Blaschke products with a critical point on the unit circle and rational functions with Siegel disks

Koh Katagata

Interdisciplinary Graduate School of Science and Engineering Shimane University, Matsue 690-8504, Japan katagata@math.shimane-u.ac.jp

Abstract

We give a brief survey of results on Siegel disks of some rational functions with bounded type rotation number. A Siegel disk of some polynomial with bounded type rotation number has the quasicircle boundary containing its critical point. In order to construct such a Siegel disk not of a polynomial but of a rational function, we consider some Blaschke product and employ the quasiconformal surgery.

1 Results

Let $P_{\alpha}(z) = z^2 + e^{2\pi i \alpha} z$. Then the following theorem holds if α is of bounded type.

Theorem 1 (Ghys-Douady-Herman-Shishikura-Świątek, [6]). If an irrational number $\alpha \in [0,1]$ is of bounded type, then the boundary of the Siegel disk Δ of P_{α} centered at the origin is a quasicircle containing its critical point $-e^{2\pi i\alpha}/2$.

Let $Q_{\alpha,m}(z) = e^{2\pi i\alpha}z(1+z/m)^m$. Geyer showed the following theorem which is extended to some polynomials. Note that P_{α} is conformally conjugate to $Q_{\alpha,1}$.

Theorem 2 (Geyer, [1]). Let $m \ge 1$ be a positive integer. If an irrational number $\alpha \in [0,1]$ is of bounded type, then the boundary of the Siegel disk Δ of $Q_{\alpha,m}$ centered at the origin is a quasicircle containing its critical point -m/(m+1).

For complex numbers λ and μ with $\lambda \mu \neq 1$ and a positive integer m, let

$$F_{\lambda,\mu,m}(z)=z\left(\frac{z+\lambda}{\mu z+1}\right)^m.$$

The origin and the point at infinity are fixed points of $F_{\lambda,\mu,m}$ of multiplier λ^m and μ^m respectively. In the case that $\mu = 0$,

$$F_{\lambda,0,m}(z)=z(z+\lambda)^m.$$

Therefore the rational function $F_{\lambda,\mu,m}$ of degree m+1 is considered as a perturbation of the polynomial $F_{\lambda,0,m}$ of degree m+1. Note that $F_{\lambda,0,m}$ is conformally conjugate to $Q_{\alpha,m}$ if $\lambda^m = e^{2\pi i\alpha}$.

Main Theorem. Let $m \ge 1$ be a positive integer and $\mu \in \overline{\mathbb{D}}$. If an irrational number $\alpha \in [0, 1]$ is of bounded type and $e^{2\pi i\alpha}\mu^m \ne 1$, then there exist suitable pairs $\{(\lambda_j, \mu_j)\}_{j=1}^m$ with

(i)
$$\lambda_j^m = e^{2\pi i \alpha}$$
, $\mu_j^m = \mu^m$ and $\lambda_j \mu_j \neq 1$ for $j \in \{1, \dots, m\}$

(ii)
$$\lambda_i \neq \lambda_k$$
 if $j \neq k$

such that for each $j \in \{1, ..., m\}$, the boundary of the Siegel disk Δ_j of $F_{\lambda_j, \mu_j, m}$ centered at the origin is a quasicircle containing its critical point.

Main Theorem contains Theorems 1 and 2. Moreover we obtain the following corollary.

Corollary. Let $m \ge 1$ be a positive integer, $\alpha \in [0,1]$ be an irrational number of bounded type, $\mu^m = e^{2\pi i\beta}$ with $e^{2\pi i\alpha}\mu^m \ne 1$ and $\{(\lambda_j,\mu_j)\}_{j=1}^m$ be as in Main Theorem. If $\beta \in [0,1]$ is an irrational number of bounded type, then the boundaries of Siegel disks Δ_j and Δ_j^{∞} of $F_{\lambda_j,\mu_j,m}$ centered at the origin and the point at infinity respectively are quasicircles containing one critical point.

