a, ) for some a > 0.
Then, {z,} converges strongly to Il 4-142.
Proof. Putting S =1, C = Hy = FE and o, = 0 in Theorem 4.4, we obtain Corollary 4.5. [

Corollary 4.6. Let E be a uniformly smooth and uniformly convez Banach space, let C be a
nonempty closed convex subset of E, and let S be a relatively nonezpansive mapping from C
into itself such that F(S) # 0. Let {z.} be a sequence generated by zo =z € C and

Up = J "o J Ty + (1 — ) I STs),
Hyp = {z €H,: ¢(za 'u'n) < ¢(z1 zn)}:

Tyl = HHn+1 r

for every n € N U {0}, where J is the duality mappihg on E, {an,} C [0,1) satisfies
liminf, .oo(1 — @n) > 0. Then, {zn} converges strongly to Ilpsyx, where Ilp(s) is the
generalized projection of E onto F(S).

Proof. Putting A = 8ic in Theorem 4.4, we obtain Corollary 4.6. a

5 Equilibrium Problems and Metric Resolvents

In this section, we prove a strong convergence theorem for finding a solution of the equilib-

rium problem by using the metric resolvents. Using Lemma 3.1, we first obtain the following
result.

Lemma 5.1. Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach
space E, let f be a bifunction from C X C to R satisfying (A1)-(A4), letr >0 andletz € E.
Then, there exists a unique 2, € C such that

flzry) + -71—_(y-— zr,J(2r—2)) 20 forallyeC.
Proof. Fix € C. Then, we difine g : (C — z) X (C — z) — R as follows:
1
9(z.y) = f(z + 2,y +2) + ~(y — 2, J2). (5.1)

From the properties of f, it is easy to prove that g satisfies the following conditions;
(A1) g(z,2) =0forall ze€ C —u;
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(A2) g is monotone with respect to C — z;
(A3) for all z € C ~ 1z, g(2,-) is convex and lower semicontinuous;
(A4) g is upper hemicontinuous with respect to C — z.

Hence, from Lemma 3.1 there exists a unique element z, such that
1 1
f(zr +a:,y+a:) + ;(y—zﬂ']x) + ;(y"" zr;er - Jz) 2 0

for all y € C — z. This implies that

1
flzr +z,9+2)+ ;(y —2p,J2,) 20

for all y € C' — z. Putting u, = 2, + z and v = y + z, we have

flus,v) + %(v — Uy, J(uy — 7)) 2 0

for all v € C. This completes the proof. 0

Under the conditions in Theorem 5.1, for every r > 0 we may define a single-valued mapping
F.:E—Cby .

F,z={z€C:0§f(z,y)+-71:(y—z,-J(z-z)), y € C} (5.2)

for x € E, which is called the metric resolvent of f for r > 0. Also, we can define the Yosida
approximation as follows:

Az = %J(x - Fa). (5.3)

As in Takahashi[52, pp.163-165], we can prove the following theorem for Yosida approx-
imations. Before proving it, we need the following lemma; see, for instance, Takahashi[52,
Problem 4.5.4].

Lemma 5.2. Let E be a Banach space. Assume thqt Up —> VU, Un 2 v* and

f_n,n-*oo

Then, Hm (un,vn) = (u,v*).

n~—00
Lemma 5.3. Assumer > 0. Then, A, : E — E* is monotone and demicontinuous. Further,
if D C E is bounded, then A.D C E* is bounded.

To show a necessary and sufficient condition for the existence of solutions of the euquilibrium
problem, we need the following lemma, [51, Theorem 7.1.8]; see also [4].

Lemma 5.4 ([51, 4]). Let E be a reflezive Banach space and let K be a bounded closed
convez subset of E. Suppose A is a monotone and demicontinuous operator. Then there exists
ug € K such that

{y — up, Aug) 20 for all y € K.

- Using Lemma 5.4, we obtain the following lemma..
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Lemma 5.5. Let E be a smooth and uniformly convez Banach space and let C' be a nonempty
closed convex subset of E. Let f be a bifunction C x C to R satisfying (A1)-(A4). For Cy =C
and 1 = z € E, define the sequence {z,} as follows:

yn =K rnln;

Cry1={2€Cpn: (Yn—2,J(Tn — yn)) 2 0},

Zn+1 = Po,., (“5_1),
where 0 < 7, < 00 and Pg, is the metric projection of E onto C,. Then {z,} is well-defined.

We also have the following lemma.

Lemma 5.8. If EP(f) # 0, then EP(f) C Cy, for alln € N.

Proof. 1t is ovbious that EP(f) C C; = C. Suppose EP(f) C C, for some n € N. Let
z € EP(f). From y, = F,_ z, and the monotonicity of f, we have

— -};J(m,. — ) = )

for all y € C. Put y = z. Then we have

(U = 2= I (@ = Yo} 2 £(z,30) 2 0.

Therefore, z € Cp41. By the mathematical inducition, we obtain z € Cy, for alln € N. O

Now, we obtain a necessary and sufficient condition for the existence of solutions of the
euquilibrium problem in a Banach space.

Theorem 5.7 (Takahashi and Takahashi {47]). Let E be a smooth and umfomly convex

Banach space and let f be a bifunction C x C to R satisfying (A1)-(A4). For Cy = C and
z, = z € E, define the sequence {z,} as follows:

yﬂ - Fr"zn,
n+1 {z € Cn H (yﬂ. -z, J(zn - y”l)) Z 0}’
ZTn+1 = Po,,, (21),

where hmmf rn > 0 and Pc, is the metric projection of E onto Cn. Then {z,} is bounded if
and only if EP(f) #0.

Finally, we can prove a strong convergence theorem for finding a solutmn of the ethbnum
problem by using the shrinking projection method.

Theorem 5.8 (Takahashi and Takahashi [47]). Let E be a smooth and uniformly convez
Banach space and let C' a nonempty closed convez subset of E. Let f be a bifunction C x C
to R satisfying (A1)-(A4). For Ci = C and z1 = z € E, define the sequence {zn} as follows:

Yn = Fr,.mm
Ch41 = {z €C,: (yn - 2z,J(Tn — yn)) 2 0}:
Tn41 = Pcoya (z1),

where liminf r,, > 0 and Pg, is the metric projection of E onto C,. If EP(f) # 0, then {zn}

n—o00
converges strongly to the element Pgp(s)(z1), where Pgp(y) is the metric projection of E onto
EP(f).
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