2 Key Theorems

Let $m \ge 1$ be a positive integer. We consider the Blaschke product

$$B_{\theta,\,\varphi,\,m}(z) = e^{2\pi i m \theta} z \left(\frac{z-a}{1-\overline{a}z}\right)^m \left(\frac{z-b}{1-\overline{b}z}\right)^m$$

of degree 2m + 1 with $a\overline{b} \neq 1$ and $0 < |a| \le |b| < \infty$. Let

$$x = \left\{ (m+1)^2 + (m-1)^2 r^2 + 2(m^2 - 1)r\cos 2\pi (2\varphi + \theta + \omega) \right\}^{-1}$$

$$\times \left\{ D_1 \cos 2\pi \varphi + D_2 \cos 2\pi (\varphi + \theta + \omega) + D_4 \cos 2\pi (3\varphi + 2\theta + 2\omega) \right\}$$

and

$$y = \left\{ (m+1)^2 + (m-1)^2 r^2 + 2(m^2 - 1)r\cos 2\pi (2\varphi + \theta + \omega) \right\}^{-1}$$

$$\times \left\{ D_1 \sin 2\pi \varphi - D_2 \sin 2\pi (\varphi + \theta + \omega) + D_3 \sin 2\pi (3\varphi + \theta + \omega) - D_4 \sin 2\pi (3\varphi + 2\theta + 2\omega) \right\},$$

where

$$D_1 = (m+1)^2 (2m+1) - 2m(m^2 - 1)r^2,$$

$$D_2 = 2m(m^2 - 1)r - (m-1)^2 (2m-1)r^3,$$

$$D_3 = -(m+1)^2 r, \quad D_4 = -(m-1)^2 r^2.$$

Theorem A. Let $\mu = re^{2\pi i\omega} \in \overline{\mathbb{D}}$ and let $a = a(\theta, \varphi)$ and $b = b(\theta, \varphi)$ with $|a| \le |b|$ be complex numbers satisfying relations a + b = x + iy and $ab = re^{-2\pi i(\theta + \omega)}$, that is, a and b are the solutions of the equation

$$Z^{2}-(x+iy)Z+re^{-2\pi i(\theta+\omega)}=0, \qquad (\dagger)$$

where x and y are as above and $(\theta, \varphi) \in [0, 1]^2$. Then the following holds:

- (a) In the case that r=0, solutions of the equation (†) are a=0 and $b=(2m+1)e^{2\pi i\varphi}$.
- (b) In the case that 0 < r < 1, the equation (†) does not have double roots. Moreover $0 < |a| < 1 < |b| < \infty$.
- (c) In the case that r=1 and $2\varphi+\theta+\omega\equiv 0\pmod 1$, the equation (†) has double roots and $a=b=e^{2\pi i\varphi}$.
- (d) In the case that r = 1 and $2\varphi + \theta + \omega \not\equiv 0 \pmod{1}$, the equation (†) does not have double roots. Moreover $0 < |a| < 1 < |b| < \infty$.

(e) In the case (a), (b) or (d),

$$B_{\theta,\,\varphi,\,m}(z) = e^{2\pi i m \theta} z \left(\frac{z-a}{1-\overline{a}z}\right)^m \left(\frac{z-b}{1-\overline{b}z}\right)^m$$

is a Blaschke product of degree 2m+1 and the point at infinity is a fixed point of $B_{\theta, \varphi, m}$ with multiplier μ^m . Moreover $z = e^{2\pi i \varphi}$ is a critical point of $B_{\theta, \varphi, m}$ and $B_{\theta, \varphi, m}|_{\mathbb{T}} : T \to \mathbb{T}$ is a homeomorphism, where \mathbb{T} is the unit circle.

Let $f: \mathbb{T} \to \mathbb{T}$ be an orientation preserving homeomorphism and denote by $\rho(f)$ the rotation number of f.

Theorem B. Let $\alpha \in [0, 1]$ and let $\mu = re^{2\pi i\omega} \in \overline{\mathbb{D}}$, $a = a(\theta, \varphi)$ and $b = b(\theta, \varphi)$ be as in Theorem A. Then for the Blaschke product

$$B_{\theta,\,\varphi,\,m}(z)=e^{2\pi im\theta}z\left(\frac{z-a}{1-\overline{a}z}\right)^m\left(\frac{z-b}{1-bz}\right)^m,$$

 $B_{\theta, \varphi, m}|_{\mathbb{T}}: \mathbb{T} \to \mathbb{T}$ is an orientation preserving homeomorphism. Moreover

- (a) If $0 \le r < 1$, then there exists $(\theta_0, \varphi_0) \in [0, 1]^2$ such that $\rho(B_{\theta_0, \varphi_0, m}|_T) = \alpha$.
- (b) If r = 1 and $\alpha + m\omega \not\equiv 0 \pmod{1}$, then there exists $(\theta_0, \varphi_0) \in [0, 1]^2$ such that $\rho(B_{\theta_0, \varphi_0, m}|_T) = \alpha$ and $2\varphi_0 + \theta_0 + \omega \not\equiv 0 \pmod{1}$.

3 Proof

Proof of Main Theorem. By Theorem B, there exist $(\theta, \varphi) \in [0, 1]^2$ such that the degree of $B_{\theta, \varphi, m}$ is 2m + 1 and $\rho(B_{\theta, \varphi, m}|_{\mathbb{T}}) = \alpha$. Then there exists a quasisymmetric homeomorphism $h: \mathbb{T} \to \mathbb{T}$ such that $h \circ B_{\theta, \varphi, m}|_{\mathbb{T}} \circ h^{-1}(z) = R_{\alpha}(z) = e^{2\pi i \alpha}z$ since α is of bounded type. By the theorem of Beurling and Ahlfors, h has a quasiconformal extension $H: \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ with H(0) = 0. We define a new map $\mathfrak{B}_{\theta, \varphi, m}$ as

$$\mathfrak{B}_{\theta,\,\varphi,\,m} = \begin{cases} B_{\theta,\,\varphi,\,m} & \text{on } \hat{\mathbb{C}} \setminus \mathbb{D}, \\ H^{-1} \circ R_{\alpha} \circ H & \text{on } \mathbb{D}. \end{cases}$$

The map $\mathfrak{B}_{\theta, \varphi, m}$ is quasiregular on $\hat{\mathbb{C}}$ since \mathbb{T} is an analytic curve. Moreover $\mathfrak{B}_{\theta, \varphi, m}$ is a degree m+1 branched covering of $\hat{\mathbb{C}}$. We define a conformal structure $\sigma_{\theta, \varphi, m}$ as

$$\sigma_{\theta,\varphi,m} = \begin{cases} H^*\sigma_0 & \text{on } \mathbb{D}, \\ \left(\mathfrak{B}^n_{\theta,\varphi,m}\right)^*\sigma_0 & \text{on } \mathfrak{B}^{-n}_{\theta,\varphi,m}(\mathbb{D}) \setminus \mathbb{D} \text{ for all } n \in \mathbb{N}, \\ \sigma_0 & \text{on } \hat{\mathbb{C}} \setminus \bigcup_{n=1}^{\infty} \mathfrak{B}^{-n}_{\theta,\varphi,m}(\mathbb{D}), \end{cases}$$

where σ_0 is the standard conformal structure on $\hat{\mathbb{C}}$. The conformal structure $\sigma_{\theta,\varphi,m}$ is invariant under $\mathfrak{B}_{\theta,\varphi,m}$ and its maximal dilatation is the dilatation of H since H is quasiconformal and $B_{\theta,\varphi,m}$ is holomorphic. By the measurable Riemann mapping theorem, there exists a quasiconformal homeomorphism $\Psi: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ such that $\Psi^*\sigma_0 = \sigma_{\theta,\varphi,m}$. Therefore $\Psi \circ \mathfrak{B}_{\theta,\varphi,m} \circ \Psi^{-1}$ is a rational map of degree m+1. We normalize $\Psi = \Psi_j$ by $\Psi_j(0) = 0$, $\Psi_j(b) = -\lambda_j$ and $\Psi_j(\infty) = \infty$, where $\lambda_j = e^{2\pi i(\alpha+j)/m}$ for $j \in \{1, \ldots, m\}$.

Lemma. If $\mu \neq 0$, then there exists μ_j with $\mu_j^m = \mu^m$ such that

$$F_{\lambda_j,\mu_j,m}=\Psi_j\circ\mathfrak{B}_{\theta,\varphi,m}\circ\Psi_j^{-1}.$$

Proof of Lemma. Define ξ_j as $\xi_j = -\Psi_j(1/\overline{a})$. Note that $\lambda_j \neq \xi_j$ since such Ψ_j is unique. Since orders of zeros and poles are invariant under conjugation, we obtain that

$$\Psi_j \circ \mathfrak{B}_{\theta, \varphi, m} \circ \Psi_j^{-1}(z) = \eta_j z \left(\frac{z + \lambda_j}{z + \xi_i}\right)^m.$$

Since multipliers of fixed points are also invariant under conjugation, we obtain that

$$\left(\Psi_{j} \circ \mathfrak{B}_{\theta, \varphi, m} \circ \Psi_{j}^{-1}\right)'(0) = \frac{\eta_{j} \lambda_{j}^{m}}{\xi_{j}^{m}} = e^{2\pi i \alpha} \tag{1}$$

and

$$\frac{1}{\left(\Psi_{j} \circ \mathfrak{B}_{\theta, \varphi, m} \circ \Psi_{j}^{-1}\right)'(\infty)} = \frac{1}{\eta_{j}} = \mu^{m}. \tag{2}$$

By the equations (1) and (2), we obtain that $(\xi_j \mu)^m = 1$. Then there exists an *m*-th root of unity ν_j such that $\xi_j = \nu_j / \mu$. Therefore

$$\Psi_j \circ \mathfrak{B}_{\theta, \varphi, m} \circ \Psi_j^{-1}(z) = \frac{z}{\mu^m} \left(\frac{z + \lambda_j}{z + \nu_j / \mu} \right)^m = z \left(\frac{z + \lambda_j}{\mu z + \nu_j} \right)^m$$

$$=\frac{z}{\nu_j^m}\left(\frac{z+\lambda_j}{\left(\mu/\nu_j\right)z+1}\right)^m=z\left(\frac{z+\lambda_j}{\mu_jz+1}\right)^m=F_{\lambda_j,\mu_j,m}(z),$$

where $\mu_j = \mu/\nu_j$.

Let $\mu_j = 0$ for all $j \in \{1, ..., m\}$ if $\mu = 0$. It is easy to check that the pairs $\{(\lambda_j, \mu_j)\}_{j=1}^m$ satisfy (i) and (ii). The map $F_{\lambda_j, \mu_j, m}$ has a Siegel disk $\Delta = \Psi_j(\mathbb{D})$ with a critical point $\Psi_j(e^{2\pi i \varphi}) \in \partial \Delta$. Moreover $\partial \Delta = \Psi_j(\mathbb{T})$ is a quasicircle since Ψ_j is quasiconformal.

Proof of Corollary. Let I(z)=1/z. Then $F_{\lambda_j,\mu_j,m}=I\circ F_{\mu_j,\lambda_j,m}\circ I$. Let Δ and Δ_{∞} be Siegel disks of $F_{\lambda_j,\mu_j,m}$ centered at the origin and the point at infinity respectively. By Main Theorem, the boundary of Δ contains a critical point of $F_{\lambda_j,\mu_j,m}$. On the other hand, $I(\Delta_{\infty})$ is the Siegel disk of $F_{\mu_j,\lambda_j,m}$ centered at the origin. By Main Theorem, the boundary of $I(\Delta_{\infty})$ contains a critical point of $F_{\mu_j,\lambda_j,m}$. Therefore the boundary of Δ_{∞} contains a critical point of $F_{\lambda_j,\mu_j,m}$.

References

- [1] L. Geyer, Siegel discs, Herman rings and the Arnold family, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3661-3683.
- [2] K. Katagata, Some cubic Blaschke products and quadratic rational functions with Siegel disks, *Int. J. Contemp. Math. Sci.*, to appear.
- [3] K. Katagata, Blaschke products and rational functions with Siegel disks, submitted.
- [4] J. Milnor, Dynamics in One Complex Variable, Vieweg, 2nd edition, 2000.
- [5] M. Yampolsky and S. Zakeri, Mating Siegel quadratic polynomials, *J. Amer. Math. Soc.* 14 (2001), no. 1, 25–78 (electronic).
- [6] S. Zakeri, Old and new on quadratic Siegel disks, http://www.math.qc.edu/~zakeri/papers/papers.html.